PREDICTING DEBT RESCHEDULING: A QUANTITATIVE APPROACH

Document Type: 
Collection: 
Document Number (FOIA) /ESDN (CREST): 
CIA-RDP86T00586R000300310007-7
Release Decision: 
RIPPUB
Original Classification: 
C
Document Page Count: 
33
Document Creation Date: 
December 22, 2016
Document Release Date: 
November 13, 2009
Sequence Number: 
7
Case Number: 
Publication Date: 
April 1, 1985
Content Type: 
REPORT
File: 
AttachmentSize
PDF icon CIA-RDP86T00586R000300310007-7.pdf1.53 MB
Body: 
Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 f Confidential o s n "R) Intelligence Predicting Debt Rescheduling: A Quantitative Approach A Technical Intelligence Report Confidential GI 85-10114 DI 85-10020 April 1985 Copy 4 4 7 Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 Directorate of Intelligence A Quantitative Approach Predicting Debt Rescheduling: A Technical Intelligence Report Analytical Support 25X1 Group. Comments and queries are welcome and may be directed to the Chief, Economics Division, OGI, 25X1 This paper was prepared b=Office of 25X1 Confidential GI 85-10114 DI 85-10020 Anil 1985 Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 Confidential Summary Information available as of 17 April 1985 was used in this report. iii Confidential GI 85-10114 DI 85-10020 April 1985 Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 A Quantitative Approach Predicting Debt Rescheduling: intensive analysis of their specific situations. In the last four years, about 40 countries have rescheduled their official or private debts. Almost all the reschedulings occurred during economic or political crises. In many instances, moreover, warnings preceded the actual reschedulings. Although not supplanting well-reasoned, sound analysis of debt situations, sophisticated quantitative examinations of linkages be- tween economic conditions and debt reschedulings can be useful. In particular, the multicountry nature of this approach allows a comprehen- sive survey of a large number of countries and selection of those indicated as potential trouble spots; those can then be followed up with more sufficient data on suspected preindicators. We have systematically explored the links between international and domestic economic conditions and rescheduling for some 75 less developed countries (LDCs), using logistic regression. This technique statistically estimates the probability of a discrete event given trends in underlying quantitative variables. In addition to its use in rescheduling analysis, it has potential for predicting political events, such as coups or elections, using appropriate preindicators. This technique is limited by the availability of within a three-year period. Our analysis indicates this technique does well in forecasting reschedul- ings. In the 1977-83 period, for example, we found that applying logistic regression to economic indicators, such as consumer price inflation, debt and debt service, exports, imports, and reserves, correctly predicted in more than three-fourths of the cases whether or not a country would reschedule they may reschedule later in 1985. Our analysis of 1983 economic trend data indicated that 50 countries would reschedule in 1983, 1984, or 1985. Twenty-eight of these countries have already rescheduled in 1983 or 1984. The remainder-Bangladesh, Bolivia, Burma, Cameroon, Congo, Colombia, Egypt, Gabon, The Gambia, Guyana, Ghana, India, Israel, Jordan, Kenya, Mauritania, Panama, South Korea, Syria, Tanzania, Thailand, and Zimbabwe-were predicted to reschedule by the technique in 1983-85 but have not done so as of yet. This result could be due to an incorrect conclusion of the model or to the fact Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 Confidential To attempt to delineate which of the two reasons seems more likely, we ob- tained 1984 economic trend data for nine of the countries and applied the technique again. As a result, we were able to refine somewhat the rescheduling expectations for 1985 for these countries. We found that the likelihood of rescheduling has gone up for Burma, and down for India, Kenya, and Egypt. There was no real change for South Korea, Thailand, Jordan, Israel, and Bolivia. Confidential iv Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 Confidential Contents Summary iii Choosing a Methodology 1 Evaluating the Models 2 Applying the Model 3 B. Data on Economic Indicators for Selected Foreign Countries, 13 1977-84 Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 Confidential Predicting Debt Rescheduling: A Quantitative Approach Economic and financial theory suggest that a number of preindicators exist for a country having to resched- ule its debt. For example, low international reserves relative to imports might indicate a need for resched- uling. Similarly, rampant inflation often leads to deteriorations in the domestic economy and in inter- national payments balances requiring debt restructur- ing This study quantifies these relationships. Specifically, we have tested three alternative statistical procedures against a number of potential determinants. In two of these-logistic regression and discriminant analysis- we examined the linkage between economic indicator trends in one year and whether the country resched- uled in that or the succeeding two years. Thus, for example, economic trends in 1982 were examined for their linkages with rescheduling in 1982, 1983, or 1984. A three-year period was chosen largely for practical reasons. The lags in availability of international eco- nomic indicator data prevent predicting for the next year. Therefore, a three-year period is necessary to have information soon enough to predict rescheduling. For the third method-catastrophe theory-data re- quirements prevented the use of the three-year period. Hence, the results of this method are more interesting than practical. Choosing a Methodology We developed our quantitative methodology for pre- dicting rescheduling by examining three trial method- ologies: logistic regression; linear discriminant analy- sis; and a method based on mathematical catastrophe theory (see appendix A): the consumer price index. The technique fits an equation to the observed cumulative probability of the event. The fitted curve can then be used to estimate probabilities. ? Discriminant analysis seeks to draw a divider be- tween events. If the consumer price index were the only predictor variable, discriminant analysis would identify a value for the index. Countries with a price index higher than this value would be predicted to reschedule; countries with a lower index would not. When more than one predictor variable is used, discriminant analysis generates a dividing line, plane, or higher dimensional linear shape. The dividing shape is called the discriminant. ? Catastrophe theory is based on the notion of a graphical relationship between one variable and several other variables-in this case, a graph of reschedulings versus the predictor variables. Be- cause a country either reschedules or does not, the graph will have a break between the two events,_ To determine the best methodology for predicting reschedulings, we examined each model against a set of indicator and rescheduling data for some 75 LDCs for 1977 through 1983. For the indicator data, we used economic trends commonly thought to influence reschedulings: consumer price inflation, ratio of ex- ports to imports, ratio of total international reserves to imports, ratio of debt service to exports, ratio of interest payments to exports, share of official debt in total debt and debt service, and ratio of debt to exports. The indicator data were obtained from IMF publications and a CIA data base on debt and debt service. Information on whether or not a country had ? Logistic regression uses statistics to estimate the probability of an event, such as a rescheduling, based on one or more predictor variables, such as Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 Confidential For testing the three models, the data were arranged as follows: ? The information on rescheduling was transformed into a binary variable equal to 0 if a country did not reschedule in a given year or the two succeeding years, and equal to 1 if it did. ? The economic indicator data were transformed into ratios and percent changes as appropriate. ? All data on individual countries were pooled into a single series for each variable. As a result, the actual estimation procedures took place against a series of 525 observations of pooled data for 75 countries over seven years. Each model was applied to the data and the percent- age of successful classifications tallied. The results were evaluated on two criteria: ? The percentage of correct classifications. ? The degree to which incorrect classifications were evenly distributed between rescheduling and non- rescheduling countries. In evaluating the models it is necessary to establish a trade-off between the two criteria. The problem can be understood by a simple example. In the aggregate, countries used roughly one-quarter of their opportuni- ties to reschedule. Thus, a prediction that countries never reschedule would be right nearly 75 percent of the time. But none of the reschedulings would be successfully predicted. This defeats the purpose of the model Ideally, the model should predict rescheduling and nonrescheduling with equal accuracy. But achieving a balance may reduce the model's overall performance. Two of the methods-discriminant analysis and ca- tastrophe theory-automatically set the trade-off be- tween overall correctness and balance. Logistic re- gression