SCIENTIFIC ABSTRACT SARMAI, E. - SARMANOVA, YE.S.

Document Type: 
Document Number (FOIA) /ESDN (CREST): 
CIA-RDP86-00513R001447210017-4
Release Decision: 
RIF
Original Classification: 
S
Document Page Count: 
100
Document Creation Date: 
November 2, 2016
Document Release Date: 
August 31, 2001
Sequence Number: 
17
Case Number: 
Publication Date: 
December 31, 1967
Content Type: 
SCIENTIFIC ABSTRACT
File: 
AttachmentSize
PDF icon CIA-RDP86-00513R001447210017-4.pdf9.26 MB
Body: 
lumania CITEOCRY ABS, MR., i Rmadap 0 Nq*.~ ~z !959 SO* :.Macovsc ii An armsmioti C- 1-4umanian'Acadmy, of Sciences:~ TS V ~4 J Modifications of the Bertrand and Bierri Method6., thei Glucose d: Contan t for.,the-Deter mina Ion o MOO PU% ltm'Acad No Stud erce' ari'B o ABSTRA UT d h, icatioh o t he. aVov e The.,main., rawback, inA, appl indicat ed,- iatuvds r6r,. ~he. detsrmi-nati6n of tfie, er'6tofor~P.-. has' con h deft n. need. t f for tile, atilizaiiion of .-pr h of, the, c(i oric ide! o~edure'js 'for A e :reparation -Allich, is formed., .'Them authors propo6e'a modifica.~- -onsists it 1~-he~ ~tion 6f I above ~ met!2od,whi:ch,;,- addItion: bf' sodl UM b1carbo te. P411 ne, ehl ng e a. r~Lti'00, which-permits ~Ih~- OQI,Ut on b r nit -filtration~to,ba ma'de.xith, standArd La:~~eF. y~~per Y) 'dy - P(X) whem F(x, y) is a symmetrical distri~tion (unctinn for the variables (x, y) and I)Cr; is the prior distrbution furictirm nf i F)e main f-cm0itsirm i- thm such a w4ution. i0lich is c i,rq p, -irl n.- tn S&fManoq, C). V 3eneT"Aljr ,o )f 1 11 lIj tAe~!e= of Ih,. FL:-Iaq, o eptvrjtrl~ ,ulabies -,a%-Sry--g I-U,,!-!IjerXv:o -liticr -Ie i e.W t3 Of (-ajS tl.p-- "e.7, lViath. Pure$! Appl. (9) 24. 249-318 N UP - P. 4 53 1 0 1 ft b . I I I. R w I . ~)r ;he rPctilCa'T0n Of CIr 08tlo~ F~ TT KM; -i K 58. '45 .4 80.3. 106 1 - I O(A (1949). 60, ~45 -.48 (1948) , thespe Rev 10, 45, 9 442. iM a t ho R--V i ev 3 I C M X I k.* DI!, 1. ~, -put III 1Q, U1.1 16. JO otp um 1, Ut P11- SO; pul. L% JO 1 oj !I- to u0jjrj.l III, 1:1-'A k IU(, UM4.1 I P.11i .3ip ul Awl jumoti mn amn, fp~ Tj;3Iuuj,kq!ImI nj vljol I III, I X, 1.1A I I I... Iriv Cl) i Sarmanov, 0. V. On the order of magnitude of Li. ," of reiFe-s-siom DnkladN Akad. Nauk SSSR 59 '061- C+ 1064 , I 94-h, , RusbiAn) Let F(x. be the density of the chstributi,ii; ,i two variabit" ~'I dei,-rrnmes a (otrelation III 11'e plane, and satifit- !ht , otidition IJ) ,L.. f J_ -P (I X) Pty) Whrre 'ri i , iml Ply) are the marginal densities of t and y, reispev(l%-~' (III dit- ba.ls of the restilts of an earlit-F paper refervii, !n [fit- prt-ceding review] thu author proves the I-, fullou, g I, tict wren is. rhere. exists no sy mnictTical ct.,t I t-lation J hit I, it ~miiri,m 1.) and whi(h is such hat the ~~t.s id 'PU) of V on x, SMISf-,' the -,)mfition T a >0, tur ix >A,while thesmne%l~ k here 'Ffx,y:l pivIdY cor,elimon satisf, lig con-0.1f dit hi, I s im [I that of regre-ssi,~ ,i the lines r). Of Y (11, V- satisfy the ('011ditions 0 y~l A ->0 >o > > 0. y 1 > 00 -hlie Ifif lim ,,'i >0 t,~~ Whete 4,1(y) has j~ji analogous meanuig t. that Kiven for oi x AbOve. -! folk-wiag results, are stated as _Ptoll Th arie& L, 14 KW uty correlation which satisfies condition ( I I rile 0 ~egremion are polpictmials of positive degrm they mjjot~q be i:nc.ti ii Llir linea of rt:g.e.