SCIENTIFIC ABSTRACT STONIK, A.YA. - STANISLAW, Z.
Document Type:
Collection:
Document Number (FOIA) /ESDN (CREST):
CIA-RDP86-00513R001653410010-0
Release Decision:
RIF
Original Classification:
S
Document Page Count:
100
Document Creation Date:
November 3, 2016
Document Release Date:
August 26, 2000
Sequence Number:
10
Case Number:
Publication Date:
December 31, 1967
Content Type:
SCIENTIFIC ABSTRACT
File:
Attachment | Size |
---|---|
CIA-RDP86-00513R001653410010-0.pdf | 2.18 MB |
Body:
-T
, .x C. ,,
S,
c - r -. '.--c ty
4~bz J . tir I~-,of Zhur bhi-, ly-, Nf 22, 7U46e/
.Ruth r st~ar,,-,,y J,
Inqt i Ict Givcn
Title I Crunuo cf Sulfur Firc3 rni Zxrl,aicn,- rn! thuir EIL-Anpti-n
vJ.,I r,riz yA, 1~#56, 8,j N- ~p i~/;-~,7
s rr,! cz-.1ost-ns c-uvo ' 1,y ol , rice, ro the. rcsult -F - -A--
I-niti,.n ~f 5 (1'C-210') susicnici In th,, -ir In the r-r- -f
r% 'fint, -',wA. Tho rut-i;,rdtl~n -f E whon ot-~ru~ In tulk -c-
curs at 220-260--. The imitEm rf vulfur r1!;- :,ccur- wh,,In
It in c..nt-et with ~xVlzinr r,,-cnt3 (nitrt-to,~, .cr-
chl--rr.tz-:7) rr,.' under the rcti-r. cf rt~tic .I~ctrlclty wMcb
I,,,, crrrio! t-y thc, 1rinf; trrticlos sf lurt. 'fith cloctric-il
(o,--rk") -ccurin;- rr n vicult .f cithor frlctl~,n -r
I :rct, aull'ur w-ul I 1-nit,.. In hrr.11in- S, it
I t r,: c ~-1, ;, I t ~ (-,- v I - y - I i-x - I nu -1 1 F, u n .In ruttini- -ut
oulfur lairon It ir n't t,~ c-uno r I Uti-.nrl Ustur-
Orr.' 1 1/2
STIOIL- p A.H.
flon-separable Borel sets. Rozprawy Matemat no.28:1-40 162,
1. Manchester lInIveralty and 11niveralty of Rochester.
I T'l i r
I ttit,,i I de fizio I orie norr-a! a
n.; I o~ I op 1 !1" a I A *.I !" . ; .'I.
c `V7 ri(77' ~nn
71~
A"A: ll';~-,'A)
4C! F
4.
nr,,-rarl~.y ,~f htnr,.% In in chIlArnn. t-,Ib.
All.
9. Monthly List of Russian Accessions. Library of Congress. May -1953. Unclassified.
STONIX,, A.Ys.. kandidat meditainskiich neuk
Study methods and redtograph of a normal appendix and rediodiagansis
of chronic appendicitis in children. Test.rent. I red. 31 no*6:
28-35 N-D 156. (MMA lOi2)
1, Is kafedry rentgonologii (say. - prof. Ys.L.Shik) I kefedry
khirurgll detskogo vo$rB*ta (say, - Prof. A.I.Shatskty) lantngrad-
skogo maditainskogo Instituta.
(AMENDIX, In Inf. and child.
x-ray In normal state & In appendicitis)
UVIII, H.S. j ~ITONIK, A.Ya.
Significance of roentgenological examination in diagnosing the
causes of certain forms of p)uria in children. Pediatrtia 38
no. )s67-71 Mr 160. (MMA 14:1)
(SUPITRATION) (URAIKARY OPLAUS-RADIOGRAPHY)
L 14099-M 4rr(d)1EW?(1) IJP(c) DB/00
ACCESSION MR: ATS022304 UR/3136/64/000/699/0001/0019 1470 i
H
R III
S
k
i
l
i
Oq
s
AUT
O toni
ov S, K
tov
ch
t Ts
_
A.
