SCIENTIFIC ABSTRACT ROZHDESTVENSKIY, A.P. - ROZHDESTVENSKIY, E.V.

Document Type: 
Document Number (FOIA) /ESDN (CREST): 
CIA-RDP86-00513R001445710008-1
Release Decision: 
RIF
Original Classification: 
S
Document Page Count: 
100
Document Creation Date: 
November 2, 2016
Document Release Date: 
September 19, 2001
Sequence Number: 
8
Case Number: 
Publication Date: 
December 31, 1967
Content Type: 
SCIENTIFIC ABSTRACT
File: 
AttachmentSize
PDF icon CIA-RDP86-00513R001445710008-1.pdf5.51 MB
Body: 
BTJL-GA-F IA/ Co sm-o -ihema s- try -Lreo6aemistr-Jr. Mvarc,---- emi qtr7.D 'Abs Tour Re fZhur KrlimiYa-6- No, 5, 1958j, 14,ogi Author Rozhdestvens A.V. T---I s t Title Hydrochemistry of.the~Buzges Lakes. Orig Pub Priroda (B"lg.), 1957, 6, No.2., 83-87 (bo1g.)' Abstract Three lakes origipa~ting from. the Blsck Saa,estuaries, are descriFe.d:, thlalt~zoir I-zke, t1he most salty ose sal i ni ty (C) ranges from 10 to 250 %0 St its SOU-Lharn part ancL 1 - 80 %6 at +,he Northern 1; the Burgas Lake with an average Cof 16%o) a hiSh alkalinity -- up to 4.5 mg/equ, pH 8.2, an oxidizability which rear-b es to 7.21 mg/l; the -water balp-n-2e of both lakes is nega- tive; the Madre- Lake with a positive bala-une, C 2-5,- i6.2P-%O, high r-lkalinitY -- 3-1-- 6.8~ mg/~~qu, pH 8.o; The qmntity of 02 similarly to the., in the Burggs Lske, ~ sharply decreases In the simmer. CardIA k'~ ~.:S/169/63/600/6 0610 0310 42 D263/D307, MTHORS. Alelseyev, r.P., Basyadovskiy YC.A., Biryu1tova, L.A. E Golyshev, G.I., Ivanovskiy, A.I. lZaLam.-U Kokin, G.A., Karilova, Yu.V.; 1;.S.', retrov, G z ihdest2!~~ XL, Solov,yev, RX. Speran- ]a -Ye.v Khvostikovt I.A ShVidkovskiy, Ye.G. and Shcherba, I.A. TITLE: study Of the upper layers of the atmosphere',with the aid of meteorological rockets VERIODICAL: Referativnyy zhurnal, Gcofizika, no. 3, 1963, 213, * abstract 3A166 (Tr.*.- et or 1*. sovesh- Vses. ziauchn.j e o chardya. T.I.L., Gidrometeoizdat, 1962, 91-,103) In the present review-type arti. h TM(T: cle the aut ors give. the results of studies carried out at Toontrainiya aarologicheskaya , obaervatoriya,(Contral'AcrolbgicaL Observatory) on atmoapheric sound-,~' ing withmeteorological. rockets. !Measur described and ink methods are the ~~ain points are given for obtiLining s=h atmospheric~charcmtor--~ Card 1/2, NtV TV, T'711- F-j ACCESSION HR: 46312- 414.64.,09 SOURCE: Ref. zh. Matematika, Abs. 8B332 AUTTHOR-. RozMestwenskiVi B.~ L-. m or- Sys 6 46asiiiii6ar eguationg TITLE: On the Cauchy of the hyperbolic type ifi the class of discontinuous functions~:~" CITED SOURCE: Haterialy k Soymestnomu sovetsko-amerik&fiak0Aujim4 noziumu Po uravneniyam s chastnygii proizvodnymi. Novosibirsk, avi4 1963. Sib. otd. AN SSSA. Novosibirsk$ 1963 TOPIC TAGS: Cauchy problem, partial differential equation, hyper" bolic equation, uniqueness theor(mip existence theorem, stability, generalized solution TRANSLATION: Tl~e. work consists of' ~thr-ed U with the question of generalized (disbbhtinuo~~)- gk~ 1/4 V Card J~ 1321,67 -65 AP ACCESSION NR: 4046312:. W- Jcbo1jL'c-t;" ys-tem 0- fquasilinear.