SCIENTIFIC ABSTRACT RYBIN, N.G. - RYBIN, S.N.

Document Type: 
Document Number (FOIA) /ESDN (CREST): 
CIA-RDP86-00513R001446410007-4
Release Decision: 
RIF
Original Classification: 
S
Document Page Count: 
100
Document Creation Date: 
January 3, 2017
Document Release Date: 
June 21, 2000
Sequence Number: 
7
Case Number: 
Publication Date: 
December 31, 1967
Content Type: 
SCIENTIFIC ABSTRACT
File: 
AttachmentSize
PDF icon CIA-RDP86-00513R001446410007-4.pdf3.86 MB
Body: 
', A A 00 to 6 -1 C. ~ r. ~ C. 4 9 6 - a, - . Alt, At A S AAL- & a 9h, t a w it u u &-". ff P A .- a I A-& It .,.D. I a a 9 0 0 4 1 ~ to 9 V V . a - . 12 31 if a Is 9 a 30 a 41 a a a, I A , I JAN IM 4o4 S, ge g go t, a ~YNIII, S. G, Klima.. [111mite,j (in p )~iwuvarw.] Kirov. KtitevueGnowlaravown' 'Go 00 ' Inw. fnawt, aloof. pretillit;1tion. mum ct,~-rr. etc. In AcKitov rtru6n. with alw1katiods to 004 jtgrkuldural lict-iWit" tit dwanu. RAno tits the duperr cas c0ino cc 6 a SAIted cupftr UN as see b),bulogytwi tam on themAtot this O-Kion Min .iti%v diattrAmot artr too me* 00 gets ;,qq .12 I a. I L A o#T^LLU*GICAL LITENATLAE CLASSIVICATICK 1 tolda,') .1. Co.' dot 11101c"t ii I I I \1 now -.I I --y a a T U JA I t It Ow a 0 4 1 w It 5 do a 3 a V ~ u it AT IQ Jil r ' " " n n q ' " ' , 0 " 1 4 0 0 is 0 0 0 0 0 0 09 go 0 q a * 0 0 0 S 0 0 o o * a G o S * 0 0060 to 0000 0000 00 go 0 so of 0 0 0 0 * of of of goo 0 46 0 0 TSTSI, P.N.; KAIXSNIK. S.V.; SOKOLOV, 11.1%; CHOCHIA, II.S.; PROTOPOPOV, A.P.; ZABELIN, I.M.; GVOZIMTSKIY, N.A.; YEMMOV, Tu.L-, KARA-MOSKO, A.S.; KOZLOV, I.V.: SOLNTSEV, N.A.; ISACEMITKO, A.G.; ARMAND, D.L.; MIROSHITICE[EITKO, V.P.: PETROV, T-M.; KAZAKOVL, O.Y.; YILUYLOV, N.I.; PARMUZIN, Yu.P.; GERENCRUK, K.I.; MILIEDV. F.N.; TAIRASOV, F.V.; NIKOLAYEV, V.N.; SOBOIEV, L.N.; RYBIN, N.N.; DUMIN, B.Ya.; IGNATIYEV, G.R.; ~MLIKHEYEV, M.N.; SANEBLIBGZE, U. S.; VASILIYEVA, I.V.; PEREVALOV, V.A.; RASALIKAS, A.B. Discussion at the conference on studying land forms. Nauk. zap. Llviv. un,,4o:2 1-267 '57. (MIRA 11:6) 1. vovagy gosudarstvennyy universitet (for TSys', Gerencliuk, Dumin). 2.Laboratoriya aerometodov AN SSSR, Leningrad (for Sokolov, Miroshnichenko, Petrov)..3.Institut geografii A14 SSSR, Mskva (for Armand, Sobolev). 4.Gosudarstvennyy universitet, Voronezh (for Millkov, Tarasov). 5.Leningradakiy gosudarstvennyy universitet (for Chochia, Isachenko, Kazakova). 6.Komissiya okhrany prirody AN SSSR, Moskva (for Protopopov). 7.Gosudarstvennyy universitet, Chernovtsy (for Rybin). 8.Gosudarstvennyy universitet, Irkutsk (for Melfk-heyev) ' 9.Go- sudarstvennyy pedagogicheakiy institut im. V.I. Lenina, Moskva (for Vasillyeva). 10.Bollshaya Sovetskaya Zntsiklopediya (for Zabelin). ll.Gosudarstvennyy universitet, Tbilisi (for Saneblidze). 12.Moskovskiy, gosudarstvenny3r universitet (for Gvozdetskiy, Solntsev, Mikhaylov, Parmuzin, Nikolayev, Ignatlyev). 13.Torgovo-ekonomicheskiy institut, Lfvnv (for Perevalov). 14.Gosudarstvannyy institut im. Kapsukasa,, VilInyus (for Basalikas). 