8 A/
TITLE: M ultidimensional Input device for a 2048-channel analyzer
4q
SOURCE: Moscow. Institut ato=gX 2ne Doklady, ZAE-699, 1964.
rSIL Mnogemerisoye
vkhodnoye ustroystvo 2048-kanallnogo analizatora, 1-19
TOPIC TAGS: pulse analyzer, computer input unit, computer technology, electronic
measurement
ABSTRACT: A brief description is given of an updated circuit for an Intermediate
memory based on a charge-storage tube In a 2048-channel magnetic drum analyzer. TW
device Is capable of operation with time channel widths of up to 0.2 msec. A
quartz crystal time-mark generator is included in the circuit. There is also a
delay circuit and provision is made for zero synchronization of the analyzer time
scale with start-up of the linear accelerator on which the measurements are t.3 be
made. A method is examined for programming time measurements in studies of n-y
spectra by using a secondary permanent memory. An attachment to described for two-i
dimensional measurements (t,A). This device is an amplitude-to-width converter with'
Card 1/2
L 4099-66
ACCESSION NR: AT5022304
a logic circuit and a programming unit based on a magnetostriction delay line. The
authors are grateful to G. If BoffQradoho helped in designing the zhanetostriction
line and the transistor c rcu ts. Orig. art. has: 13 figures,
ASSOCIATION: none
SUBMITTED: 00 ENCL: 00 SUB CODE: EC, DP
NO PXr SOV! 002 0THCA.- 000
Card 2/2
D. A.
or
m 1j.A
T
.-I I
IT A
I 'l; ,Y ;A.~ Y, A. 'I. F I"
117UT
"oa.,itnry Irwor c.r4itiono in the e~'e-.Arolytlc, a,--.o9s
os alu:3.:-.,La T,lants rin., the 1~33e tla~- I-,-,alth-protectiQn
ref.,ort -A-dtted at the 13th All-U.-don '-'crwrp. s of Hyglenlits, Epidem-lolor
a-ki 195
5,11,01 I's I.T.
ca,;spr ,f liyt-, ;.1,y ac f.)YTjir.r ,) data cf the p~jlfttrlc ward
I
c,f tho,, Kau!as Pepublilcan Cl*.r,icql Hosylltnl. Svolk. apsoug.
Ft -:1.712C-1-~3 Jf-li3-
1. Knurr klinin- 9 ligor-'rt- pe-dilatrar.
STOIIISPJO
Charges ir. blood protein fractiors in infart rutritior, dia-
ordera. Svelk. apsaug. 8 no.1213-8 D163.
1. ReapublIkine Kauro k1trivo ligonIne.
,L'IIY"*I-cI.1Y, '~`. a z)11-11 aF t' , j7, Ara--n., y ')L; " In) ; IS I v . ( i U-i
;;;~"R, Vorkuti); TUJUf )V, A. (I~yazan!mkayzo -)blasO. .5 U
r
FIA111 ISHCHIKOV, N.N., prof., nauk
Herald of a younr naturalist. IUn. n,,t. no.IZ:4"'4-ZrI 1) 1~1,
( Iva I RA I ": . I )
( b' I rds -- B-I a v I or )( ~un t, s )
UTSNU61 F.F. fflack-us, P.); 'jTUI;!Ti;, R.Yu.
Cyanoethylation cf aniline with/$-substituted propionitriles.
Zhur, ob. khim. 31 no. 1-1:3638-3639 1: 'U. (MIRA 14:11)
1. Viltnyusskly gosudarstvennyy univeraltet.
(Aniline) (Proplonitrile)
BUTSKUSt P F. (Duckus, P.); STONITE, R.Yu*; JUIS, G.I.; BUTSKENE, A.I.
iDuckens, A.]
Cyanoethylation of p-toluidine by Asubstituted proplonitriles.
Zhur.ob.khis. 32 no-3:820-823 Mr 162. (MIRA 150)
1. Villnyusekiy gosudaretyennyy universitet.
(Toluldine) (Propionitrile)
kBuckus, r.j,. SiC4d'L7!;, :i.Yu. (Stcnrte., R.)
Some conversions of 11.,N-di (f-cvanoeU-,yl)-h--nzenoaulfonamide. Zbur-
ob.khim. 32 no.6:1865.-1870 Jo 'CO. OIIIRA 15:6)
3, Villnyuoskiy gosudarotvannyy univeraltete
(Denzonesulfonamide)
or. :7 yu #a y pir' -i
A 4 A
1, 17:
flur.AM, P.F. [Duckus, P.); STIONITF., R.Tu. [Stonyte, H.)