-,.3I1un ~ky) ait- 41gebrait:I1. cu rves of dcsrecs 6":l, 0. 6, > 0, then H fl. P Thwo)"in (Anics owa). Sarmanov, 0. V. On the order of magnitude of a line of 1. Doklady Akad. a*-u1-','S-S'TT-?N,-;T60, 545-548 (.1948). (Russian) The following, tk,,o thc,.orems generaliz( previous rt~iulrs of the author [F.;mw Doklady (N.S.) 59, 1061-1064 (1948); these Rev. 9, 442]. There exists no symmetric correlation -which -atisfies the condition (1) of the rc%iew of the earlier paper, and which is such that the lines of *7--Z -7f -tot. V I- A > 0; T 'ere eMAh- no nonsymnie'ric tre, ~:A A>1, lation safisf~ing the same condition (1) and which is tutch that the lines of regression O(x), of y or. r, and J,(y). of xony.satisfy theconditions 10(x)ji-tr(Ix ) for fxl-:-2!:A>O; 10(y)j for jyj 2-:,Y>O, p.,0, where Wxj) is a monotone increasing, continuous coavzx function of jxj sucli that r(0)-0, and 7-1(lyl) is its inver,-:e function. H. 11. Thielman (Ames, Iowa). Source: Hathernatical Reviexis, Vol No. I~ngM ld.;~'Mining:-'Iiist S 81SR "~~:.Vol IMIV "Vo 6 pp' 1135 3. ~ TI 'AUTHORt 4- Sarrnanov', O.VS 1207 8/67 ITLE: Maximum Correlatioii-,Co6ffi6ieiit~~(Sy~mm6tri~6~' (Maks ima 'Caae nyy. korrelyats koeffitslyepl ii ~-.(simjnetrichnyT, sluchay) PERIODICAL: Doklady Aka ,clemii. 958,Vol.,) ~Q,ffr 4 ABSTRACT: t Let. F (i ii) (Y he:density~of-,the dis ribu ion de - t rmining~lhe ~corieiation between':.the,random,*variables : -and .y- e ..x in:tfte do6ain' : La 41 Sb --Aet fu'rthermore b" X y c (j Y) Y) , . (X) and let K(' iie_g~abie 'iith ~:r'eipeic'tt d x e*square~-ir o x an ' &,that_-,th~e in:a f ormer,:jpa~er A the iau~thor. sh8we spebtrum~ ' ' 1 .-.,_ as the'. f6rM_ of the kei~nel, Vijy) h 0 if (i ~p (X) (X) o vvhere I relat" c t .,the.obr ion, oefficien ' x ands betwedn the eig6nfunctipns~;~,'( ), Card 1/2 i 9 AUTHOR: Sarmanov~ O.V. SOIV/20-121.~i-'l TITLE: The Maximal:Coofficient,oi,Correl~tioii (Asymmetric Case) (Maksimal1niy`1koeffitsiYent korrel atsii (nes1mmetTichnYY sluchay y PERIODICAL: a ei zv~k 'SSSR9 1958 9"':- Vol 121, ffr.lv ~P'52-5 Poklady Ak d. ii, n 51~OSSR) 4 ABSTRAM Let F(x',I) be'~the_ density~of.,-distribution,~dete'rmining in . [iL,6x ~,Qb; a' < y Q_ bA the.loorrelation between x and:7. Le t, 'b x F X* y :F(xoy)dx a. -of x an 0 be the a priori-d6iiities d~yllet the ~iorn 1:::,: ip(x~ vy K X7~ YTL~~ PT be integrable~in,~,the,square';w th-respect~~to2:both"variables.~ Th asymmetric density F ~'determines wo .~symmetrio -Ldensities b F(x If tgx By y Fj( Y) It,:_ LF '(joy) dt Xt p ~~7 J L PM Card 1/3 a a '~On:t~e, Corre lation.]Between-thiD.~kereen~age-Vaiia~I s SOV -M 20 126 5)6 Theorem 7., and z f 2 ,be:.indepehdentof eachother and o the. other 'variable a., The.!'11 area assumed ~..to be positives 'lion -coel The, correla ~ffbient R i a the 0 2 correlation-coefficient-R vi R(X X wiwrespeot o the T: 2 ~absolute value: and has the same~.sign.