SCIENTIFIC ABSTRACT SILONOV, L.N. - SILVA, K.
Document Type:
Collection:
Document Number (FOIA) /ESDN (CREST):
CIA-RDP86-00513R001550610019-3
Release Decision:
RIF
Original Classification:
S
Document Page Count:
100
Document Creation Date:
November 2, 2016
Document Release Date:
August 23, 2000
Sequence Number:
19
Case Number:
Publication Date:
December 31, 1967
Content Type:
SCIENTIFIC ABSTRACT
File:
Attachment | Size |
---|---|
CIA-RDP86-00513R001550610019-3.pdf | 2.13 MB |
Body:
! ~'oV A I N,J4.; LT~OVFKAYA, N.F.; SILONOVA, G.V-
Study of the mechanism of activating action of adenylic acid
on the phosphorylase B in rabbit muscles. Biokhimlla 29 no.5-
936-944 JI-Ag 164. (MIRA 18ill)
1. Institut blokhizdi Imen! Bakha AN SSSR, Moskva.
-q~WNOV) L.N.
Some tunnel diode circuits. Vych. tekh. no.4:5-12 162.
(MITU 16:6)
(Transistor circuits) (Tunnel diodes)
Oct
Illidtirical 2quipment
Turbogenerators
OTOo Cases Frcm Practical Operation of Zlectrical
lquipwnt,* N. I. Silonov, XW, i p
w=ok Stants' Vol. k=, No 10
Describes (1) breakdovn due to Independent excitation
of turbogenorator,, and (2) opwation of generator with
a damaged exciter.
10 - -
pi,-,r~ Zvtrilov.-A peat
--tztion. sta.
SOS Monthly List of Russian Accessions, Library of Congress, "uly ly, 2 xTM Uncl.
ntric 1,intE
i tj ona I (I r,,tj ~)n ',*,-,-- t!ffectiv?nc-.-;,,~ of
~Utomqtdc rttclosirii; of tl,-~ctric linz--.
-'lek. stz;. 23 ijo. L ft';~2)
SO: Monthly Liat of Russian Accessions, Library of Congress,, August 1952 x2)M awl.
Kiev D i1 063
on Aor.; Metalr, compounds, and allo s A. r l/
SGURC'_-1': Atomnayu energiya, v. 15, no. 3. 1963, 266-267
ACCESSION NR: AP3008085
P. A. Nedumov,. V. K. Grigorovich., Use of the tungsten resistance
thermometer for contactless thermal analysis at temperatures up to
2500C.
A. Silonov. Unit for determining the evaporation rate of Ta
and W on-a microbalance for continuous weighing in vacuum.
V. V. Fesenko, S. P. Gordiyenko." Investigation of the composition
of evaporation products by the mass-spectrometry method.
V. V. Fesenko, A. S. Bolgar. Evaporation rates and thermodynamic
properties of Ti, Zr, 11f, Nb, and Ta monocarbides.
G. S. Pisarenko and others. Hechanical properties of refractory
materials in the 20-3000C range.
V. I. Ivenson, D. N. Eyduk. Laws governing deformations.
L. Kh. Pivovarov, A. V. Varaksina. The.6ffect of bonding phase
Card 8/11
SILONOVA, G.V.; LISOVSKAYA, N.P.; LIVMIOVA, N.B.
Vacuum-evaporation apparatus for rapid concentration of liquids.
Vop. med. khIm. 10 no.41434-435 JI-Ag 164. (MIRA l8s4)
1. Institut biokhimIL imeni, Bakha AN SSSR, Moskva.
'.'.ODINTSOV, B.; ZAYTSF.V, I.I.; SIUCUVA, H.S.; TF *!,'*,'i'[(;Ii, D.P.
I
New standard for p arning the production of foam rubber goods.
Kauch. i rez. 23 no-408-41 Ap'64 (MIRA 17t7).
1. Nauchno-issledovateliskJy institut rezlrov)th i lateksnykh
izdeliy,
7_
jrP7-66 -T
L ~ 69M;~6i
NRt AHP55%0026 2 SOURCE CODEi -UR/0286/65-10-007(jig-/6W97(~569
41" d4;~(
AUTHORS: Silonova, M. S-i Trofimovich, D, ?,I F.030anskaya,11. T&A" xvdainant
N. Lej
ORO: none
TITLE: Method for obtaining sponge rubber. Class 39., No. 175220 announced by
Scientific Research Institute for Rubber and Latex Products (ftuchno-issledovatells
institut rezinoyykh I latokerykh isdoU47 VISY
SOURCEs Byulleten' iz0brstenV I tovarnykh znakov, no. 19., 1965., 69
TOPIC TAGS: rubber, sponge., gelatin, gelatinization agent, catapin, latex
ABSTRACTs This Author Certificate presents a nothod for obtaining sponge rubber
from latexes, using secondary gelatinization agents. To Improve the -arr-wtur
the sponge# ostapin in used as the secondary gelatinization agent.
SUB CGDEt IX/ SUBM DATIs O%ar64
UDGt
TOKARZEWSKA, Maria; SILORA, Bronilslaw
Redispersing co,-)lymers of stMne and methacrylic acid.