- I
Some transformtions of M,N-di ('~ -eyanoethyl)-p-toluenesulfaalde.
Zhur.ob.khim. 33 no.2t624-628 F 163. (HIPA 16t2)
1. Villnyunakly gosudarstvennyy universitet.
(Toluenesulfonamide)
I'i ',~
~ --,F; I - . I
-;S, . F. i F. 1; r3-,--,-.';,7r-,, R."ll. :,?.]
nf N, 1-,! 1 ( ~.,y j
34 F 164. '137,41farillarAde. Zhur.ob.kt-,i&-*
(MA 1'731)1-1-
1. ~.fll'rrlsIU7 goililtratVennyy linlv,!rsito#t.
-r S K A 0,
3/021/62/000/Q~1/004/007
D251/D303
AUTHORi Stonytalkyy, A.A.
TT-TL---s On finding formal solutions of an integro-differe,itial
equatiou containing a parameter
T
PERIODICAL: Akademiya n uk Ukrayinolkoyl HSR. Dopovidip no. 1p
1962, 18 - ?2
TEXT: 'The author con3iders integro-differential equations of the
r
form
J?U du
PP (1r, x, r) (T. X, L r) Q (t, t. F) +V(tj. q.r) /(t.1q. 1. e)dq Ix"
IV
x u (,r, 4. r) dl F, (T, x, e) e1w.n.
where T ;~t (E Is a real small parameter) and the functions P,
K, f and F are given by
C Card '1/6
324t6/0 21/62/000/001/004/007
On finding formal solutions of ... D251/D303
methods of L, Lichtenstein and Ya.V;,Bykov (Ref. 3s Trudy In-ta ma-
teme i mekh. AN UzSSRg 10:2v 55P 19 )p operators A and B and func-
tione T and A n (T) are introduced- LAbetractor's notes Symbols not
defined The following definitions are roposeds The relation bet-
ween k i~T) (j = 19 2, ... j N) and In(T) ~n = 19 2t *a.) has "reso-
nance" if for some value of v, k2(T) coincides with 11A (T) and has
j n 2
"non-resonance" if for all values of Tt none of the functions k j(T)
can equal any value of 1/11n(T). Theorem is if Pat 00 0 Kat fat a
satisfy the conditions defined earlier and
Q (T, XMT. X) + f (v, x, �)v(T# t)0 - 0 (5)
0 1 0 .1
has only a trivial solution, then m partial solutions of (1) may be
constructed in the form
u. (t. 9 x P e) - (cpl (.r, x)+ tnl (.t # x # F_ eie,+ R jl('C# Xt Oe iej
Card 3/6 J-2
32416
8/021/62/000/001/004/007
On finding formal solutions of #e, D251/D303
(1 it 2t **.p m), where
d5l
dt . fD1(Tp c)+ i[Q,(Tv e)- ki(-r)j% + Zl(T, F-)
(I = 1P 2F ... P M)
n1.0.4, R11(r.x.0 fir'x) Y - 1.2'.
E eQ~.- (.0.
D, (v. e) eD,, (1), jo,
z8 (r. eZ,,
This theorem holds in the reso~_&nce case. Theorem 2t If the ci-il-
tions of Theorem 1 are satisfied# then in the non-resonance caote
m partial solutions of (1) can be constructed in the form
Card 4/6
32416
S,1021' /b2/0'-'0/00 1 /C'-_ 4,/C 07
0.,-. 0 r::.. a 1 3 0 10 n C, C, D 2 5 "C 3"
N
11 ( t x f I x -r, X, Oei J(I ~ 1, 2p
where [D ii) 1, 2,
dt - 1 1
CO
D
H j l et
ru
T 1, 2 p 11; 1 1 2,
S=1
1t 2#
Abstrac tor s no te Some symbol s no' exp at nv-,' There re ref,~--
Sovi,,*-bloc and 1 nor.-Sovi o" -bloc.