- equa lon -blff~ X) UY~`, AAR + 01; up T, f vectors with n, domponen d. Them- aulkholk. S-k diffiddl ty of the "method of vanishing villcosity" and formulates a concepti-. A i introduced by him, of the "stability class" of generalized soluti6hS.M. - of the Cauchy problem (1) for the case of two quasilinear equations a~ (n = 2). Existence and uniquenesis theorem are derived for the st bilitv of the generalized solution of problem (1) with 0 K t T(c) > 0, if u0(x) is piecewise--continuous and satisfies the Lipacbitz condition with the constant c outside the discontinuity points of the first kind. The third section contains a study of the; problem ...T t9MdT(T)--!0., T (0-4-n0h (2) Card 2/4 T~z4 n- L 32-467-65 ACCESSION NR: AR4046312 5j w ere-v v X, Th -genera izei V. N2' n., .,,or; u..nctid&::v'(Ci solution of the ,equal- o _n an&_., everywhere, w1iii, (4 1~ 1[*~'W '(U nc ion, t A. lkt~ ;id _.gn -ion lution of osen- I th 0 form of the requirement- thdt -(D . _(kY~ pence ~qntinuous. The existence and -Uni.'41_4`666166~6f a stabli solutiorf- problem (2) is proved tinder the assumption that the mattix lak is positive definite; Add tji4 '661 ill eid-presen e form. 1. Shishmareva ...... q. MY L 32467.--65- I ACCESSION MR: SUB CODE: MA Card X~ . . ..... 00 ENCLf iA.. x A., a xt (Differential equations) :AUTHOR: Rozhdestvenskiy~B.L. 'SOV/42-147'2-9/19 TITLE: On the Cons ervatl~veress o' ystems of quasilihear.Equations PERIODICAL: Uspekhi mateiiiaticheskikh nlauk,1959,Vol 14,Nr 2,pp 217-218(USSR) ABSTRACT: The author joins his earlier publication f-Ref 52 and shows that the syst6m - au u U u, DU --3 3 1 2 2 - - 0 + u - + U~- 0 " 0 -~ 17ZF ~ ~ X t t 2 x ax at 3 cannot be represented in the form X) (u, t' X) i ay'0101 ?t , + fj(u,t,x) lax hat for (1)'t~e' usual with once differentiable V and +Y,so- t , definition of,a'generalized solution is not possible. There-are 5 references, 3 of which are Soviet,, and 2 American. SUBMITTED: March 22, 1956 Card 1/1 88194 S/042/6O/O15/OO6/OO1/PO4 It.3sto C111/C2122 AUTHOR: Rozhdestvenski~' B.L. ..,TITLE:, Discontinuous' Solutions of Systems of Quasilinear Hyperbolic 1, Equations.~ 1-15, No 6, pp-59-117 PERIODICAL: U pekhi matematicheskikh nauk, .1 96o, Vo TEXT: � 1. -A system.of quasilinear equations;i 26,15onie,properties.of'the solutions of quasilinear equations; �,3.'The.notion of generalized solu-, tions of a system of quasilinearequations; � 4. Stability conditions of ::,the generalized solution of's, system,of quasilinear equations; � 5- Generalized solutions.of,the'.Cauchy problem for.systems.of quasilinear ,.,~,equations,and irreversibility of the process described by these equations; � 6. On,t.he conservativity,of systems of quasilinear equations; � 7- Example of a non-conservative, system of,quasilinear.equations;,� 8.-On .,the discontinuity of.:the solutions of a:conservative'system.of quasilinear equations;,�'9.~~otion of.fthe potential.of_the generalized solution of a system,of quasilinear.equations; �.10.',On,the 'uniqueness of.the solution -,of the Cauchy problem for a quasilinear equation,A 11.'The.construction of the generalized solution of the Cauchy problem for a quasilinear equation with the.aid of the potential method; � 12. On the uniqueness of Card 1/4 88194 S/042/60/015/006/001/004 C111/C222. Discontinuous'Solutions of Systems~of Quasilinear Hyperbolio Equations the generalized solution of,the'Cauo.hy,problem,for,systems of quasilinear, 'equations; �:13. Uniqu'eness.theorem for, the generaliz ed,isolution of the, Cauchy problem for' a.:system'of quasilinear Iequations in the class.of~ piecewise smoothisolutions;~� 14 .