analysis requires the analyst to determine the trade-off. Since the purpose is to discriminate between countries that will reschedule and those that will not, by about 2 percentage points. an excess of errors in either direction is undesirable. Therefore, a close balance was sought even though the total number of correct classifications fell, typically The differences in percentage of total correct classifi- cations among the models are not large (table 1). In all of the models not based on logistic regression, nonres- chedulings are classified more accurately than resche- dulings. This arises from the near certainty that a country with favorable economic conditions will not reschedule. The discriminant analysis approach proved the most successful in terms of overall correctness-but the balance was quite poor. The catastrophe theory re- sults also show an imbalance. Logistic regression provided an acceptable level of overall correctness (76.3 percent) and a good balance (76.7 percent correct for reschedulings, 76.1 percent for nonreschedulings). Consequently, we concluded that the logistic regression model offered the best approach for forecasting rescheduling. Using the Model In the logistic regression model chosen, the variables included as predictors of rescheduling were: consumer price inflation, the ratio of export earnings to imports, the ratio of total reserves to imports, and the change in the ratio of debt service to exports. This model was used to calculate the probability of rescheduling for the 75 countries examined in the study for 1977-85, using economic indicator data for 1977-83. To turn the probabilities of rescheduling into a predic- tion as to whether or not a country will reschedule within some period, a threshold probability had to be established. Initially, one might guess that the cut- point should be 50 percent; that is, if a country has a Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 Confidential Table 1 Comparison of Estimation Methods 75.9 76.7 75.0 74.1 76.0 76.0 greater chance of rescheduling than not, a reschedul- ing should be predicted. However, a graph of the percentage of correct classifications shows that the optimal cutpoint is lower than one-half (figure 1 on page 6). Ideally, the cutoff point should maximize the percentage of correctly classified events, and make equal the percentage of correctly classified reschedul- ings and nonreschedulings. Figure 1 shows that the cutoff point maximizing overall correct classifications lies a little to the right of the point where the "rescheduling" and "nonrescheduling" lines intersect. Since the goal of the model is to predict whether countries reschedule or not, a balance of correct classifications between the two categories is impor- tant. Assuming a country not to reschedule, for example, would provide an accuracy of 76 percent, but would not predict any reschedulings. As figure 1 demonstrates, a balance of correct classifications can be obtained without a drastic decrease in the overall percentage of correct classifications by setting the cutoff point at 0.342. This choice sets the percentage of correctly classified reschedulings to 76.7 percent; nonreschedulings to 76.1 percent; and overall classifi- cations to 76.3 percent Although historical data must be used to estimate the model, we used the model for predictions by: 1. Applying the 1983 values of the economic indicator data for the four chosen variables to the model's coefficient structure. 2. Choosing those countries predicted to reschedule in 1983-85 on the basis of that economic indicator data. 3. Comparing those predictions with those of the countries that actually rescheduled in 1983-84. 4. Taking a closer look at some of the countries that had not rescheduled, using estimates of 1984 data. Using this procedure, the model predicted that 50 of the 75 countries would reschedule in 1983-85, given their 1983 economic indicators (table 2). Press and government reports showed that only 28 of these 50 Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 Confidential Table 2 Rescheduling Predictions for 1983, 1984, and 1985 Predicted to Reschedule? a Has Rescheduled? b Trinidad and Tobago 0.05 No No Central African Republic 0.06 No Yes Singapore 0.09 No No Hong Kong 0.10 No No Botswana 0.11 No No Malaysia 0.22 No No Papua New Guinea 0.22 No No Swaziland 0.23 No No Ethiopia 0.24 No No Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 Confidential Table 2 (continued) Predicted to Has Reschedule? a Rescheduled? b a In 1983, 1984, or 1985 from 1983 indicator data. b In 1983 or 1984. Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 Confidentimi, Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 Figure 1 Effect of Cut-Off Point on Classifications Non- rescheduling 20 / \\ 0 0 0.2 0.4 0.6 0.8 1 All classifications Rescheduling countries had rescheduled by the end of 1984; the remaining 22-Bangladesh, Bolivia, Burma, Camer- oon, Congo, Colombia, Egypt, Gabon, The Gambia, Guyana, Ghana, India, Israel, Jordan, Kenya, Mauri- tania, Panama, South Korea, Syria, Tanzania, Thai- land, and Zimbabwe-had note The missed prediction for these countries could be just that: a missed prediction. On the other hand, because the model is looking only at the current year and two years ahead, the prediction may be simply uncon- firmed. In this case, the usefulness of the model is to indicate which countries to watch in the last year of the prediction period. We attempted to take a closer look at nine of these countries using 1984 data and found that the probability of rescheduling: ? Fell for India, Kenya, and Egypt. ? Remained about the same for South Korea, Thai- land, Jordan, Israel, and Bolivia. ? Rose for Burma (table 3). Table 3 Rescheduling Predictions for 1984, 1985, and 1986 Using 1984 Indicator Data Bolivia 0.99 Yes Burma 0.95 Yes Egypt 0.85 Yes India 0.16 No Israel 0.99 Yes Jordan 0.82 Yes Kenya 0.60 Yes South Korea 0.42 Yes Thailand 0.49 Yes This table is Confidential. Logistic regression, or any statistical tool, cannot supplant well-reasoned, sound analysis of the potential occurrence of an event. In some instances it even may provide potentially misleading results. In the case of South Korea, for example, it predicts, albeit barely, a 1983-85 rescheduling, but most other evidence and sources indicate such an outcome is unlikely. Indeed, we believe South Korea is in a strong international financial position. These tools can, nevertheless, pro- vide useful complementary support. This model car- ries out such a modest function, providing a way to use leading economic indicators to predict changes in the odds for or against a country formally asking its creditors for a rescheduling of its debt. Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 Confidential Appendix A Methods of Estimation Models of rescheduling were developed using three methodologies-logistic regression, linear discrimi- nant analysis, and a method based on mathematical catastrophe theory. Logistic regression provided the model that performed best according to the evaluation criteria. That model was used to develop the probabil- ities and predictions in this report. sharply. If their contribution to the model's perfor- mance becomes sufficiently small, they will be removed.2 Since the model must predict rescheduling on the basis of current conditions, rescheduling was lagged two years and "current" was assumed to be 1983. The model was estimated for pre-1983 data. The predicted rescheduling probabilities were calculated for 1983- 85.3 Logistic regression is a standard statistical technique for estimating probabilities based on a set of continu- ous predictor variables.' The model used to derive the results on the debt rescheduling problem was obtained from a stepwise logistic regression. This procedure identifies the independent variable with the greatest classificatory power and creates an initial model from that variable. Then, the variable that can make the greatest marginal contribution to the model is incor- porated. The process repeats until none of the unin- corporated variables can make a significant contribution. Independent variables that are highly correlated may be removed from the model. The correlated variables are not only predictors of the dependent variable- they are also predictors of each other. Thus, when a correlated variable enters the model, the marginal contribution of other correlated variables will drop Logistic regression is a variation on linear regression, the most commonly used regression technique. In a linear model, the depen- dent variable can be made arbitrarily large or small by selecting appropriate values for the independent variables. But, if the variable of interest is a probability (as in logistic regression), it must never exceed unity or be less than zero. Logistic regression meets this restriction by taking a linear combination of the independent variables, then subjecting it to a transformation called the logistic transform, or logit. In geometric terms, the logit bends the line into an S-shaped curve that ranges from zero to one. Logistic regressions were performed on three sets of. independent variables:' ? The basic set. ? The basic set with the gross annual change' in each variable. ? The basic set with the percentage annual change in each variable. 