rences:
Cnrd r./6
32 illk
0 S/02 l/'62/'G'rj')/Uo I 10'_ 4 100-1
D2 5 1 //D '1 0 3
AiSOCIA710:j:
I- "
t 1
M%te-,atykY AN
h e A S J!,
t~r9SR )
URSI~ ( lns t i te Ol- :_a
RES"';TED 3PYs
~ Z,
! "',~kalo,
I J
~
ar, AS llkr(3,SR
S i B11:1 T
rla.r*d
On Z;
Co- u
of a
i f t'e ren ta! e z
Iilc~- for 'ua-
con na x:~z-,
auk 17-~ r 5, 1962, 577-583
tc! r 3 -d 1'.7 v r c-,. c q u c r, 7, type
u (-T, X, je
771 xt
C)
Z; a zz:all real z;~i~*amctcz-,
are,
s o,.-;'-, y vIn - fu c t I c n z. 1 2, N) ';,z required -.o
-.lie soluticn u = U(t, X, of sa-4soies -he
4
initic.11- "d- boun.
u(c), X0
ut(O, X, 12)
21 C; VC04/~.j 0 9
asy-.-.,-~tOtic :;4
U
t 0 0. C,
,
u
'o s z;,,
-
o
t
l the form of zo--' e8
A.
,,
. cr,
u
oo
w G
)
u x .
M
t'.c of a boun' --vc.lue
r
w I c v/
f deducud from- "'lleyl 13
o *,-.3uml_n4; that tl~.e series
Cne ilnt.-O-
to t anj to X
,
'
-
-
e ob-
on
Ll
c -&on an,! into;
ra
n c
-
"arential
m of tif
t eq-.;ations of tyi~e
.
e
.,. sys
a
2
z
+ +
im
(17)
are 4-i-:cjn by e
n z _--d in z,~r_.4vs in ter=s of t.he ei,-,-enfun.-tions w
C/CZ; 5AC, ~-4 410,~ 9
3- 0 bta-na
2C,
t o
rj 0,
0 T I
0 he CL
c
71
r. Z; a n
as, :I -yr-
Z
-t;j ~~"Q
A.
" ~
-
s
o
-o j- ooroz
u-
~;j;c
y~; ~Q;,. ana
n o
;~:i ,I t. eof
of j
c r 3 e A'V~ a 4w, C n
by of
lc
20
61
,
/ewj J, /" ~ x ""'j5
I., , / ~
8 1 72/b 1 bt,
i t k I
Wyev)
i~*, r~?,prelontition of the nolution to a Mixed probl-r.r.
o.' integro-differential equ-itiono containing n
~.,11 -z r., t g.,~ r
;JKi,air.-kiy -A,itemitich 1962,
t eakiy zhurnal, v. 14, n
;GG* 1 L i
7, Al I T'hf~ --i'l'iti"n
.1 5 ig(t,E)
t x -)u(t *)d F f 0 #X
1!i c -,rill ifier--1 with toe conditions 'where
2 2
1_u C(jyL_u
A( t"O') U + iB(1.r),) D(Oau + [f 90 04F (x
it 2 it JI 2 31
-noill parazf-ter. The solution to searched for In the form
5/02 63/000/003/002/022
D405XD301
4kUTHOR: __:-Stonytolkyl, A. A.
TITLEs On an asymptotic expression for solving a differential
equation with an oscillating free term
PERIODICAL: Akademiya nauk UkrRSR. Dopovidi. no. 3, 19630 299-303
TIM: The equation
d + cWtOu - f(r'Oe
.4
dt
is considered; here C(Z',C") is a linear, in general unbounded ope-
rator, f(rF-) is a vector and Q(t,E) a scalar function whose de-
rivative is a slowly-varying real function k(C); it is assumed that
the operator C and the funot-ion f have the asymptotic expressions
rV, 1W M
C (T-, E) - Z: CkME k a 004. 1E Ck (_r) Ek, f (r. F) ,Z fk0i~)"-k(2)
k=O kal k=0
Card 1/3
3102 63/000/003/002/022
On an asymptotic A-9 05X3 01
where C0 does not depend on ~4', being a self-adjoint positive defi-
nite operator with a discrete spectrum An algorithm is given %~,hich
exprouses the -formal ao,.ution of .,q. (i) in terms of the eijrenva-
lues and the eigenfunctione of the operator Cot of the scalar fun_-
tiond aiW, which are the solutions of first-order differential
.equations, and of zhe quantitiea4jVk and V Bjk which are determined
i
by recursion formulas; this algorithm holds ijo the "resonancell case,
i.e. when for aome valuis of T the function k-4(-C) coincides with
certain eigenvalues of the operator C 0 and doea not coincide with
other eigenvalues of 0 0 for any value oflr,. The algorithm is ob-
tained as follows: Eq. (1) is replaced by a firet-irder system of
equations; after some transformations one obtains an equation in-
volving the operator Do, expressed in the form of a diagonal matrix
with C as its non-zero elements. An exazple is given in which the
0
operator 0 is defined on the set of twice continuously-differenti-
-able (with respect to x) functions u(t,x,j.