~ ~The Ooeffi i t e a (~ , . , - R R(x x can only siima aneou Sly 2 vanish There are,3 'references,9 - h: is Soviet and 2are 1 of wh c American. ASSOCIATIM Matemati~h6siiy.:i siitit:imsni ~V.A'&~ Steklova AN SSSR n (kathematical'Instit-ute imeni.. V.A. ~:Steklov.,-AS USSR) PRESENTED: Novemb . er.. 26 9 19 56, ht S.& Berns eyn, by Academician S.UBMITTED.- . November 2 1958.' c ard 2/9 f 16 AUTHORSx -lakh -2-6/59 Sarmanov 0 T and Mrovl' Y.Ke SOV/20 12,8 TITLE S~ectra of:Enlarged Stochastic~Matrices:~'. PERIODICALi Doklady.Akademii.nauk-SSSR~ 1959.,-Vol:.128:.lTr 201~p~243-245.(USSAY ~J.`,` ABSTRACT.,' Lst: b6- -'tW6 Aep A endent,fin i te seque no es-. of events with a symmetric table'of,correla ion p. 2 (l p P (A. B~) ~Let (2 0 and~l n.. -n P; .:(3) J-1 A l a The spec rum~,,.bf the s ocha tic.m trix rp j~ has, e:. form th Card 1/2 (5) n-1 5 _VM/60/05?/O~~/001 GI 11 /.G222- ea -ra: of, M~asures of the Dependende-:Between.Ranaom Terms and'si + Stocba'stic Kernel's and -Matrices Theorem, For', the, independenoe.'.of Ahe:~.rAndom t e rms ~~x 'and Y it-Is nd suffiol necessary n~ f th 6" max mal:corre a, i t t Ibs t ion, coe ~fc on, eq a s: zero.. ~:A ~A pA 2 A! 44 i '~i p i j B :B p3 1 0" ''M 2 k,l, , : tie two 6omplete, s,er;_,~ - "t]~~"Aei~iicleno6...~ s oi i~6ompatible.evenis.;~'Lei ' ' " ~ between thesescheme s ~be:'give*:..by ~the~ Iar"-c.orrelatibn table. eo+,a r p" -.,where;, 9m) tp =,P(A B i j j m ~(0.3) -pi n. ij, M Pi I 1 no m i=i: j= card 3/10 rr 87115 S 0 /03 60/05~/004/0 / c 21 If 2 tw Measures of the Dependence .e eeii,Ran'dom. S t Terms, an,.., pec ra of S to'chas ti cKernels 'and:.Matrices'.. Let bi,-sides p.. (i,,J-l 2vo.. n, (0-4) 1 ji p '2 i)j ja b of: th 64a y etricca. The. fir3t,eigennum ei r R . e (S mm Be) P41 j=1 2, on) ie:6ailled the maximal !correlation, Pi coefficient ~(d finifi6xi Here t66~:it ' holds,:,heorem.l. Jiv.-the e '~nl~ i unsymmetric casev Wh r e ,val, wo.:quadratic symmetke" d trices ma OY 'j=1 M) 1571 p j ..are formed, where. dard 4/10 87115 1039160/052106410611002~;, cill/C222_ Measures.. of the Dependence Between:Random. Te t f rms and Spec ra,,o Stochas C.Kerne s,"and Ma t ri c e s two Given dependent:finite chemes of' -incoipati~l only~possible e ir (1 vent (A A - A ` 1 1 nd (A (2) (2) ~wi A th a:Symmetric. . ~ n. 1'. 21 1 2 n 'Correlationlable lp ij -The: -symme r zable stochastic matrix, ~ p , ' ' 7 1 n, tp is called given schemes.. the ma rix of. the ' `40 M - ~A s M d it V A A ..If two events .6 o event .9. A, an t, = ar un e e d .-then the correlationAable.~ changes acc ording o, the scheme P1 iPiz ~Nn PIL Pt3 Ps P22 P_ . taA = &L . 3 33 3n P P P f aX1d 7/16 P" Pin P 3 P '' - ~:~- . . -1 ~ - ~ I ~ .1 i~ ',~ : ~ : , - , " , - -11 1 . - .1 1 :;a~ i ~4. , "-~v so e, th -z hftvinis~~ Rel 20. 1: ~Uj on "dud A ons~ Ultl eg6iPo Yh d1tive rit -moo 3SS3 KAM 'bion, ooeS ~hendklyi~ -Blagbveose h "Va~rian -Small., h ti t as "22 Alr6dnovi td _0~ 00 rd Vr semio OXN 23 11fix Theory,,O, 3 V S agayev- N g6B With .,Dis6~~t4 .~~V g:! Fro6e6- ota: om IhV'.: 0 -0 stynnan ~Iliithiai~tio`t ti inte-irest'-W ICon', ildir' tical' e_val'u:a'ti6i~ti~6 omation Le'tali~ ditir in sin zic arG i e -a ove ebyShe ,thin. fu`n- d'a' m-en ~k-66~wl it t3~ams