15.Muzey zemlevedeniya Moskovskogo go- sudarstvennogo universiteta (for Tefremov, Kozlov). 16.Sreduyaya shkola No-13, Kiyev (for Kara-Mosko). (Physical geography) Y F, AUTHOR% Rybin, P.P. ----------- TITLE i On the Convergence of Series Obtained in Solving Non-Linear integral Equations (0 ekbodImstj ryadav, poluchaysmykh pri reshenii nelineynykh intograllnykh uravnoniy) PERIODICAL& Doklady Akademii Nauk SSSR, 19571 Volt 115, Nr 3# Pp. 458 461 (USSR) ABSTRAM This paper examines the nonlinear integral equation (X) K(x, y. 99(y), A )dy. The function K(x9 YIY 1A be continuous with regard to'all variables as well as analytical with regard to and The representation K(X1 Ys ?:0 A A, (x, Y) 9),1 withlItj(x, y)j< Bj~ ZT. shall be valid and the functions A (x, Y) shall be oontinuous. 00 The aerieISIB(I ).-,7 B ij A' . shall converge at ever A (XY Y) w 0shall apply. The Card 1/3 author giv a general principles on the convergence ofthe, 2Q.A* 9/59 On the Convergence of Series Obtained in Solving Won-Linear Integral Equations 2 formal solutions (X) (X) + A of the 4 2 (X) + equation P (X) K(xg y, (y)9 )dy. A camplicatlon occurs only when the number I is an sigenvalue of the linear, 4 integral operator A103?(x) I (XI 7) P (y)dy. The corre- ' Imination of the fuzations sponding equation for the dete (X) has the fo rm, i 'A 10 (XIy) ?i (y) dy + N, (Z ty 9(Y) I I(y))dy. When the condition of orthogonality is ;a 'fied, the ith equation of the just given form has a solu- tion 8f the form 91i(x) ~- 10(x) + cip(x). In this connection is a known function n P(X) is the eigenfunction, cor- relghding to the sigenvalue It of the nucleus A, (x,y). The two theorems here given stato.the followinge A foo 1 selutio rma n (x) of the initially written integral equation be possible the form.of th; series T(x) 11y, (x) +A2 T2(x) . ..... and the process o the definition of 1h@ functions Ti(x) shall stabilize it lf Then th series uniformly converges with re- g&Td to where is a cer- x 6710t oil I / A 1< I Card 2/3 tain positive numfeir, This aefies is then the actual solution 17 16(1) 06316 AUTHCa.-- Rybin,P.P. SOV/140-59-6-17/29 TITLE: On a Formula in.the Method of Nekrasov-Nazarov PERIODICAL: Izvestiya vysshikh uchebnykh zavedeniy. Matematika,,1959, Nr 6, pp 131-137 (USSR) ABSTRACT: According to the Academicians A.I.Nekrasov and N.N.Nazarov,the solution.of the non-linear integral equation 1 U(X) (x,s)u(s)d s+ (x,s)ds Ai~(xps)v iuj(s)ds' +01 + 10 +1 i+j), 2- 0 0 0 where v is a small parameter, A (X,3) are continuous functions, can be obtained by the series arrangement (4) UW viui(x). But if 1 is an eigenvalue of A then the determination of the 01 functions u.