Poltmery tworz violk 9 no.,lOs425-431 0 164.
1. Research Laboratory of the Chenical Works, Oswiecim.
USSR/Ciiitivat.,.d Plants - Potatoes. Vegetables. Melons. M
Abs Jour Ref 2.hur Biol., No 18, 1958, 821053
Author S i lo~~V. ~Ya.
I-., F
..'t Timirrazev AGric -1t ral Akademy
Tit.Le Theoretical Basis aiid Experime,,tal Data o:i Hcati,ig
Hothouses with a Steam-Air 14ixt,,re
OriS Pub Izv. Timirynzevsk. s.-kh. akad., 195'!, No 2, 111-120
Abstract Accordi-ig to the data of TSIWk Veget-,blc Experineatal
Station, the priacipal advaii-tages of hotho,.ses heated
with steam-nir mixt,.irc are : tilizatioa of heat wasta Li
tAe for,-i of steam -:'.der a pressure of 0.7-0.5 atmospheres,
a coiistant moisteaLIg of the soil, at.s raice of a uiiform
heatitg withiii eaca botho--se a-.d the low tuTer3tare of
the heati;19 PiPes (50-570). -- M.N. Mynzdrikova
Card 1/1
- 41 -
! . I . .
.. ... ord r," , Tm,: ~ ) iie f t . ,
W1,10C :)-L r-; I . I
,int,. rall :,irv~-:n .,I' ', f " t i
i,! . " 1 , ,:, t)
Cf. F. Clit a theorein AL Golfatuf and Its gener-
PoIAs(Ty Akad. Naid. S-,;R (N.S.) 72, 641-
l'I't r bc a i~i-w ralizril nilpotoit kinctit. in a normed ring
w:(h iflolllitv Clellicilt C .11141 Ict X-C-Y,
(;dhiid [Rcc. Math, [Mat. Shomik] N.S. 9(51), 49-50
(19,11): thc-se He%% 3. .36-1 provcrl that. if '1r
Tr 7-- ft I-listlfict- primary ie eals 11, - 14,-' where Ij i,; gene zated by-
I ". S.,A. 3'0, M fif) (10-11); th-e Rev. 5, .01 improved this Motuciver. the element (X-X(A1,,)W I is Will-
I,- fill by rtpl-irin;~ 0(l) I-,%. r,(t). S4ono [J. Indian N11--ith. 1,ainccll in. every pimary ideal o--- R4. [I'lik Idst. statintwilt
is only implicit GvI(and*9 falwir.] As ats illusim(i9ni.
I It- 1 4 ~;llt fill 111,1- 1)). ill%: I kkt, A liuve -~~ary 1111*41 stuffirient ('0"Sider tile rwse I hy StIllir rind lv.t-,Ro be the I itli";
IN generated b
fr,,t- Y"',10 (ru-p. is that ct,,~!Od, " .) I
(1) for k-N+2. Furthermore, Ro his a uniine maxiniall
thm tho- above residisare r(intained lit (lie followink, theoreill ideal Mo. X(Ara)-I, and Ilie zc-o ideal is printaiviii Ro. I
(if Gc1fand Math. [Mat. Sbornik] N.S. 9(5-1), 41-41 It follows from the last statement of the Gelf-tid theorem
(1911): Hcv. 3, 52-1. LO. R., lie ;I nornied ringgenctated that y"'41=0. Thc care cr.=o(j~tl") is liandil"I 14111ilarly.
fly y arid x--', and for q, ~~ !1x, 11 a5sunic The paper also coitains an example to shf1tv (Ilm th". co;l-
dition a.-O(I) fcr positive n is not 311flicivist for lite! first
(1) fins lim (l-r)1ia-.r1-O. Gelfand result. C. E. Rickart (New 11.1vett, Culln.).
'I*Iirn Cach maximal ideal AACRo contains at most k-- I
Source- Hathpitlatical Reviews. Vol 12. N a 2
DUOV ty. ib. VIA rUXJnB 91 AUXICUons W= UnUuLJU CQn-'%.=;I'
U ~~ gurnal 3, 40"11 '(1951)
Terg-ence. LTkmn. at.
(Rusoan)
*
f the'
im
roakt
t
bli
h
l
t
fi
h
h
es
a
s
es a s
a
o
rs
e gene
or
w t
au
T
p
ex form of the Stot.i~Weierstrass themen. H.
compl
StoneAlath. Afag. 21, 167-194, 237-254 (1948); these Rev. I
10 255J, as followiL Let C(G) be the (complex) Banach
algebra of all continuous complex-valued functions on the
Mathematical Reviews compact Flausdorff space G, with the usual algebraic opera-
Vol. 14 No. 9 tions and norm. Let L be a closed subalgebra of C(G)
October 1953 containing all constants. Let A be a closed subalgebra of L
Analpis such. that x t A implies I i A. The equivalence rtlation
on G such that ti,il if and only if f 00 -f (12) for all f C A
I obviously dissects G into disjoint closed 8Ct3 T. For every
i such r, let J(r) be the ideal in L of all functions in L whichi,
vanish on r. There is an obvious and natural isomorphism I
carrying the difference algebra L - Ar) onto an algetOw-of I
functions defined an r. The generalized Stone-Weierstrass
titeorem asserts that if f t C(G) and if f agrees on every r
with a function in L-J(r), then f t L. For L -A - C(G),
this is exactly the Stone-Weierstrass theorem. The theorcri
isapplied to prove the following result. Let C be the algcb, t
C(Izl;g 1) and A the closed subalgebra of C conS13tIIIF.Uf
< I. Let 14. Z I be
the functions which are analytic on lit.