'Correlations among the independent variables in a regression, if severe, may warrant the construction of an artificial set of variables with the correlations removed (as in factor analysis). Because the independent variables are ratios, many of which have the same numerator or denominator, there are correlations. The effects of these on the regression were explored in some detail. Construction of an artificial set of independent variables was not warranted. ' There are two undesirable aspects associated with this procedure. First, the model must predict this year's decision based on previous years' conditions, whereas the decisionmaker may use current information, if available. This objection, of course, can never entirely be overcome when predicting events. Second, the lag reduces the amount of data available to the estimation procedure. When generating the model, economic conditions in 1981 were paired with rescheduling in 1981, 1982, or 1983. Data later than 1981 could not be used, because rescheduling information was not available past 1983. ' When deciding whether or not to reschedule, decisionmakers may consider not only current economic conditions, but also where the economy is headed. Poor but rapidly improving economies may yield a repayment. Good but rapidly deteriorating conditions could trigger a rescheduling. Assessing the direction of an economy is complex. For the present study, simple methods were used to incorporate such information. The annual percentage change in each variable was used as an indicator of economic direction. The magnitude of the annual change was used as an alternative. ' The changes were calculated using the previous year as a base. For example, the change in the consumer price index in 1978 was obtained by subtracting the index in 1977 from the index in 1978. Regressions using gross or percentage changes were not able to use 1977 data because no earlier data were available. Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 Confidential For the basic indicators with their gross annual changes (the best performing set of independent vari- ables), the variables with nonzero coefficients were: ? Consumer price index (CPID). ? Ratio of exports earnings to imports (EXPIMP). ? Ratio of total reserves to imports (RSIMP). ? Ratio of debt interest to export earnings (INTEXP). ? Change in the ratio of debt service to exports (DDSEXP). For readability, the linear part of the model and its logistic transform can be written separately. Letting BETA represent the linear part of the model,' BETA = 2.2324 - 0.00138*CPID - 0.6983*EXPIMP - 17.053*INTEXP + 2.387*RSIMP + 4.823*CDSEXP The probability of not rescheduling in a given three years is estimated by the logit transformation of BETA:' P = EXP(BETA) / [1 + EXP(BETA)]. The probability of rescheduling is estimated by: PROB=1-P ' When interpreting the model, little significance should be at- tached to the list of variables that were included. Because correla- tions are present among the independent variables, the exclusion of a particular variable may not mean that it lacked predictive power, but rather that some other variable presented the same information in a marginally better form. Also, little significance should be attached to the signs of the coefficients in the model equation. When correlations are present, the signs require very careful interpretation. Without such interpretation, some of the signs may seem paradoxical. In the present model, for example, a high ratio of export earnings to imports would seem to promote rescheduling. This, of course, is not a real effect, but an artifact of correlations among the variables. The presence of paradoxical signs does not invalidate the model's overall performance. Rather, it means that the component parts of the model (that is, terms in the regression equation) cannot stand on their own as models of the effects of individual variables. 'The S-shaped curve produced by the logit transformation is a generic form used to estimate probability functions. It is the standard form for preparing such estimates when the exact nature of the probability form is not know. C. C. Brown's chi-square test was used to assess any lack of fit between the shape of the logistic curve and the shape of the data. The test gives the probability that the differences between the ideal curve and the data are due to sampling error, assuming that the errors are normally distributed. For the model used to derive the key findings, the probability is 25.2 percent. A debt rescheduling is predicted if the probability of rescheduling is sufficiently large-for this problem, the cutoff point was chosen to be 0.342. Accordingly, 76.7 percent of the reschedulings were correctly clas- sifed; 76.1 percent of the nonreschedulings were cor- rectly classified; and 76.3 percent of the overall classifications were correct! The optimal cutoff point is less than one-half (figure 1). Ideally, the cutoff point should maximize the percentage of correctly classified events, and make equal the percentage of correctly classified reschedul- ings and nonreschedulings. The cutoff point maximiz- ing overall correct classifications lies a little to the right of the point where the "rescheduling" and "nonrescheduling" lines intersect (figure 1). Since the goal of the model is to discriminate resche- dulings from nonreschedulings, a balance of correct classifications between the two categories is impor- tan.' As the figure demonstrates, this can be obtained without a drastic decrease in the overall percentage of correct classifications. The foregoing analysis shows that the logistic curve does not closely model the form of the econometric data. Still, the overall performance of the regression model is acceptable-and better than the perfor- mance of two competing methodologies. Logistic regression gives two kinds of results-a prob- ability of rescheduling, and a prediction of whether or not rescheduling will occur. The predictions are much simpler to interpret than the probabilities. Although the probability figures are useful in identifying close calls, and in assessing the degree to which a country's economic status has changed, interpreting the proba- bilities involves subtleties and cannot be done intuitively. ' The maximum percentage of total correct classifications is 77.0, corresponding to a cutoff point of 0.358. The percentage of correctly classified nonreschedulings is then 78.8, with 74.1 of the reschedulings correctly classified. The cost of improving the bal- ance between the categories is a decline of 0.7 in the percentage of total correct classifications. This corresponds to an expected loss of less than one correct prediction among the 75 countries. ' Some policymakers may prefer to err on the side of caution-that is, to increase the percentage of correctly predicted reschedulings at the cost of predicting fewer nonreschedulings correctly. Since that is a judgmental matter, this study aims for equal predictive power in both categories. Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 conneential Two methods of estimation were used as alternatives to logistic regression-linear discriminant analysis, and a method based on mathematical catastrophe theory. Neither of the alternatives performed as well as logistic regression. Discriminant analysis yielded a higher percentage of correct classifications (77.7 per- cent versus 76.3 percent for logistic regression), but the classifications were unbalanced (74.1 percent for reschedulings, 79.1 percent for nonreschedulings). Ca- tastrophe theory scored 76.7 percent correct predic- tions (76.0 percent for rescheduling, 75.1 percent for nonrescheduling). Linear Discriminant Analysis Discriminant analysis is an outgrowth of the theory of Gaussian distributions and assumes that the data are samples drawn from two or more Gaussian distribu- tions with the same variances, but different means 10 (figure 2). The distributions overlap. The goal of discriminant analysis is to draw lines separating the distributions. The lines serve a similar function to cut- off point in logistic regression. For predicting reschedulings, the data are not single values as illustrated in figure 2, but are vectors of values comprising the independent variables. The corresponding discriminant is not a line, but a higher dimensional analogue of a line. To view the distribu- tions and the discriminant, it is possible to reduce a multidimensional set of independent variables to a single artificial variable, called the canonical variable. The distributions of reschedulings and nonreschedul- ings across values of the canonical variable illustrate the fundamental source of difficulty in discriminating reschedulings-the economic indicators characterize countries that do not reschedule far better than countries that do (figure 3). Nonreschedulings are grouped at the higher values of the canonical variable. Reschedulings occur at all but the highest values. The ideal histograms shown in figure 2 can, in large 10 If the within-group variances in the raw data are not equal, the data can be transformed to better meet the assumptions underlying the method. The variances of the independent variables differ markedly between rescheduling and nonrescheduling. These differ- ences were reduced by the use of the cube root transform. Figure 2 Example of a Linear Discriminant part, be separated by a discriminant line. The actual distributions in figure 3 substantially overlap. A clean separation cannot be effected. Catastrophe theory is a branch of topology concerned with surfaces having a fold, cusp, or other discontinu- ity. Its application to mathematical modeling lies in the use of such surfaces as modeled response surfaces. The kinds of regression discussed in the previous section permit only one dependent variable. Other methods of estimation allow multiple dependent vari- ables. In that case, the dependent variables describe a Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 Confideti.9Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 Figure 3 Histogram of Canonical Variable 0 Yes 0 No EIIII H W 3LLLLLfHf "HF multidimensional surface. The points along the sur- face predict how the dependent variables will respond to sets of values of the independent variables; hence, they are called response surfaces. Most shapes used as models for response surfaces are continuous-without breaks, folds, and so forth. These will produce models in which the dependent variable changes smoothly over time, provided that the independent variables do likewise. This kind of surface can only approximately model behaviors like rescheduling, where economic conditions may change smoothly, yet the response shifts from nonreschedul- ing to rescheduling without any intermediaries. Castastrophe theory offers a variety of surfaces hav- ing "catastrophes" as candidate response surface models. Some kinds of catastrophes involve discontin- uities. When the dependent variable moves across a discontinuity, an instantaneous change of value will occur. Catastrophe theoretic models also permit the response surface to have a property called hysteresis. Hystere- _~s means that the value of the dependent variables -may depend not only on the independent variables' current values, but also on their history. Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 Confidential Rescheduling behavior may exhibit hysteresis. Con- sider a country with a problem economy. The country reschedules. The decisionmakers may wish to avoid a second rescheduling, for a variety of reasons-such as avoiding further damage to the country's perceived creditworthiness. If so, the country's rescheduling history should be included as an independent variable. Another possible source of hysteresis involves the decisionmaker's expectations. Consider two countries with similar problem economies. One's economy is improving; the other's is deteriorating. Perhaps the decisionmaker with the improving economy would opt to delay rescheduling, while the other decisionmaker might reschedule in the hope of ameliorating the problem. In this case, the dependent variable, re- scheduling, would depend in part on the independent variables' history. Since most applications of catastrophe theory are qualitative, this study used a hybrid catastrophe theory/discriminant analysis approach. An attempt was made to use some of the insights provided by catastrophe theory, by incorporating possible hystere- sis effects into the model-that is, perhaps countries that reschedule should be considered separately from countries that did not reschedule. Accordingly, the countries were divided into three groups-preresched- uling (including those that did not reschedule at all), rescheduling, and postrescheduling. When a discrimi- nant analysis was run against the basic independent variables with their annual percentage changes, this method produced the highest overall percentage of correct classifications (81.7 percent). However, only 76.0 percent of reschedulings were correctly classi- fied-as opposed to 76.7 percent for logistic regres- sion. The prerescheduling and postrescheduling coun- tries were classified correctly 78.3 percent and 46.2 percent of the time, respectively." The three-year lag that was applied to the independent variable in the other two models was not applicable here because of data constraints. Consequently, because this model predicted rescheduling only for the same year as the indicator data, the percentage accuracy is not directly comparable to the other models. " These figures were combined via a weighted average to find the percentage of correctly classified nonreschedulings (75.1 percent) given in table 1. For each method of estimation, three models were generated. These modeled the actual rescheduling behavior of the 75 countries based on one of the following sets of indicators: ? The basic indicators. ? The basic indicators and their annual percentage changes. ? The basic indicators and their gross annual changes. The basic indicators together with their gross annual changes produced the most successful models. The models were applied to each country separately and the percentage of successful classifications re- corded; these results were presented in table 1. The results were evaluated according to two criteria: ? The percentage of classifications that were correct. ? The degree to which incorrect classifications were evenly distributed between rescheduling and nonre- scheduling countries. In evaluating the models, it is necessary to establish a trade-off between the two criteria. The problem can be understood by way of a simple example. In the aggregate, countries used roughly one-quarter of their opportunities to reschedule. Thus, a prediction that countries never reschedule would be right nearly 75 percent of the time. But none of the reschedulings would be successfully predicted. This defeats the purpose of the model. Ideally, the model should predict rescheduling and nonrescheduling with equal accuracy. But achieving a balance may reduce the model's overall performance. Two of the methods-discriminant analysis and ca- tastrophe theory-automatically set the trade-off be- tween overall correctness and balance. Logistic re- gression analysis requires the analyst to determine the trade-off. Since the purpose is to identify countries that will reschedule from those that will not, an excess of errors in either direction is undesirable. Therefore, a close balance was sought even though the total number of correct classifications declined slightly." " For the most successful regression model, the decline was from 77.0 percent to 76.3 percent correct classifications. Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 Confidennai As was shown in table 1, the differences in percentage of total correct classifications among the models is not large. However, the degree to which reschedulings are accurately classified varies considerably. In all of the models not based on logistic regression, nonreschedul- ings generally are classified more accurately than reschedulings. It is much more certain that a country with a favorable economy will not reschedule, than that a country with an unfavorable economy will. The catastrophe theory proved the most successful in terms of overall correctness. Although catastrophe theory classified 76.7 percent of the total cases cor- rectly, only 76 percent of the reschedulings were correctly classified. In other words, the model is highly successful at telling when a country will not reschedule, but does worse than logistic regression in classifying reschedulings. The discriminant analysis results show a similar imbalance. In summary, logistic regression provided an accept- able level of overall correctness (76.3 percent) and a good balance (76.7 percent correct for reschedulings, 76.1 percent for nonreschedulings). Catastrophe the- ory and discriminant analysis had marginally higher levels of overall correctness, but for discriminant analysis this fact was outweighed by the greater imbalance between the percentage of correct predic- tion to reschedulings and nonreschedulings. For catas- trophe theory, the absence of the three-year lag applied to the other methods limits the usefulness of the results or forecasts. This method is of mainly technical interest. Consequently, the estimates given in this paper derive from logistic regression on the basic variables and their annual changes. Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 Confidential Appendix B Data on Economic Indicators for Selected Foreign Countries, 1977-84 Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 Confidential Key to Economic Indicator Abbreviations Abbreviation Economic Indicator CPID Rate of inflation based on consumer price index DBEXP Ratio of debt burden to export earnings DSEXP Ratio of debt service to export earning EXPIMP Ratio of export earnings to imports IMFIMP Ratio of International Monetary Fund reserves to imports INTDS Ratio of debt interest to debt service INTEXP Ratio of debt interest to export earnings OFTLDB Ratio of official to total debt burden OFTLDS Ratio of official to total debt service RSIMP Ratio of total reserves to imports RSCL Country rescheduled debt = 1 Country did not reschedule debt = 0 Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 COUNTRY YEAR CPID OBEXP DSEXP EXPIMP IMFIMP INTDS INTEXP OFTLDB OFTLDS RSCL RSIMP -------------------- ---- ------- ------- ------- ------- ------- ------- ------- ------- ------- ------- ------- ARGENTINA 77 176.587 1.335 0.266 1.358 0.000 0.312 0.083 0.168 0.163 0.000 0.659 78 175.323 1.538 0.418 1.669 0.034 0.292 0.122 0.168 0.083 0.000 1.033 79 159.562 1.797 0.325 1.166 0.023 0.480 0.156 0.133 0.100 0.000 1.087 80 100.763 2.103 0.421 0.761 0.025 0.526 0.222 0.113 0.108 0.000 0.514 81 104.500 2.857 0.614 0.970 0.025 0.660 0.405 0.073 0.059 1.000 0.314 82 164.743 3.773 0.723 1.429 0.017 0.674 0.487 0.069 0.065 1.000 0.454 83 343.812 3.672 0.677 1.744 0.000 0.605 0.409 0.071 0.077 1.000 0.276 77 3.213 0.045 0.016 0.839 0.002 0.157 0.003 0.124 0.632 0.000 0.019 78 6.096 0.045 0.009 0.853 0.002 0.322 0.003 0.116 0.164 0.000 0.018 79 9.046 0.026 0.008 0.949 0.001 0.323 0.003 0.086 0.135 0.000 0.015 80 12.108 0.021 0.006 0.891 0.002 0.406 0.002 0.116 0.128 0.000 0.013 81 11.100 0.046 0.011 0.996 0.002 0.557 0.006 0.104 0.095 0.000 0.024 82 6.031 0.080 0.020 0.890 0.002 0.629 0.012 0.082 0.039 0.000 0.032 83 4.075 0.064 