~Some remarks.with respect to -systems of,. linear equati.ons.of hyperbolic type,-.,� 15, Self-simulating solutions ofea system of quasi-linear, equations; � 1-S. ~ On . the uniqueness ' of the generalized Ahe roblem an the tinuity., � 17.' ..s.olution of p -decay,of an arbitrary 4iscon :,Asymptotic behavi.orof.the,solutions.of quasilinear equationsfort -Poo; � 18. On the method.of.the.11tenAcity" for quasilinear equations;I 19.1 Systemof equations of gas_dynamics, � 20-Comparison of the prope rtieSL:' Of linear and quasilinear.equations. The author considers quasilinearhyperbolic systems 'Z u. n fou. b n + a -6t j_1 where the ai .b' depend on u .1u, ... ou x and t It Is stated that,, . j the solutions are discontinuous,also for smooth initial values and therefore the generalized solution is defined beside of the classical Card 2/4 On: Cauch- Is Problem for~Quasi_Li qu Y, near.T ations -;l*neynykh uravneni Y (0 zada6he Yoshi d1ya kvaz 11 Y :SOV/20-122-4 3/57 t x) X) 4) X If.here the Mu,t~x) variables U., (t,:.K) ara eliminat-edq than for, (t,x) a non-, .~ linear system . , (2) 4i + t 0 Tt- X is obtained, where ~n If there existsa,gene-ralized soluti on of Cauchy's problem for ti whii,~h is -Diecewlsz! continuous.fo continuous solution of the system (2 duction of the Cauchy problem for (1 of the generalized solutions. [Ref.11 r t>0 -then iVexists a. and conver'sely.,This re- ~ considered inothe class to the Cauchy problem for (-2) allowa t, stig I the u inve t, ate nique ness of the generalized solution of (1). As an example the a Card 2 3 uthor proves the theorem: 'AUTHOR: Rozhdestvenskiy,' B-IL~ SOV/26-122-5-14/56 TTTI-3-1 On'the,Uniqueness,of the,Generalized Solution of the Cauchy Problem' for a System of quasilinear Equationsof Hyperbolic:Type ( 0 yedinstvennosti:obobshchennogo,.resheniya.zadadhi Koshi~dlya, sistem.kvazilineynykh ura:vneniy giperbolicheskogo tipa-) PERIOTICAL: Doklady Akademii nauk, SSSR9 19589 Vol 122, Nr 5, PP 762-765 (USSR) 'ABSTRACT.; The fun,ctions uj(t,x) .,'which assume given values for t and which satisfy' the conditions ui(,t,x)dx, -%fj.~(u(t,'X),t,x)dt,= 0, C where G is ~an arbitrary piecewi,se smooth closed,.curve of the upper half plane. t 0, are.called,the genera,lized,solution of the Cauchy problem for the system U, t 9 X) 7 0 1-1 2 u t x 1 2 ~Under numerous, as sum ptions on. the functions.?, . and the,eigen- vectors of (1) the author provebl,the;uniqueness of, the generalized solution if this solution satisfies.certain conditions at the points of discontinuity.. 0 a r'd 2 Collection *of Scientific Works SOV/3104 TABLE OF CONTENTS: Arsenin., V.Ya., and B.L. RozhdestVensldyt On the Coinpression of an Isothemic Gas 3 Card 2/3 A/ AUTHOR: Rozhdestverlskiy, B.L. 20-3-8/59 i TITLE; On Systems of Quasi-li-near Equations. (0 sistemakh k-azilineynykh uravneniy) PERIODICAL; Doklady.Akad.11auk SSSR, 1957) Vol. 115, Nr 3, PP-454-457'(USS R) ABSTRACT: The author investigates here whether any system of qaaoilinear, + a bi (i 1,2 can.be represent- equations 2t X _j 9 (ui t tX) ')T1(uj,t,X) _ 1 ed in the form of conservation theorems 'z - I lox t ion the coefficients fj(uj,t,x) (i In this connec aij,bi are analytical functions of the variables uj,t,x All,possi- ble conservation theorems are deterained for the case oLequations of hyd3~odynamics On, that occasion the number of conservation.. principles proves to be lar.-er than the number of unknown functions. , In connection with,that some generalized solutions ofthe Cauchy e shown. (Noshi) problem for the equations of hydrodynamics can:b . In the considered variation domain of thevariables uj,t ,x the , ,y given system be hyperbolic. First the conceptions:Rgen- initiall eralized.solution of.the Cauchy problem", I .1principle of the conserv- ation of.the system of ecuations (1)11.,,"cdnservativell,~"non-corser- vative", '.conservatively closed", "totally non-conservative", dependent". are defined. The folloiing statements are.valid: 1) Card 1/3 When n