(x) raiqes difficulties which partially are put Card 1/2 c6316 On a Formula in the Method of Nekrasov-Nazarov SOV140-59-6-17/29 aside by V.V.Pokornyy Z Ref 3-7. Here it is essentialto obtain an effective system for the determination of the constants of integration. Such a system was already given by the author L Ref 4__,7. The present paper contains a general result for this problem. There are 6 references, 5 of which are Soviet, and 1 German. ASSOCIATION:Irkutskiy gorno-metallurgicheskiy institut (Irkutsk Mining- Metallurgical Institute) SUBMITTED: June 13, 1958 ~Card 2/2 84756 S/042/60/015/004/014/017XX /4,-2100 C111/C222 AUTHORS: Pokornyy, V.V., and.Rybin, P.P. TITLE-, On the Stabilization of-the Process-of Finding Formal-!~Lplicit FU action PERIODICAL: Uspekhi triatematiche8kikh nauk, 1960, Vol-15, No-4, pp.169-172 TEXT: Let the function ac. OL(X) be defined by the equation k 1 F(ce-p Tkl!' 0. k+l~/l Substituting 00 k (2) (e 0e, 0-Ir (s. >11) k-m I in (1) 4e P T -W- k 22 k1 ~~, ~ Z k+l;0 1 n-1 then "Yk and s can be determined from the conditions (3) P o. n Card 1/3 84756 W042/60/015/004/014/017XX C111[C222 On the Stabilization of the Process.of..Finding Formal Implicit Functions For a successive determination of the-coeffIcients ock from the system (3) it was observed-that, beginning with a certain number no, all. equations. (3) are linear with respect to c4, and at ca- they have the same coefficient n n different from zero. M.A,Krasnosellskiy.denoted this phenomenon as stabilization"..The.authors-prove that this phenomenon always appears. for the mentioned process, namely.at the latest if in the sequence iT 01 there Iappears the first coefficient different from zero. -Let A kl (x,y) be continuous, small parameter. Theorem 3:~For the equation. (6) (x) fA (X Y) LP (Y) dy+~L c,y)dy+ Ak, (X, Y f'P (y)] 10 JA010 I 0 0 0 the determination of the coefficients %,Ok(x) of the solution arrangement Card 2/3 22834 S/199/61/002/001/005/008 B1 1 2/B21 8 AUTHOR: Rybin, P. P. TITLE, Construction of solutions of nonlinear integral equations in the form of a Laurent series PERIODICAL: Sibirskiy matematicheskiy zhurnal, v. 2, no. 1, 196-1, 127-128 TEXT' Integral equations of.the form T(x) I~kjA (X'S) T1(s) ds- I i I j>0 ij 0 Wi+h f IA. (x,S)Ids< oo and continuous kernels A have small solutions for 0 ~ ij a small X, which vanish for X --3~ 0 , and great solutions which tend to o0for X ---~ 0. According to V. V.,Pokornyy, the small.solutions can be expanded inX series of the form: 00 X,X) X /s if the number is not at all, or at, T( - k( )X k=o least a single eigenvalue of the kernel A (x,s). Of the great solutionst 10 it is known that in their expansion in,a series of X also a finite number Card 1/3 22834 S/199/61/002/001/005/008 Construction of ... B112/B218 of negative powers may occur,and that therefore the point X = 0 may be an algebraic branch point or a pole.of finite order. M. A. Krasnosellskiy has raised the questionvbether the point X = 0 may also be an essentially singular point of the solutions In the present paper, the author prove's that this question must be answered in the affirmative. For this proof he uses the following nonlinear integral equation: z(x) T(s)y (s) z(s) ds 2 n(s + A T(S)1111 (S)dS + 'Yi rdn (s)z )d where a n (s) bn (s)/n!p n5 k for k