0.013 1.685 0.005 0.717 0.010 0.083 0.067 0.000 0.052 77 10.300 4.850 0.147 0.409 0.000 0.373 0.055 0.943 0.716 0.000 0.166 78 13.200 5.091 0.180 0.363 0.000 0.441 0.080 0.939 0.728 0.000 0.161 79 8.200 5.084 0.279 0.345 0.000 0.245 0.068 0.804 0.346 0.000 0.155 80 18.500 4.765 0.125 0.292 0.000 0.385 0.048 0.933 0.540 0.000 0.091 81 13.200 4.982 0.148 0.293 0.000 0.422 0.062 0.941 0.606 0.000 0.045 82 9.276 5.820 0.184 0.334 0.003 0.733 0.135 0.940 0.631 0.000 0.073 83 8.084 5.606 0.220 0.445 0.011 0.570 0.125 0.944 0.709 0.000 0.255 77 8.154 0.659 0.114 0.354 0.012 0.227 0.026 0.566 0.136 0.000 0.112 78 9.531 0.604 0.082 0.415 0.010 0.430 0.035 0.559 0.318 0.000 0.147 79 16.867 0.598 0.110 0.357 0.007 0.452 0.050 0.589 0.349 0.000 0.119 80 14.547 0.513 0.085 0.434 0.010 0.474 0.040 0.620 0.224 0.000 0.119 81 14.600 1.051 0.153 0.340 0.009 0.648 0.099 0.476 0.275 0.000 0.150 82 10.297 0.949 0.150 0.478 0.000 0.628 0.094 0.469 0.422 0.000 0.200 83 5.221 0.904 0.139 0.589 0.003 0.548 0.076 0.409 0.300 0.000 0.190 77 7.983 2.339 0.272 1.073 0.012 0.360 0.098 0.483 0.276 0.000 0.329 78 10.311 2.876 0.600 0.816 0.012 0.249 0.149 0.486 0.153 0.000 0.199 79 19.753 2.616 0.383 0.852 0.000 0.445 0.170 0.495 0.263 1.000 0.178 80 47.275 2.433 0.327 1.416 0.000 0.554 0.181 0.509 0.284 1.000 0.165 81 32.100 2.904 0.329 0.991 0.000 0.671 0.221 0.497 0.310 1.000 0.125 82 123.618 3.276 0.362 1.677 0.000 0.845 0.306 0.509 0.328 1.000 0.347 83 275.558 2.944 0.681 2.723 0.000 0.340 0.231 0.491 0.251 1.000 0.424 84 600.000 5.076 1.676 0.913 0.000 0.217 0.363 0.491 0.251 1.000 0.342 77 13.166 1.688 0.158 0.654 0.005 0.358 0.057 0.588 0.196 0.000 0.299 78 9.003 1.289 0.172 0.627 0.003 0.476 0.082 0.412 0.211 0.000 0.327 79 11.563 0.677 0.094 0.838 0.004 0.563 0.053" 0.439 0.211 0.000 0.390 80 13.895 0.562 0.079 0.728 0.007 0.589 0.047 0.519 0.293 0.000 0.390 81 16.200 0.715 0.089 0.500 0.011 0.761 0.068 0.560 0.228 0.000 0.274 82 11.532 0.857 0.126 0.664 0.013 0.480 0.061 0.451 0.193 0.000 0.390 83 10.262 0.713 0.129 0.860 0.015 0.328 0.042 0.548 0.319 0.000 0.514 77 43.330 2.885 0.434 0.914 0.012 0.386 0.168 0.152 0.122 0.000 0.451 78 38.750 3.649 0.585 0.841 0.009 0.423 0.247 0.132 0.094 0.000 0.607 79 52.790 3.370 0.634 0.770 0.009 0.492 0.312 0.125 0.084 0.000 0.347 80 82.810 2.788 0.571 0.807 0.011 0.551 0.314 0.125 0.082 0.000 0.184 81 105.600 2.761 0.576 0.967 0.009 0.580 0.334 0.117 0.078 1.000 0.239 Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 BRAZIL 82 97.957 3.505 0.771 0.958 0.012 0.646 0.498 0.113 0.099 1.000 0.169 83 141.990 0.357 0.730 1.303 0.000 0.563 0.'411 1.140 0.123 1.000 0.249 77 -1.185 3.163 0.295 0.756 0.000 0.210 0.062 0.633 0.203 0.000 0.339 78 -5.994 4.546 0.356 0.716 0.000 0.247 0.088 0.643 0.225 0.000 0.252 79 5.632 3.720 0.376 1.203 0.000 0.256 0.096 0.640 0.233 0.000 0.512 80 0.604 3.827 0.392 1.336 0.000 0.298 0.117 0.647 0.216 0.000 0.604 81 0.300 4.417 0.502 1.279 0.024 0.263 0.132 0.617 0.174 0.000 0.555 82 4.985 6.292 0.591 0.930 0.032 0.381 0.225 0.662 0.201 0.000 0.253 83 8.428 6.206 0.722 1.062 0.020 0.330 0.238 0.642 0.269 0.000 0.266 84 5.999 5.259 0.612 2.088 0.020 0.421 0.257 0.642 0.269 0.000 0.449 77 6.863 0.457 0.034 1.200 0.000 0.200 0.007 0.838 0.333 0.000 1.052 78 23.857 1.003 0.042 0.706 0.048 0.345 0.014 0.848 0.345 0.000 0.638 79 36.566 1.061 0.040 0.682 0.029 0.310 0.012 0.889 0.452 0.000 0.451 80 9.421 2.190 0.101 0.390 0.044 0.424 0.043 0.928 0.333 0.000 0.445 81 7.800 2.496 0.132 0.442 0.046 0.351 0.046 0.873 0.266 0.000 0.329 82 9.926 2.545 0.120 0.409 0.034 0.448 0.054 0.881 0.286 0.000 0.126 83 8.861 2.548 0.197 0.515 0.049 0.264 0.052 0.882 0.518 0.000 0.134 77 14.737 1.198 0.086 0.899 0.000 0.466 0.040 0.603 0.444 0.000 0.045 78 12.451 1.555 0.154 0.760 0.003 0.423 0.065 0.581 0.364 0.000 0.039 79 6.643 1.652 0.157 0.880 0.005 0.491 0.077 0.549 0.270 0.000 0.076 80 9.290 1.609 0.166 0.864 0.008 0.587 0.098 0.534 0.299 0.000 0.093 81 10.600 2.068 0.234 0.774 0.008 0.620 0.145 0.566 0.304 0.000 0.052 82 12.297 2.077 0.317 0.880 0.012 0.559 0.177 0.592 0.285 0.000 0.051 83 15.157 1.895 0.302 1.096 0.006 0.477 0.144 0.609 0.322 0.000 0.092 77 11.053 1.325 0.051 1.272 0.000 0.341 0.017 0.462 0.707 0.000 0.333 78 11.483 1.765 0.064 1.308 0.030 0.348 0.022 0.448 0.261 0.000 0.343 79 9.300 1.763 0.008 1.143 0.027 2.167 0.016 0.496 0.500 1.000 0.486 80 17.357 1.825 0.024 1.426 0.000 0.143 0.003 0.624 0.679 1.000 0.536 81 12.000 2.779 0.086 0.830 0.000 0.676 0.058 0.695 0.706 1.000 0.633 82 12.000 2.960 0.060 0.789 0.011 0.689 0.041 0.723 0.800 1.000 0.442 83 12.000 3.267 0.285 0.789 0.021 0.201 0.057 0.755 0.762 1.000 0.426 CHILE 77 92.233 2.120 0.487 0.970 0.000 0.244 0.119 0.442 0.331 0.000 0.177 78 40.151 2.391 0.605 0.825 0.013 0.287 0.174 0.322 0.293 0.000 0.295 79 33.333 1.938 0.462 0.923 0.009 0.380 0.176 0.221 0.266 0.000 0.362 80 35.135 2.065 0.514 0.912 0.013 0.489 0.251 0.159 0.134 0.000 0.490 81 19.700 3.234 0.889 0.614 0.010 0.539 0.479 0.112 0.072 1.000 0.443 82 9.941 3.764 0.853 1.052 0.020 0.545 0.465 0.093 0.073 1.000 0.483 0 83 27.204 3.884 0.795 1.393 0.000 0.488 0.388 0.097 0.077 1.000 0.726 COLOMBIA 77 33.036 1.264 0.159 1.205 0.038 0.415 0.066 0.605 0.466 0.000 0.739 78 17.788 1.097 0.158 1.059 0.025 0.446 0.071 0.606 0.420 0.000 0.665 po 79 24.712 1.216 0.231 1.021 0.023 0.399 0.092 0.527 0.299 0.000 0.928 80 26.534 1.297 0.189 0.846 0.025 0.575 0.108 0.461 0.334 0.000 0.833 81 27.500 2.086 0.304 0.569 0.029 0.663 0.202 0.421 0.304 0.000 0.816 82 24.549 2.400 0.390 0.565 0.032 0.620 0.242 0.403 0.281 1.000 0.663 83 19.773 2.832 0.449 0.605 0.053 0.556 0.250 0.388 0.341 1.000 0.395 77 14.474 2.896 0.233 0.900 0.000 0.344 0.080 0.662 0.353 0.000 0.055 78 10.089 5.418 0.254 0.581 0.000 0.426 0.108 0.618 0.418 0.000 0.029 Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 C~ COUNTRY YEAR CPID DBEXP DSEXP EXPIMP IMFIMP INTDS INTEXP OFTLOB OFTLDS RSCL RSIMP -------------------- ---- ------- ------- ------- ------- ------- ------- ------- ------- ------- ------- ------- CONGO 79 8.121 1.812 0.242 1.751 0.000 0.354 0.086 0.621 0.276 0.000 0.111 80 7.296 1.054 0.113 2.222 0.000 0.402 0.045 0.581 0.362 0.000 0.157 81 17.100 1.126 0.119 1.079 0.002 0.356 0.042 0.480 0.387 0.000 0.107 82 12.724 1.426 0.285 1.210 0.004 0.504 0.144 0.444 0.258 0.000 0.042 83 7.803 1.748 0.453 1.580 0.005 0.331 0.150 0.438 0.251 0.000 0.014 77 4.131 0.940 0.114 0.811 0.000 0.405 0.046 0.502 0.303 0.000 0.156 78 6.019 1.178 0.292 0.712 0.007 0.278 0.081 0.519 0.182 0.000 0.128 79 9.290 1.490 0.293 0.669 0.005 0.338 0.099 0.442 0.216 0.000 0.067 80 18.064 1.658 0.201 0.675 0.000 0.626 0.126 0.464 0.314 0.000 0.078 81 37.100 2.337 0.202 0.796 0.000 0.545 0.110 0.418 0.354 1.000 0.094 82 90.080 2.872 0.158 0.994 0.000 1.097 0.174 0.445 0.637 1.000 0.239 83 32.617 3.473 0.548 1.298 0.000 0.520 0.285 0.463 0.380 1.000 0.501 77 12.966 1.169 0.160 0.800 0.000 0.326 0.052 0.430 0.329 0.000 0.156 78 3.562 1.526 0.209 0.684 0.000 0.460 0.096 0.426 0.283 0.000 0.124 79 9.172 1.331 0.351 0.716 0.000 0.284 0.100 0.429 0.150 0.000 0.153 80 16.686 1.496 0.215 0.587 0.000 0.634 0.136 0.538 0.269 0.00.0 0.099 81 7.500 1.383 0.245 0.712 0.000 0.560 0.137 0.600 0.428 1.000 0.119 82 7.721 2.605 0.447 0.532 0.000 0.498 0.222 0.647 0.371 1.000 0.083 83 4.374 2.896 0.516 0.534 0.005 0.368 0.190 0.706 0.542 1.000 0.113 ECUADOR 77 13.136 1.109 0.128 0.806 0.000 0.369 0.047 0.295 0.232 0.000 0.349 78 15.530 1.842 0.201 0.921 0.005 0.478 0.096 0.416 0.141 0.000 0.308 79 10.302 1.582 0.521 1.041 0.005 0.218 0.113 0.341 0.257 0.000 0.283 80 13.895 1.581 0.275 1.114 0.010 0.464 0.127 0.338 0.306 0.000 0.360 81 13.000 1.947 0.427 1.132 0.011 0.433 0.185 0.348 0.439 1.000 0.248 82 16.106 2.343 0.640 1.075 0.000 0.450 0.288 0.311 0.348 1.000 0.146 83 45.122 2.497 0.518 1.504 0.008 0.493 0.255 0.291 0.231 1.000 0.430 EGYPT 77 12.791 4.836 0.667 0.355 0.000 0.308 0.206 0.822 0.434 0.000 0.091 78 11.046 6.012 0.751 0.258 0.000 0.330 0.248 0.815 0.382 0.000 0.069 79 9.947 6.651 0.659 0.479 0.000 0.275 0.181 0.781 0.281 0.000 0.127 80 20.627 4.542 0.539 0.627 0.000 0.252 0.136 0.773 0.263 0.000 0.186 81 10.400 4.713 0.657 0.368 0.003 0.308 0.202 0.752 0.348 0.000 0.080 82 14.855 5.329 0.842 0.344 0.000 0.407 0.342 0.722 0.383 1.000 0.079 83 16.088 5.059 0.708 0.356 0.003 0.390 0.276 0.753 0.459 1.000 0.083 84 18.000 4.956 0.709 0.367 0.003 0.302 0.214 0.753 0.459 1.000 0.077 77 11.897 0.312 0.078 1.047 0.005 0.256 0.020 0.792 0.221 0.000 0.206 78 13.251 0.553 0.062 0.780 0.009 0.591 0.037 0.706 0.450 0.000 0.217 79 15.918 0.467 0.051 1.089 0.008 0.602 0.031 0.734 0.443 0.000 0.121 80 17.371 0.570 0.058 1.116 0.000 0.651 0.038 0.813 0.472 0.000 0.082 81 14.800 1.005 0.095 0.809 0.000 0.609 0.058 0.814 0.546 0.000 0.081 82 11.760 1.294 0.111 0.797 0.000 0.579 0.064 0.820 0.613 0.000 0.131 83 13.094 1.412 0.155 0.789 0.000 0.393 0.061 0.833 0.721 0.000 0.186 77 16.478 1.424 0.090 0.848 0.019 0.378 0.034 0.921 0.709 0.000 0.474 78 14.424 1.825 0.110 0.575 0.000 0.378 0.042 0.910 0.643 0.000 0.246 79 16.000 1.475 0.068 0.736 0.000 0.461 0.031 0.963 0.789 0.000 0.249 80 4.493 1.655 0.082 0.589 0.006 0.490 0.040 0.943 0.726 0.000 0.102 81 6.100 2.129 0.125 0.526 0.000 0.428 0.054 0.875 0.582 0.000 0.322 82 5.938 2.244 0.155 0.514 0.000 0.530 0.082 0.874 0.552 0.000 0.219 83 -0.712 2.469 0.216 0.466 0.005 0.383 0.083 0.886 0.620 0.000 0.147 Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 COUNTRY YEAR CPID DBEXP DSEXP EXPIMP IMFIMP INTDS INTEXP OFTLDB OFTLDS RSCL RSIMP -------------------- ---- ------- ------- ------- ------- ------- ------- ------- ------- ------- ------- ------- FIJI 