.
the smallest closed subalgebra f C TI) tL.n.ng A and the
aid to be
t S I i
0
i
d
b
i
Z
A
I f
r
s s
.
nse
au
se
unct
nfl-I f t
rea
admissible if S has void interior and for A to non-O,
.4 1 < 1, there is a continuous -urve running from S4 to
31 - I which does not inter: ect S. Then it is proved that I
1
I A, Z I - C if and only if all sets of points equivalent under
the &~t of functions Z alp admissible. This generalizes a
theorem attributed toligigi&IMoskov. CA"UnIv. UEenyt:
Zapiski 145, SLr. hfat.-.3 (1-9-V9) (unavailable)].
Silov G. V_ It;
P.Fe 0
C 6, no. 1(41). 91-137 (1951).
(Russian)
'J The present paper presents another chaptcr in thicaireaciv
0
.E extensive theory of commutative Banach al;;eb.-:!-,;. Thc
r5 paper is divided into six ��. whose contents may be suni-
rnarized as follows. In �1, certaiin e~_-~!ntial prclirrum~x!_S Irl~
described. Let G be a. compact Abelian group,
iadd;tively, and let L be a complex Banach spac2 ~"Vh"Cn I
may be a commutative Banach a!g
gebra or the rcm,-.!L~x
number field), with norm denottA by Consif-1,
er
Plex Enear s,ace R of L-valued cant;nuouG funct;o-s oz,
_ddition and scalar multiplication beir.,z; defir.Ld pGt'nVV'-"4- ".
Suppose that R admits a norm, 11-11 which -teed h,~ve no
connection %with the norm 1-1. SUIpPOSe fil!-UhCr tl-,-,~ tur'
7:~
-traas!atc r(!+A) belon;:-. to - and
f,:)tR and ~rG, the
t.~Lit for all ~rG, th,~re exist,., -L
constant C%
CChat For :III frP. Such a S1:1111~1 or
11 L-valued uric6ons is called a space 01 IU:!c-
tions. N convergence in the norm. ti-ji of a _~L-JmaetncL 1
jj,.(i)jZ_j implies tze convergence in oF I-! I'D-
0.1ch 'ixed Itc, then the operator "'*'11)-f(.'+~) is nc~'arilvtl
bounded. A hinction f(I)ER is H for!
ghborhood 117(0) in G such that
every e>O, there exists a' ntig
iniphes The author ifirst proves
Oj U~at every homogeneous space of functions R which con- 7
, , s rn u S.
tains a dense set of trans Lation -con tin u ous element t ~
~u nctions
(a) consist entirely of iranslation-continuoua I
and (b) admit a n'
orm 111,111 equivalent to
ffif(t)III for all heG. For the case L - the corn-
dense set of continuous
ple_x numbers and R containing a
ntinuous),
characters (which are obviously tran-station-co
assertions (a) and (b) apply.
In �2, a homogeneous space R of L-vallued functions is
considered which satisfies (a) and (b) of the preceding
paragraph. The L-valued integral JjMdl (at reprmnting
Haar measure on G) exists, in any of a number of sense3 for
all feR. Let X-N.l be the character group of G ~h,
ath Fourier coefficient C.(f) of feR ;s defined as ff(t)~~(_Odtt
I)rR. A
and is an element of L. it is proved that C.(I)x.(.
brief proof is then given for the theorem of Bochner and von
Neumann generalizing FejWs. L%eorem on trigonometric
series Crran& Amer. Math. Soc. 37. 21-50 (1935)]. whkh
shows how f(t) can be reconstructed from the elements
C.(f) and the characters x.(1). A comllary is that C.(J) -0
for all a implies f-0. Alw, the Riernann-Leb"gue lemma
is gcne--alized by shcrwing that for every e>0, only a finite
number of the elements C.(f) have norms exceeding e.
The oontents of 13 am Oken in toto from an Carlicr
treatiseby theauthor [TrudyMat. Inst.Steklov2l (1947);
these Rev. 9, $961. to the review of wlikk we mfcr for
terminolosly not explained here.
Mao-
(to a aim Met*4 In
kftfetllOr URI
at t ear ---.f*J dillirtatial Ca a)
'Storm
Akat! Nalu
Ak au ssmz (,V.S.) 102 (1955j), 1065-1068.
aires: soit S(u, P; A, b) Yespace dc s fonctions
inddiniment diffdrentiables sur R (z, 11, A. B positifs) tel-
les que pour tout s, 6>0, i1 existe N,,d(r)