SCIENTIFIC ABSTRACT NAYMARK, B. M. - NAYMARK, M. A.

Document Type: 
Document Number (FOIA) /ESDN (CREST): 
CIA-RDP86-00513R001136220013-2
Release Decision: 
RIF
Original Classification: 
S
Document Page Count: 
100
Document Creation Date: 
January 3, 2017
Document Release Date: 
July 31, 2000
Sequence Number: 
13
Case Number: 
Publication Date: 
December 31, 1967
Content Type: 
SCIENTIFIC ABSTRACT
File: 
AttachmentSize
PDF icon CIA-RDP86-00513R001136220013-2.pdf3.14 MB
Body: 
25475 3/02OJ61/139/001/007/018 B1041B231 Naymark, B. M. TITLEs Some nonlinear boundary value probiems In the theory of the Maxwellian bo,4y PERIODICALe Akademiya nauk SSR, Dokladyq v. 1390 no. 1p iq6ij 63'- 66 TEXTs Some physical problems dealing with the motion of an elastic body exhiblting relaxing stresses involve finding the displacement vector T(x,l x2, x39 t) with the components u 1, u2P and uY and the stream ' (x11 x2, x3s t), I, J, 1, 2, 3. These satisfy equ.atlonle tensors G~i i I j 0'a Nis No exp ds 2 a dv, ~Au + (X + Ii) grad d1v u + pF 01 (u), Card 1/8 25475 -7~4 -::-i 3/02Y61/139/001/007/018 Some nonlinear boundary value.: B104 B231 Here,, the ?form the columns with the components Ou du dX30 ildxi 3/ du~/d 4-9u 1dxj, du + 'Du ilmn X2'+ ()u2/)x,' Dul/~X3 3 2/"?x3 3/ax 2; ris the col with the components 6~~ X P 6- (51 ISIIX X X X (5'X X 3 9 IX X -, Xand 1 1 2 2 3 31 1 1.2 2 3 stand for the Lam6 constants. ?(Z ie ) is the positive density 10 x2t 3 45 funotionj -;(x I? x29 x3#' t) is the vector of the volume forceal T(x,t x 2P 'r3t tt 5") is the relaxation time. Furthermore# the foll4ug .formulas apply to I it H2 9 and the vector I)t(q)g X+2P X X .,.o 0 0 1 X + 214 % 1 0 1.0 0 X 0 0 0 )6 0 0 0 + 2p 00 0 0 0 0.0 0 0 0 0 0 0 0 14 t -t7* .1 0 0 0 -t 2-t 0 0 0 -t '-f. 2 0 0 0 ~O. 0 0%0 0. (2) 0 0j 0 Ott 0 0 0 Ott$ Card 2/8 S /001/00 /018 7 , OM Some.nonlinear boundari ;alue... B B104 B231 0a (U) ak exp (2 dr + T 3T 7x, T'rk (3) ds 14 au, am/ P[ di -' + a"A-) dr, d-r + ex 4 ~] ~I + a ~exp[4~1 + N X, r r The author assumes, moreover, that the point X11 x2t jr.3-is positioned in a bounded region D of e* thresdimensional speoe and that the boundary- th of this region 1 11 a lane whose curvature is continuous. Moreover, it F f t i h d ti rom s assumed that + and t a the boun ary separa ng 1 2 1 2 constitutes a smooth curve. The following three boundar value problems~ are investigatedt 1) Finding the vector ~X(xit.%~t X30 t~ and the stress .tbneor -(x t), which satisfy equation (1) and boundqry Xi x It X20 X39 Card 3/ 8 A 25475 S/020/61/139/001/007/018 Some nonlinear boundary value... 3104/3231 cand 1tions a) at t), SSF, a, t) is a given vector* 2) Finding & tr . a %~qotor Uand a a see tensor 6- whic4 satisfy equation (1) and x X4 i .boundary'oondition 6. coonx + i~l coenie + 6' oosnx - Yst.-Ot x x I x , x 2 x x 3 1 1 2 1 x SEF i i - 1, 2, 3'~ Her's coo nx are-the direction cosines of the outer i perpendicular to( I Xi is,a, given vector (vector of outer forces). 3) Finding a vector ~t and a stress tensor ly which satisfy (I ) "d x x z`- boundary conditions of 1) with respeot to.F and those of 2) with respatol1 to For the purpbse of solving thsee boundeLry'value problems a Hilbert., space 7tis introduced as well as a linear norialized space *a(t Pf 11 t2 the vector functions with values in In 'these spaces Card 4/8 25475 Is/02OJ61/139/001/007/018 some nonlinear boundary value*** B104/B231 ra, -C1, W(U. V) X ++ + + la 0% acts Oug (?US ave +a &I du + 2t, + + a + + 21,? OF + 214 + dri digs + + dx + + h,,G) (y,- is deslgn~ted as Solution of equations, 'is validg and a pair u, 0.) with one of the boundary conditions from 1) to-3), so that the pair t?16'j will satisfy equation -et dxs % V) IlVi Po i0t, P~. V) dxi d, tiv. Pi.,#] dxt dkidx. + Card 5/ 30 25475---- S/02OJ61/139/001/007/018 Some nonlineV boundary value... B1041B231 40 + exp N dv, dxs dxt dxs [ I Ve x p ; rer d v. Pd x i d xt d, ri, + .45 + 1i INS ~r r ;Zdv. poiPCA 50 for any pair Tell The solution 6NO, t i7ound in this way Ia. Y n 0 referred to go War's open polygon or problem (1) with the boundary conditions from 1) to 3). To oong'ludep the following Is=& and the following theorems are established and provedt Lemmas ftler's open polygott 5!3 system is,equally limitod and continuous to an'equal degree in 7Lon section 0 r, t C t if conditions 0 25475 i5/020 61/139/001/007/018 Some nonlinear boundary value*** -B.04/423 sup W (Ut. U') < Co. Inf r (xi, xt. xs. 0) > 0. (7) 60 V are met. Theorem It if (7) to mot and 'U1% I I