77 7.563 0.492 0.049 0.588 0.011 0.477 0.023 0.680 0.511 0.000 0.396 78 5.990 0.490 0.098 0.559 0.009 0.359 0.035 0.672 0.446 0.000 0.292 79 7.248 0.465 0.059 0.547 0.007 0.480 0.028 0.690 0.539 0.000 0.221 80 14.547 0.537 0.066 0.670 0.009 0.364 0.024 0.617 0.413 0.000 0.234 81 11.200 0.758 0.099 0.493 0.008 0.577 0.057 0.648 0.479 0.000 0.184 82 7.014 0.859 0.094 0.559 0.010 0.840 0.079 0.778 0.701 0.000 0.226 83 6.723 1.278 0.169 0.587 0.020 0.638 0.108 0.760 0.676 0.000 0.274 77 13.840 1.162 0.133 1.874 0.004 0.269 0.036 0.166 0.111 1.000 0.012 78 10.774 1.453 0.290 1.795 0.000 0.387 0.112 0.205 0.105 1.000 0.029 79 7.955 0.847 0.182 3.476 0.000 0.383 0.070 0.259 0.137 0.000 0.030 80 12.334 0.646 0.193 3.226 0.000 0.294 0.057 0.281 0.118 0.000 0.126 81 8.700 0.510 0.152 2.611 0.000 0.346 0.053 0.315 0.137 0.000 0.203 82 16.651 0.500 0.157 2.985 0.000 0.337 0.053 0.298 0.120 0.000 0.391 83 11.719 0.417 0.148 2.880 0.009 0.305 0.045 0.332 0.235 0.000 0.339 77 12.465 0.615 0.027 0.612 0.000 0.231 0.006 0.829 0.308 0.000 0.259 78 8.744 1.186 0.105 0.390 0.000 0.122 0.013 0.570 0.122 0.000 0.199 79 6.115 1.339 0.100 0.413 0.000 0.259 0.026 0.641 0.052 0.000 0.010 80 6.724 3.577 0.143 0.192 0.000 0.178 0.025 0.691 0.089 0.000 0.027 81 6.100 4.890 0.316 0.219 0.000 0.407 0.128 0.720 0.151 0.000 0.024 82 10.839 3.428 0.254 0.456 0.000 0.625 0.159 0.781 0.295 0.000 0.083 83 10.629 3.153 0.232 0.426 0.000 0.614 0.142 0.871 0.596 0.000 0.026 77 116.406 0.803 0.041 0.887 0.000 0.396 0.016 0.681 0.697 0.000 0.118 78 73.085 0.845 0.071 1.106 0.000 0.356 0.025 0.631 0.598 0.000 0.225 79 54.415 1.021 0.083 1.165 0.000 0.359 0.030 0.660 0.667 0.000 0.256 80 50.083 0.979 0.095 1.190 0.000 0.243 0.023 0.717 0.350 0.000 0.154 81 116.490 1.186 0.084 0.961 0.007 0.382 0.032 0.730 0.525 0.000 0.125 82 22.297 1.413 0.108 1.238 0.000 0.450 0.048 0.770 0.634 1.000 0.203 83 122.537 2.640 0.229 0.634 0.011 0.386 0.088 0.782 0.633 1.000 0.205 77 12.444 0.334 0.032 1.164 0.012 0.563 0.018 0.682 0.346 0.000 0.540 78 8.000 0.555 0.059 0.866 0.010 0.593 0.035 0.633 0.352 0.000 0.457 79 11.482 0.609 0.066 0.845 0.009 0.709 0.047 0.693 0.393 0.000 0.364 80 10.742 0.586 0.060 0.974 0.014 0.729 0.044 0.728 0.448 0.000 0.230 81 11.400 0.970 0.088 0.746 0.005 0.644 0.057 0.761 0.472 0.000 0.088 82 0.449 1.303 0.116 0.842 0.000 0.572 0.067 0.798 0.569 0.000 0.086 83 1.950 1.407 0.159 1.100 0.007 0.376 0.060 0.764 0.584 0.000 0.193 77 8.247 1.559 0.123 0.822 0.000 0.476 0.059 0.514 0.295 0.000 0.060 78 15.252 1.484 0.168 1.060 0.000 0.343 0.058 0.565 0.286 0.000 0.160 79 17.762 1.696 0.312 0.921 0.000 0.271 0.084 0.585 0.254 0.000 0.042 80 14.090 1.425 0.179 0.982 0.000 0.365 0.065 0.612 0.420 0.000 0.025 81 24.700 1.838 0.228 0.805 0.000 0.448 0.102 0.711 0.340 0.000 0.014 ? 82 18.524 2.739 0.203 0.861 0.000 0.832 0.169 0.731 0.321 1.000 0.036 83 13.498 3.972 0.692 0.671 0.000 0.327 0.226 0.746 0.416 1.000 0.024 77 6.492 0.968 0.133 0.702 0.000 0.156 0.021 0.856 0.553 0.000 0.132 78 -2.594 1.229 0.127 0.666 0.010 0.198 0.025 0.901 0.497 0.000 0.129 79 13.049 1.234 0.067 0.681 0.016 0.240 0.016 0.917 0.512 0.000 0.156 80 17.786 1.437 0.122 0.518 0.000 0.227 0.028 0.867 0.458 0.000 0.035 81 5.700 2.411 0.176 0.335 0.000 0.290 0.051 0.735 0.474 0.000 0.046 82 9.177 2.545 0.128 0.308 0.000 0.444 0.057 0.775 0.338 0.000 0.008 Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 O COUNTRY YEAR CPID DBEXP DSEXP EXPIMP IMFIMP INTDS INTEXP OFTLDB OFTLDS RSCL RSIMP -------------------- ---- ------- ------- ------- ------- ------- ------- ------- ------- ------- ------- ------- 0.057 0.836 0.293 0.000 0.015 77 8.383 1.154 0.130 0.895 0.000 0.450 0.059 0.621 0.456 0.000 0.256 78 6.215 1.282 0.153 0.876 0.009 0.494 0.076 0.613 0.430 0.000 0.203 79 12.484 1.288 0.197 0.888 0.007 0.449 0.088 0.614 0.335 0.000 0.193 80 15.607 1.425 0.166 0.822 0.000 0.622 0.103 0.603 0.391 0.000 0.117 81 10.200 1.850 0.202 0.801 0.000 0.694 0.140 0.614 0.402 0.000 0.092 82 9.982 2.362 0.285 0.918 0.000 0.582 0.166 0.650 0.412 1.000 0.143 83 9.488 2.778 0.370 0.759 0.005 0.582 0.216 0.688 0.442 1.000 0.132 77 4.000 0.081 0.013 0.920 0.000 0.049 0.001 0.022 0.035 0.000 0.303 78 5.400 0.109 0.025 0.855 0.000 0.051 0.001 0.014 0.016 0.000 0.312 79 14.000 0.124 0.022 0.884 0.000 0.031 0.001 0.015 0.012 0.000 0.250 80 13.500 0.127 0.025 0.881 0.000 0.090 0.002 0.017 0.013 0.000 0.215 81 9.700 0.136 0.036 0.881 0.000 0.047 0.002 0.016 0.020 0.000 0.235 82 11.900 0.182 0.044 0.891 0.000 0.024 0.001 0.014 0.007 0.000 0.273 83 9.800 0.194 0.043 0.914 0.000 0.027 0.001 0.013 0.012 0.000 0.314 77 8.400 2.347 0.161 0.960 0.000 0.299 0.048 1.009 0.835 1.000 0.642 78 2.500 2.376 0.177 0.848 0.009 0.321 0.057 0.970 0.796 0.000 0.664 79 6.400 2.120 0.151 0.794 0.016 0.378 0.057 1.030 0.816 0.000 0.605 80 11.400 2.118 0.142 0.578 0.022 0.335 0.048 0.948 0.770 0.000 0.386 81 13.000 2.275 0.171 0.538 0.021 0.297 0.051 0.973 0.685 0.000 0.281 82 7.876 2.211 0.174 0.633 0.025 0.439 0.077 0.001 0.668 0.000 0.285 83 11.813 1.254 0.070 0.590 0.036 1.347 0.094 0.056 0.590 0.000 0.366 84 9.999 2.371 0.208 0.627 0.036 0.473 0.098 0.923 0.195 0.000 0.396 INDONESIA 77 11.107 1.137 0.128 1.742 0.011 0.318 0.041 0.573 0.199 0.000 0.332 78 8.107 1.247 0.199 1.740 0.010 0.222 0.044 0.578 0.185 0.000 0.303 79 21.904 0.968 0.158 2.165 0.010 0.312 0.049 0.559 0.221 0.000 0.429 80 18.525 0.759 0.098 2.022 0.015 0.383 0.037 0.565 0.287 0.000 0.398 81 12.200 0.787 0.107 1.677 0.015 0.411 0.044 0.568 0.289 0.000 0.333 82 9.500 0.905 0.123 1.322 0.013 0.424 0.052 0.545 0.311 0.000 0.176 83 11.300 1.168 0.171 1.288 0.004 0.359 0.061 0.506 0.330 0.000 0.223 84 10.999 1.166 0.188 1.668 0.004 0.478 0.090 0.506 0.330 0.000 0.338 77 p4.557 2.622 0.205 0.534 0.000 0.456 0.093 0.587 0.413 0.000 0.224 78 50.620 2.352 0.137 0.522 0.000 0.599 0.082 0.619 0.506 0.000 0.274 79 78.295 2.274 0.303 0.524 0.004 0.277 0.084 0.693 0.318 0.000 0.273 80 131.000 2.281 0.212 0.570 0.003 0.582 0.123 0.697 0.591 0.000 0.275 81 116.800 2.515 0.364 0.555 0.000 0.392 0.143 0.683 0.395 0.000 0.298 82 120.387 2.836 0.403 0.544 0.000 0.641 0.258 0.693 0.497 0.000 0.365 83 145.605 3.160 0.592 0.537 0.004 0.467 0.276 0.688 0.367 0.000 0.373 84 340.000 3.094 0.549 0.608 0.004 0.435 0.239 0.688 0.367 0.000 0.281 77 27.553 0.920 0.136 1.228 0.000 0.379 0.051 0.299 0.170 0.000 0.087 78 12.991 1.335 0.190 0.998 0.004 0.451 0.086 0.258 0.157 0.000 0.148 79 16.577 1.524 0.251 1.009 0.005 0.397 0.100 0.275 0.154 0.000 0.045 80 14.679 1.470 0.280 1.048 0.003 0.375 0.105 0.257 0.139 0.000 0.006 81 8.800 1.879 0.330 1.063 0.000 0.516 0.170 0.238 0.165 0.000 0.007 82 7.353 2.267 0.505 1.055 0.000 0.530 0.268 0.258 0.131 1.000 0.002 83 5.907 2.943 0.644 0.969 0.000 0.522 0.336 0.271 0.180 1.000 0.011 Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 JAMAICA 78 34.893 1.263 0.237 0.920 0.000 0.365 0.086 0.460 0.239 1.000 0.051 79 29.088 1.482 0.268 0.824 0.000 0.435 0.117 0.495 0.307 1.000 0.049 80 27.307 1.572 0.253 0.822 0.000 0.455 0.115 0.527 0.308 0.000 0.070 81 12.740 1.739 0.421 0.661 0.001 0.317 0.133 0.551 0.205 0.000 0.050 82 6.546 2.481 0.432 0.529 0.003 0.647 0.280 0.585 0.370 1.000 0.072 83 11.588 2.763 0.664 0.482 0.000 0.388 0.258 0.604 0.346 1.000 0.041 77 14.441 2.997 0.245 0.180 0.004 0.362 0.089 0.628 0.300 0.000 0.404 78 6.920 3.737 0.358 0.198 0.004 0.456 0.163 0.549 0.234 0.000 0.473 79 14.340 3.194 0.355 0.205 0.005 0.475 0.169 0.595 0.256 0.000 0.466 80 10.988 3.042 0.407 0.239 0.007 0.539 0.219 0.570 0.205 0.000 0.389 81 7.700 2.738 0.431 0.232 0.005 0.524 0.226 0.611 0.214 0.000 0.307 82 7.428 2.933 0.425 0.237 0.005 0.593 0.252 0.664 0.285 0.000 0.264 83 5.013 4.086 0.580 0.191 0.002 0.527 0.306 0.684 0.489 0.000 0.272 84 3.000 3.192 0.453 0.318 0.002 0.453 0.205 0.684 0.489 0.000 0.258 77 14.852 0.988 0.074 0.930 0.000 0.490 0.036 0.617 0.475 0.000 0.335 78 16.954 1.348 0.139 0.598 0.000 0.425 0.059 0.612 0.372 0.000 0.160 79 7.985 1.654 0.164 0.667 0.000 0.508 0.083 0.562 0.382 0.000 0.289 80 13.766 1.573 0.167 0.595 0.000 0.505 0.084 0.563 0.355 0.000 0.166 81 11.800 1.989 0.244 0.554 0.000 0.448 0.109 0.573 0.293 0.000 0.094 82 20.483 2.449 0.397 0.600 0.001 0.498 0.198 0.613 0.230 0.000 0.112 83 11.507 2.603 0.372 0.752 0.007 0.505 0.188 0.645 0.358 0.000 0.258 84 9.999 2.187 0.312 0.699 0.007 0.429 0.134 0.646 0.358 0.000 0.219 77 6.223 0.592 0.059 0.965 0.000 0.279 0.017 0.773 0.649 0.000 0.049 78 7.357 0.688 0.052 1.048 0.000 0.500 0.026 0.703 0.621 1.000 0.029 79 11.548 0.872 0.139 1.059 0.000 0.298 0.042 0.669 0.217 1.000 0.082 80 13.766 0.953 0.066 1.103 0.000 0.578 0.038 0.712 0.293 1.000 0.008 81 7.600 1.196 0.051 1.188 0.000 0.868 0.045 0.758 0.407 1.000 0.016 82 5.948 0.956 0.049 1.422 0.000 1.346 0.067 0.777 0.654 1.000 0.013 83 2.763 1.197 0.116 1.454 0.000 0.675 0.078 0.785 0.651 1.000 0.051 77 3.111 0.722 0.042 0.975 0.000 0.385 0.016 0.888 0.888 0.000 0.163 78 6.609 0.902 0.069 0.875 0.000 0.270 0.019 0.744 0.588 0.000 0.103 79 14.016 1.813 0.132 0.616 0.000 0.312 0.041 0.584 0.362 1.000 0.006 80 18.203 2.619 0.146 0.670 0.000 0.438 0.064 0.611 0.359 1.000 0.012 81 30.500 6.533 0.284 0.493 0.001 0.854 0.243 0.626 0.335 1.000 0.054 82 31.418 7.487 0.537 0.469 0.002 0.740 0.397 0.641 0.232 1.000 0.040 83 19.288 6.987 1.295 0.519 0.000 0.287 0.372 0.657 0.385 1.000 0.061 77 4.167 2.036 0.142 0.859 0.000 0.332 0.047 0.684 0.276 0.000 0.311 78 8.428 2.721 0.191 0.548 0.000 0.470 0.090 0.690 0.331 0.000 0.171 79 11.331 2.541 0.245 0.560 0.000 0.570 0.140 0.554 0.211 0.000 0.134 80 18.343 2.610 0.309 0.648 0.000 0.551 0.170 0.559 0.141 0.000 0.123 81 9.500 2.680 0.374 