Card 2/3
5/021/63/000/003/002/022
On an asymptotic ... D405/D301
ASS3CIATION: Instytut matematyky AN URSR (Institute of Mathematics;
.of the AS UkrRSR)
PRESENTED: by Academician Y. Z. Shtokalo of the AS UlcrRSR
SUBMITTED: September 27, 1962
card 3/3
ACCESSION NR-. AP4009731 3/0021/63/000/012/1555/1559
AU'MORs Stany*to'ky*y. A. A.
TITLF: Approximate solution by Yu. D. Sokolov's method of an Infinite system of
integral equations of the voltorre type depending on the parameters
SOURCE: AN UkrRSR, DopovLdi. no. 12, 1963, 1555-1559
TOPIC TAGS: Integral Oquations infinite system. Volterra typo integral equation,
integral equation solution. Yu. D. Sokolov solution method, linear integral
equation
ABSTRACT: An approximate solution Is obtained for the infinite system of linear
integral equations
+ S. 9) & (S- 4) ds +
using the method of Yu. D. Sokolov (Tho method of iveraging functional corrections),
makLng particular use of the results of Sokolo,4'a articleLipah. 10, 193 (19se);
umzh, 8. 79. w6i)Tas well as an article by As Yu, Luch OM Mask, 1149 (1942g.
Card 1/2
ACCESSION NR3 AP4009731
-for the converged oceas is given. and the error
A sufficient condition nce of the pr
in estimated. OrLg. art. has 29 numbered equations.
,ns *
ASSTATION: I twwty*ky* AN VXrSM (Institute of Mathanatke p Academy
ol' 'ciences, RAVI" Ma
SUBMITMD: 2lDec62 DATE ACQi 03Peb64 ZNCL 1 00
SUB COM MA 00 R9F SOVI 006 OTHU 3 000
2/2,
i A
E-t1Vj) I TP(L I
ACC NRs AT6010212 SOURCH 0008t UPV3187/65/000/001/0068/007
MUM Stonitskiy, A.A.
ORG% None
TITLE: use of the A.M, Lyapunov method In the problem of finite amplitude waves
SOURCE: -Xlyev. Universitet. Kafedra vychislitellnoy watematiki, Vychislitellnaya
matematika, no.1, 1965, 68-78
TOPIC TAGS: mathematic, method, hydrodynamic theory, wave propagation, outface wave,
ri'A.,Ic r--rA..' 9 integral equation, nonlinear integral equation 9 OrAOSO I
APSTMM As a basis for the discussion of the finite amplitude wave problem, certal
methotis developed by A.M. Lyspunov (Sobranlye sochinenly. t.4., 1939), and their intez
pretation by L. Lichtenstein (Vorlesungen ueber Klassen nichtlineorer Integralglel-I
chungen tind integrodi((erentialgleicl"ingen, 1931) - are applied to the Integral equa-
tion (1)
I (X' V U (1) 4U91 Cg) 4- E U. (u. U). (1)
(further specified in Appendix A of this abstract) - to prove two theorems providing
criteria for the existence of a sufficiently small nonzero solution (or the exhaustive
pair of cases where 1) Is not or 2) Is an eigenvalue of the kernel K(X,~
Appendix A. In the integral equation (1), u(x) is the unknown, " v(x) - the known I
Card 1/3
L 33329-66
ACC NRi AT6010212
and continuous) on the interval [3,g, function; also:
Kill (X, V V W in; 4
Uol(.I)-V(x) K*jj(x.j)dt+
IN (1A) i
6
U" w 46 co ul't al) ... U64 (to)
X
X c~ (z) &I'(tj ... (4) 4,4s ... dfw
(J= 1.2,...,k. where k w the number of integer nonnegative solutions of the equations
0( 1 N 0(,L t M; f3 + P~ 4 Z n); K(X,g ) and K (xlg,--
contintiour. functions Sr unction; wIN discdMinuitles admissible An"he Fredholx the
f
ory. Now, in the supposition that V(X) is sufficiently small, ji(x)j