0.791 0.011 0.632 0.236 0.600 0.206 1.000 0.119 82 9.315 3.102 0.341 0.825 0.000 0.825 0.281 0.634 0.213 1.000 0.069 83 15.372 3.776 0.611 0.692 0.007 0.469 0.287 0.644 0.212 1.000 0.049 77 4.739 0.430 0.091 1.339 0.012 0.300 0.027 0.364 0.142 0.000 0.518 78 4.988 0.412 0.127 1.255 0.009 0.212 0.027 0.358 0.149 0.000 0.433 79 3.536 0.312 0.060 1.412 0.009 0.384 0.023 0.344 0.208 0.000 0.388 80 6.724 0.341 0.042 1.201 0.011 0.599 0.025 0.306 0.285 0.000 0.327 81 9.700 0.565 0.067 1.019 0.010 0.548 0.037 0.245 0.227 0.000 0.312 Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 COUNTRY YEAR CPID -------------------- ---- ------- MALAYSIA 82 5.834 0.849 0.111 0.971 0.009 0.522 0.058 0.174 0.137 0.000 0.282 83 3.704 0.962 0.148 1.070 0.012 0.409 0.061 0.146 0.120 0.000 0.280 77 4.167 3.478 0.074 0.784 0.000 0.337 0.025 0.954 0.761 0.000 0.030 78 8.428 4.627 0.091 0.392 0.000 0.324 0.029 0.949 0.814 0.000 0.024 79 11.331 3.595 0.086 0.411 0.000 0.344 0.030 0.923 0.633 0.000 0.014 80 18.343 3.375 0.068 0.468 0.012 0.417 0.028 0.937 0.446 0.000 0.028 81 9.600 4.938 0.103 0.424 0.022 0.535 0.055 0.941 0.472 0.000 0.044 82 9.763 6.641 0.300 0.439 0.027 0.318 0.095 0.835 0.172 0.000 0.048 83 9.726 6.529 0.421 0.489 0.026 0.214 0.090 0.830 0.421 0.000 0.047 77 10.300 2.935 0.262 0.758 0.000 0.219 0.057 0.679 0.431 0.000 0.200 78 7.100 4.792 0.212 0.681 0.000 0.366 0.078 0.694 0.450 0.000 0.338 79 9.000 4.215 0.450 0.567 0.000 0.234 0.106 0.773 0.182 0.000 0.335 80 11.100 3.721 0.154 0.680 0.000 0.430 0.066 0.816 0.430 0.000 0.385 81 19.090 3.194 0.209 0.975 0.000 0.339 0.071 0.880 0.383 0.000 0.524 82 12.629 4.316 0.171 0.849 0.000 1.166 0.200 0.890 0.751 1.000 0.462 83 0.887 4.945 0.574 0.939 0.000 0.392 0.225 0.898 0.917 1.000 0.439 77 9.195 0.268 0.031 0.693 0.000 0.289 0.009 0.851 0.381 0.000 0.123 78 8.491 0.505 0.042 0.650 0.000 0.616 0.026 0.667 0.471 0.000 0.072 79 14.526 0.650 0.064 0.665 0.000 0.635 0.041 0.548 0.419 0.000 0.041 80 42.674 0.722 0.088 0.708 0.000 0.567 0.050 0.516 0.289 0.000 0.118 81 14.500 1.038 0.164 0.590 0.000 0.654 0.107 0.589 0.248 0.000 0.055 82 11.354 1.104 0.195 0.787 0.000 0.552 0.108 0.624 0.329 0.000 0.077 83 5.647 1.226 0.259 0.832 0.000 0.399 0.103 0.000 0.313 0.000 0.041 MEXICO 77 28.959 5.917 1.029 0.768 0.000 0.330 0.339 0.133 0.079 0.000 0.241 78 17.544 5.460 1.255 0.789 0.000 0.285 0.358 0.116 0.062 0.000 0.196 79 18.060 4.194 1.296 0.743 0.000 0.294 0.381 0.101 0.062 0.000 0.136 80 26.422 2.794 0.638 0.800 0.005 0.472 0.301 0.103 0.061 0.000 0.123 81 27.900 2.760 0.561 0.805 0.007 0.585 0.328 0.100 0.065 1.000 0.149 82 58.952 2.798 0.528 1.412 0.000 0.697 0.368 0.118 0.073 1.000 0.054 83 101.869 3.002 0.761 2.573 0.011 0.429 0.326 0.148 0.156 1.000 0.465 77 12.600 3.270 0.230 0.407 0.000 0.532 0.122 0.464 0.413 0.000 0.137 78 9.800 3.707 0.419 0.508 0.000 0.465 0.195 0.439 0.260 0.000 0.168 79 12.000 3.421 0.460 0.532 0.000 0.525 0.241 0.423 0.268 0.000 0.122 80 15.000 3.092 0.528 0.574 0.000 0.507 0.267 0.459 0.219 0.000 0.079 81 12.500 3.514 0.577 0.542 0.000 0.505 0.291 0.519 0.188 1.000 0.050 82 10.578 4.677 0.749 0.478 0.000 0.551 0.413 0.508 0.173 1.000 0.051 83 5.611 5.815 1.171 0.492 0.000 0.459 0.537 0.529 0.294 1.000 0.036 77 9.804 0.895 0.035 0.479 0.000 0.500 0.017 1.000 0.786 0.000 0.710 78 7.398 0.958 0.030 0.411 0.011 0.407 0.012 1.000 1.000 0.000 0.527 79 3.563 1.132 0.030 0.428 0.009 0.455 0.014 1.000 1.000 0.000 0.495 80 14.679 2.164 0.050 0.235 0.015 0.475 0.024 1.000 1.000 0.000 0.434 81 11.100 1.653 0.035 0.381 0.016 0.531 0.019 1.000 1.000 0.000 0.486 82 11.701 3.385 0.068 0.222 0.015 0.683 0.047 1.000 1.000 0.000 0.470 83 12.832 3.682 0.094 0.202 0.014 0.583 0.055 1.000 0.988 0.000 0.286 77 11.449 1.493 0.184 0.836 0.000 0.483 0.089 0.474 0.257 0.000 0.161 78 4.612 1.658 0.182 1.084 0.000 0.494 0.090 0.511 0.274 1.000 0.067 79 48.096 2.082 0.122 1.573 0.000 0.867 0.106 0.587 0.481 1.000 0.083 Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 NICARAGUA 80 35.318 3.767 0.170 0.508 0.000 0.495 0.084 0.550 0.737 1.000 0.034 81 23.900 4.421 0.376 0.509 0.000 0.487 0.183 0.561 0.538 1.000 0.030 82 24.778 6.929 0.709 0.523 0.000 0.466 0.331 0.711 0.683 1.000 0.039 83 31.048 7.334 0.741 0.564 0.000 0.420 0.312 0.715 0.670 1.000 0.000 77 23.274 1.290 0.159 0.816 0.016 0.325 0.052 0.547 0.243 0.000 0.424 78 10.026 1.099 0.106 0.925 0.016 0.470 0.050 0.553 0.225 0.000 0.324 79. 7.337 0.906 0.093 0.971 0.011 0.713 0.066 0.492 0.169 0.000 0.218 80 10.254 1.076 0.146 0.953 0.010 0.691 0.101 0.454 0.300 0.000 0.167 81 22.900 1.545 0.187 0.892 0.012 0.638 0.119 0.543 0.416 1.000 0.179 82 11.635 2.080 0.397 0.752 0.014 0.629 0.250 0.564 0.329 1.000 0.061 83 -2.478 2.484 0.358 0.969 0.033 0.795 0.285 0.657 0.344 1.000 0.189 77 19.474 0.147 0.022 1.062 0.031 0.368 0.008 0.488 0.307 0.000 0.316 78 18.649 0.260 0.017 0.822 0.029 0.425 0.007 0.332 0.492 0.000 0.115 79 11.139 0.241 0.025 1.719 0.029 0.688 0.017 0.221 0.235 0.000 0.414 80 11.359 0.211 0.031 1.595 0.022 0.793 0.024 0.176 0.141 0.000 0.484 81 20.900 0.342 0.065 0.943 0.021 0.627 0.041 0.147 0.092 1.000 0.161 82 7.527 0.602 0.110 1.121 0.000 0.622 0.069 0.115 0.073 1.000 0.101 83 20.308 1.024 0.222 1.460 0.000 0.484 0.108 0.109 0.091 1.000 0.122 84 34.999 1.051 0.254 2.921 0.000 0.328 0.083 0.109 0.091 1.000 0.196 77 9.000 5.802 0.282 0.486 0.000 0.439 0.124 0.940 0.779 0.000 0.174 78 7.300 5.259 0.282 0.449 0.000 0.485 0.137 0.935 0.716 0.000 0.114 79 9.300 4.060 0.282 0.507 0.000 0.435 0.123 0.915 0.696 1.000 0.055 80 12.600 3.515 0.260 0.489 0.000 0.411 0.107 0.892 0.674 1.000 0.084 81 11.880 3.189 0.214 0.512 0.000 0.373 0.080 0.903 0.599 1.000 0.121 82 5.899 4.127 0.297 0.439 0.011 0.449 0.133 0.884 0.548 0.000 0.173 83 7.444 3.204 0.280 0.577 0.017 0.390 0.109 0.900 0.705 0.000 0.366 PANAMA 77 4.552 5.591 0.694 0.291 0.000 0.444 0.308 0.272 0.144 0.000 0.068 78 4.225 7.669 2.265 0.272 0.004 0.223 0.505 0.231 0.055 0.000 0.123 79 7.985 7.120 1.327 0.256 0.002 0.511 0.679 0.231 0.105 0.000 0.078 80 13.766 6.513 1.338 0.249 0.006 0.545 0.729 0.239 0.101 0.000 0.066 81 7.300 7.826 1.631 0.213 0.000 0.578 0.943 0.240 0.165 1.000 0.067 82 4.287 8.362 1.840 0.237 0.000 0.541 0.995 0.233 0.100 1.000 0.059 83 2.055 8.099 1.431 0.340 0.007 0.559 0.799 0.383 0.212 1.000 0.158 PAPUA NEW GUINEA 77 4.319 0.500 0.040 1.064 0.000 0.697 0.028 0.355 0.369 0.000 0.548 78 5.897 0.530 0.043 0.927 0.000 0.739 0.032 0.385 0.363 0.000 0.405 79 5.687 0.458 0.056 0.978 0.003 0.545 0.030 0.394 0.249 0.000 0.425 80 12.108 0.452 0.054 0.959 0.003 0.485 0.026 0.418 0.222 0.000 0.284 81 8.100 0.749 0.081 0.661 0.000 0.671 0.054 0.382 0.220 0.000 0.309 82 5.458 0.981 0.124 0.635 0.000 0.737 0.091 0.359 0.172 0.000 0.262 83 7.895 1.022 0.138 0.667 0.004 0.582 0.080 0.366 0.205 0.000 0.370 77 9.298 1.419 0.135 0.905 0.021 0.375 0.051 0.684 0.356 0.000 0.716 78 10.590 2.068 0.199 0.671 0.017 0.454 0.090 0.637 0.329 0.000 0.900 79 28.257 2.168 0.263 0.586 0.016 0.474 0.125 0.558 0.291 0.000 0.890 80 22.399 2.527 0.359 0.505 0.024 0.609 0.219 0.518 0.300 0.000 0.974 81 14.000 3.174 0.412 0.493 0.042 0.596 0.246 0.485 0.258 0.000 1.156 82 6.754 3.366 0.370 0.491 0.042 0.834 0.308 0.501 0.289 1.000 0.923 83 13.394 2.855 0.446 0.877 0.061 0.519 0.231 0.568 0.363 1.000 1.234 Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 COUNTRY YEAR CPID DBEXP DSEXP EXPIMP IMFIMP INTDS INTEXP OFTLDB OFTLDS RSCL RSIMP -------------------- ---- ------- ------- ------- ------- ------- ------- ------- ------- ------- ------- ------- PERU 77 38.057 3.628 0.544 0.903 0.000 0.364 0.198 0.328 0.183 1.000 0.172 78 57.855 3.723 0.556 0.991 0.000 0.448 0.249 0.352 0.226 1.000 0.171 79 66.693 2.275 0.377 1.918 0.000 0.517 0.195 0.344 0.233 1.000 0.657 80 59.210 2.084 0.489 1.560 0.000 0.430 0.211 0.389 0.231 1.000 0.640 81 75.390 2.511 0.732 0.944 0.000 0.379 0.277 0.383 0.225 1.000 0.315 82 64.445 2.812 0.655 0.914 0.000 0.451 0.296 0.364 0.274 1.000 0.353 83 111.150 3.625 0.797 1.201 0.000 0.365 0.291 0.335 0.270 1.000 0.691 77 7.967 1.606 0.274 0.732 0.000 0.300 0.082 0.285 0.186 0.000 .0.294 78 7.530 1.846 0.346 0.661 0.000 0.303 0.105 0.303 0.167 0.000 0.273 79 18.908 1.593 0.311 0.695 0.000 0.394 0.123 0.314 0.213 0.000 0.269 80 17.786 1.523 0.226 0.692 0.000 0.532 0.120 0.312 0.192 0.000 0.277 81 13.300 1.805 0.339 0.668 0.000 0.514 0.174 0.329 0.159 0.000 0.230 82 10.944 2.415 0.530 0.601 0.000 0.488 0.258 0.333 0.171 1.000 0.196 83 10.899 2.761 0.561 0.614 0.000 0.463 0.260 0.000 0.190 1.000 0.096 77 14.505 0.802 0.014 0.749 0.017 0.769 0.011 0.977 0.615 0.000 0.556 78 12.598 1.376 0.025 0.401 0.016 0.944 0.024 0.987 0.611 0.000 0.376 79 15.691 1.115 0.016 0.592 0.028 0.889 0.014 0.970 0.389 0.000 0.601 80 7.216 2.125 0.040 0.311 0.034 0.733 0.029 0.966 0.500 0.000 0.602 81 6.600 2.189 0.057 0.290 0.025 0.596 0.034 0.950 0.511 0.000 0.527 82 12.195 2.158 0.074 0.316 0.024 0.612 0.045 0.969 0.776 0.000 0.405 83 6.773 2.488 0.089 0.290 0.035 0.603 0.053 0.976 0.836 0.000 0.373 77 11.401 0.800 0.113 0.816 0.000 0.311 0.035 0.485 0.218 0.000 0.037 78 3.329 1.680 0.278 0.559 0.003 0.270 0.075 0.487 0.167 0.000 0.020 79 9.785 1.704 0.273 0.575 0.000 0.308 0.084 0.504 0.191 1.000 0.017 80 8.696 2.125 0.437 0.453 0.000 0.276 0.120 0.566 0.188 1.000 0.007 81 5.900 2.540 0.298 0.514 0.000 0.347 0.103 0.642 0.215 1.000 0.009 82 17.280 3.488 0.354 0.459 0.001 0.477 0.169 0.693 0.386 1.000 0.011 83 11.675 3.188 0.498 0.577 0.001 0.358 0.179 0.727 0.441 1.000 0.015 77 11.651 1.728 0.164 0.680 0.000 0.243 0.040 0.514 0.188 1.000 0.152 78 7.536 1.795 0.296 0.599 0.000 0.185 0.055 0.482 0.272 1.000 0.096 79 21.294 1.860 0.311 0.612 0.000 0.176 0.055 0.470 0.118 1.000 0.112 80 11.111 1.874 0.239 0.486 0.000 0.175 0.042 0.613 0.073 1.000 0.056 81 23.300 2.902 0.450 0.431 0.003 0.165 0.074 0.594 0.068 0.000 0.045 82 31.062 3.404 0.531 0.372 0.000 0.272 0.144 0.608 0.209 1.000 0.027 83 63.335 3.644 0.412 0.311 0.000 0.292 0.120 0.652 0.318 1.000 0.038 77 3.297 0.139 0.013 0.787 0.001 0.494 0.007 0.357 0.362 0.000 0.303 78 4.728 0.137 0.034 0.777 0.001 0.287 0.010 0.344 0.146 0.000 0.312 79 4.063 0.121 0.021 0.807 0.001 0.449 0.009 0.307 0.326 0.000 0.250 80 8.460 0.088 0.018 0.807 0.002 0.478 0.008 0.331 0.341 0.000 0.215 81 8.200 0.087 0.016 0.760 0.002 0.583 0.009 0.282 0.222 0.000 0.235 82 3.882 0.098 0.019 0.738 0.002 0.510 0.009 0.232 0.198 0.000 0.273 83 1.157 0.098 0.022 0.775 0.002 0.363 0.008 0.233 0.150 0.000 0.314 77 10.559 6.499 0.124 0.277 0.000 0.321 0.040 0.938 0.372 0.000 0.435 78 9.963 5.156 0.085 0.442 0.000 0.385 0.033 0.951 0.429 0.000 0.404 79 24.279 6.126 0.184 0.387 0.000 0.441 0.081 0.878 0.206 0.000 0.118 80 58.831 5.312 0.115 0.512 0.000 0.117 0.013 0.953 0.549 0.000 0.044 81 44.400 4.535 0.124 1.004 0.000 0.360 0.045 0.929 0.652 0.000 0.136 82 23.615 5.229 0.150 0.708 0.000 0.633 0.09.5 0.904 0.641 1.000 0.026 Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 COUNTRY YEAR CPID DBEXP DSEXP EXPIMP IMFIMP INTDS INTEXP OFTLDB OFTLDS RSCL RSIMP -------------------- ---- ------- ------- ------- ------- ------- ------- ------- ------- ------- ------- ------- SOMALIA 83 27.469 9.439 0.896 1.045 0.000 0.270 0.242 0.918 0.848 1.000 0.094 77 10.173 0.945 0.136 0.929 0.000 0.351 0.048 0.437 0.218 0.000 0.226 78 14.460 1.001 0.164 0.849 0.001 0.329 0.054 0.397 0.195 0.000 0.142 79 18.265 1.029 0.194 0.740 0.001 0.318 0.062 0.368 0.169 0.000 0.111 80 28.700 1.004 0.176 0.785 0.000 0.446 0.078 0.371 0.205 0.000 0.103 81 21.300 0.988 0.188 0.813 0.000 0.439 0.083 0.352 0.186 0.000 0.089 82 7.255 1.072 0.208 0.901 0.000 0.506. 0.105 0.356 0.186 0.000 0.105 83 3.38 1.094 0.200 0.933 0.002 0.411 0.082 0.355 0.235 0.000 0.086 84 1.99 0.914 0.179 1.053 0.002 0.415 0.074 0.355 0.235 0.000 0.087 77 1.253 1.059 0.168 1.083 0.000 0.178 0.030 0.886 0.492 0.000 0.345 78 12.108 1.229 0.110 0.874 0.000 0.289 0.032 0.930 0.580 0.000 0.318 79 10.745 1.218 0.099 0.676 0.000 0.416 0.041 0.878 0.593 0.000 0.272 BO 26.167 1.333 0.094 0.516 0.000 0.448 0.042 0.850 0.649 0.000 0.095 81 17.900 1.540 0.100 0.571 0.001 0.588 0.059 0.770 0.527 0.000 0.149 82 10.857 1.891 0.158 0.512 0.003 0.638 0.101 0.728 0.356 0.000 0.159 83 14.002 2.027 0.180 0.584 0.009 0.561 0.101 0.719 0.409 0.000 0.157 77 16.755 3.599 0.209 0.611 0.000 0.285 0.060 0.588 0.430 1.000 0.018 78 19.874 5.560 0.347 0.433 0.000 0.270 0.094 0.547 0.323 1.000 0.018 79 30.813 6.545 0.193 0.482 0.000 0.419 0.081 0.733 0.564 1.000 0.046 80 25.360 7.483 0.228 0.344 0.000 0.377 0.086 0.761 0.620 1.000 0.024 81 24.600 8.107 0.301 0.437 0.000 0.147 0.044 0.639 0.389 1.000 0.010 82 25.682 13.658 0.997 0.388 0.000 0.255 0.255 0?.555 0.055 1.000 0.015 83 29.349 11.263 1.741 0.461 0.000 0.281 0.489 0.569 0.393 1.000 0.012 77 9.703 0.018 0.003 0.779 0.000 0.333 0.001 1.000 0.889 0.000 0.208 78 10.556 0.083 0.005 0.909 0.012 0.667 0.003 0.170 0.500 0.000 0.255 79 13.936 0.066 0.007 1.081 0.012 0.656 0.005 0.139 0.438 0.000 0.318 80 13.250 0.055 0.006 1.020 0.016 0.645 0.004 0.106 0.419 0.000 0.298 81 8.700 0.058 0.006 0.834 0.014 0.655 0.004 0.109 0.379 0.000 0.317 82 7.268 0.063 0.006 0.838 0.016 0.792 0.004 0.111 0.250 0.000 0.315 83 4.460 0.058 0.009 1.041 0.007 0.487 0.004 0.040 0.308 0.000 0.139 77 20.863 0.306 0.016 0.805 0.009 0.536 0.008 0.935 0.750 0.000 0.348 78 7.589 0.617 0.035 0.631 0.009 0.522 0.018 0.615 0.507 0.000 0.280 79 16.598 0.743 0.054 0.538 0.006 0.543 0.030 0.680 0.378 0.000 0.199 80 18.624 0.568 0.056 0.596 0.007 0.617 0.035 0.695 0.378 0.000 0.207 81 20.000 0.508 0.059 0.635 0.007 0.655 0.039 0.747 0.345 0.000 0.140 82 10.833 0.668 0.079 0.590 0.000 0.656 0.052 0.812 0.465 0.000 0.133 83 16.842 0.902 0.111 0.406 0.003 0.547 0.061 0.811 0.544 0.000 0.148 77 11.797 1.434 0.104 0.400 0.000 0.304 0.032 0.867 0.539 0.000 0.160 78 5.041 1.941 0.257 0.431 0.000 0.352 0.090 0.875 0.717 0.000 0.130 79 4.811 1.430 0.221 0.494 0.000 0.315 0.070 0.903 0.802 0.000 0.141 80 18.920 1.175 0.184 0.511 0.002 0.346 0.064 0.914 0.837 0.000 0.071 81 18.390 1.239 0.182 0.417 0.001 0.378 0.069 0.918 0.837 0.000 0.056 82 14.309 1.369 0.203 0.505 0.000 0.388 0.079 0.912 0.817 0.000 0.052 83 7.536 1.632 0.250 0.421 0.000 0.370 0.093 0.936 0.870 0.000 0.039 77 11.602 2.224 0.116 0.725 0.000 0.351 0.041 0.877 0.415 0.000 0.311 78 11.386 2.860 0.200 0.416 0.000 0.403 0.081 0.804 0.284 0.000 0.067 79 13.778 2.927 0.277 0.494 0.000 0.461 0.128 0.721 0.228 0.000 0.047 Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 TANZANIA 80 30.208 3.455 0.340 0.404 0.000 0.501 0.170 0.731 0.255 0.000 0.013 a 81 25.600 3.235 0.440 0.478 0.002 0.401 0.176 0.750 0.276 0.000 0.013 82 28.981 4.588 0.526 0.395 0.000 0.425 0.224 0.777 0.372 0.000 0.004 83 27.037 5.133 0.554 0.539 0.000 0.391 0.216 0.000 0.441 0.000 0.024 77 7.634 0.573 0.081 0.756 0.007 0.395 0.032 0.448 0.335 0.000 0.341 78 7.801 0.675 0.088 0.763 0.000 0.496 0.043 0.454 0.337 0.000 0.304 79 10.000 0.768 0.106 0.740 0.000 0.552 0.058 0.409 0.268 0.000 0.207 80 19.617 0.896 0.121 0.706 0.000 0.643 0.078 0.396 0.242 0.000 0.142 81 12.700 1.036 0.155 0.706 0.000 0.691 0.107 0.393 0.207 0.000 0.158 82 5.235 1.227 0.195 0.812 0.000 0.660 0.129 0.410 0.218 0.000 0.173 83 3.710 1.556 0.248 0.622 0.003 0.541 0.134 0.420 0.294 0.000 0.159 84 1.499 1.589 0.289 0.617 0.003 0.465 0.135 0.420 0.294 0.000 0.147 TOGO 77 22.437 2.014 0.356 0.561 0.007 0.173 0.061 0.341 0.060 0.000 0.134 78 0.485 2.596 0.199 0.538 0.004 0.234 0.047 0.348 0.140 0.000 0.121 79 7.246 3.920 0.170 0.421 0.006 0.259 0.044 0.448 0.562 0.000 0.097 80 12.613 2.727 0.180 0.608 0.000 0.502 0.090 0.543 0.581 0.000 0.111 81 20.100 4.093 0.195 0.477 0.000 0.475 0.093 0.641 0.645 1.000 0.301 82 10.741 4.095 0.169 0.444 0.000 0.896 0.151 0.667 0.567 1.000 0.338 83 9.023 4.100 0.610 0.444 0.000 0.403 0.246 0.671 0.391 1.000 0.369 TRINIDAD & TOBAGO 77 11.794 0.125 0.008 1.205 0.015 0.489 0.004 0.309 0.522 0.000 0.675 78 10.253 0.214 0.017 1.037 0.015 0.675 0.012 0.193 0.362 0.000 0.705 79 14.690 0.203 0.025 1.240 0.018 0.778 0.020 0.215 0.219 0.000 0.773 80 17.509 0.196 0.064 1.283 0.020 0.281 0.018 0.254 0.083 0.000 0.687 81 14.300 0.268 0.047 1.204 0.025 0.607 0.028 0.252 0.158 0.000 0.921 82 11.461 0.367 0.070 0.831 0.026 0.471 0.033 0.222 0.189 0.000 0.756 83 16.719 0.559 0.132 0.950 0.048 0.300 0.040 0.195 0.138 0.000 0.804 URUGUAY 77 58.750 1.349 0.428 0.832 0.000 0.242 0.104 0.302 0.235 0.000 0.535 78 44.488 1.288 0.641 0.886 0.022 0.151 0.097 0.290 0.128 0.000 0.514 79 66.758 1.443 0.206 0.653 0.013 0.562 0.116 0.262 0.254 0.000 0.299 80 63.399 1.253 0.224 0.652 0.016 0.549 0.123 0.242 0.178 0.000 0.259 81 34.000 1.393 0.214 0.740 0.017 0.706 0.151 0.187 0.178 1.000 0.297 82 19.030 2.035 0.283 0.927 0.000 0.755 0.214 0.175 0.165 1.000 0.185 83 49.216 2.747 0.479 1.627 0.014 0.441 0.211 0.179 0.232 1.000 0.463 VENEZUELA 77 7.886 0.662 0.123 0.873 0.076 0.286 0.035 0.079 0.105 0.000 0.618 78 7.018 1.027 0.132 0.781 0.050 0.514 0.068 0.053 0.086 0.000 0.428 79 12.432 0.861 0.143 1.342 0.038 0.469 0.067 0.037 0.047 0.000 0.558 80 21.507 0.741 0.191 1.625 0.041 0.464 0.089 0.030 0.026 0.000 0.472 81 16.000 0.788 0.203 1.536 0.042 0.601 0.122 0.023 0.023 0.000 0.566 82 9.741 1.189 0.302 1.312 0.054 0.530 0.160 0.015 0.017 1.000 0.506 83 6.284 1.419 0.314 1.786 0.104 0.482 0.151 0.014 0.017 1.000 0.911 ZAIRE 77 69.048 2.940 0.123 1.622 0.000 0.584 0.072 0.377 0.325 1.000 0.196 78 48.503 3.907 0.158 1.571 0.000 0.638 0.101 0.414 0.325 1.000 0.182 79 108.595 3.203 0.225 2.215 0.000 0.504 0.114 0.382 0.260 1.000 0.277 80 42.086 2.590 0.272 1.954 0.000 0.508 0.138 0.539 0.416 1.000 0.204 81 34.910 6.510 0.516 0.991 0.034 0.531 0.274 0.596 0.358 1.000 0.214 82 37.210 7.808 0.654 1.185 0.000 0.560 0.366 0.657 0.387 1.000 0.267 83 53.176 10.022 1.795 0.969 0.000 0.379 0.681 0.000 0.499 1.000 0.470 Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86TOO586ROO0300310007-7 COUNTRY YEAR CPID DBEXP DSEXP EXPIMP IMFIMP INTDS INTEXP OFTLDB OFTLDS RSCL RSIMP -------------------- ---- ------- ------- ------- ------- ------- ------- ------- ------- ------- ------- ------- ZAMBIA 77 19.624 1.668 0.237 1.140 0.000 0.315 0.075 0.529 0.206 0.000 0.077 78 16.405 1.968 0.328 1.156 0.000 0.310 0.102 0.563 0.178 0.000 0.063 79 9.681 1.544 0.227 1.518 0.000 0.290 0.066 0.599 0.217 0.000 0.075 80 11.732 1.699 0.236 1.073 0.000 0.376 0.089 0.659 0.271 0.000 0.053 81 14.000 2.359 0.316 0.842 0.006 0.316 0.100 0.661 0.345 1.000 0.044 82 12.456 2.494 0.235 1.062 0.000 0.584 0.137 0.654 0.386 1.000 0.060 83 19.832 2.963 0.456 1.000 0.000 0.381 0.174 0.685 0.469 1.000 0.066 77 10.305 0.175 0.007 1.234 0.000 0.295 0.002 0.286 0.852 0.000 0.092 78 9.737 0.465 0.009 1.312 0.000 0.506 0.005 0.099 0.588 0.000 0.174 79 13.789 0.498 0.014 1.133 0.000 0.500 0.007 0.074 0.358 0.000 0.254 80 5.374 0.505 0.031 0.977 0.000 0.222 0.007 0.144 0.161 0.000 0.124 81 13.100 0.675 0.078 0.781 0.000 0.321 0.025 0.214 0.104 0.000 0.090 82 10.698 0.868 0.170 0.778 0.000 0.419 0.071 0.196 0.091 0.000 0.086 83 23.083 0.825 0.190 0.931 0.000 0.490 0.093 0.000 0.111 0.000 0.058 Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86TOO586ROO0300310007-7 Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7 Confidential Confidential Sanitized Copy Approved for Release 2009/11/13: CIA-RDP86T00586R000300310007-7