SCIENTIFIC ABSTRACT SOLOMATOV, V.I. - SOLOMESHCH, I.A.
Document Type:
Collection:
Document Number (FOIA) /ESDN (CREST):
CIA-RDP86-00513R001652220011-1
Release Decision:
RIF
Original Classification:
S
Document Page Count:
100
Document Creation Date:
November 2, 2016
Document Release Date:
August 25, 2000
Sequence Number:
11
Case Number:
Publication Date:
December 31, 1967
Content Type:
SCIENTIFIC ABSTRACT
File:
Attachment | Size |
---|---|
CIA-RDP86-00513R001652220011-1.pdf | 2.25 MB |
Body:
88713
s/on8/6o/coo/co@@/:X3/0'06
Concrete containin@; furan resi:@ B019/BO67
Its specific gravity is by about :-. lower than that of ordinary concrete;
its compressive strength is 700 its tensile strength 60-70 kg/cm2'
and its bending strength 120-160*'kg/cJ. It is impervious up to 20
atmospheres excess pressure; however, no practical data are available on
its darability. Finally, the author deals with the applications of furan
resin in the form of water emulsions for increasing the imperviousness
and acid resistance, as described in non-Soviet publications. In this
connection, reference is made to the British patent no. 767617 from
February 6, 1957. The chemical products mentioned are mainly produced by
Ferganskoye sovnarkhoz (Fergana sovnarkhoz), Luganskoye sovnarkhoz
(Luga sovnarkhoz), and Leningradskiy sovnarkhoz (Leningrad sovnarkhoz).
There are 4 references: 3 Soviet-bloc and 1 non-Soviet-bloc.
Card 2/2
BEnZINSKIY, A.R., doktor tekhn.naiik; SOLOKATf"V, 7. 1., Inzh.
I -- - - - - -' -- - -- - --
Plastic materials in bydraulic engineering. Gidr. I mel. 12 no.10.o
39-44 0 160. (NIEL 13:11)
(Plastics) (Hydraulic engineering-Equipment and supplies)
SOlAOMA!:lOV' V.I., inzli.
Concrete mixtures made with furan resins. Gidr. otroi- 30
no.9:16-17 S 16-)* (HIRA 13:9)
(Concrete) (Furan)
SOLOMATOV V.I . inzh.
.SUWM;;16@
Lowering the permeability of concrete using polymer mat*ials.
Izv.ASiA 4 no.4t5g-63 162, (KIRA l6d)
(Polymers) (Concrete Testing)
:@OLOMATOV.-@.@.., inzh.
Protecting concrete surfaces with polymer coatings. Stroi.mat.
8 no.7:13-15 Jl 162. WqRA 15:8)
(Polymers) (Protective coatings) (Gonerete--Testing)
I( @ n :@ 1 ! .
J,i4@ "'. j '@ , Iif 0 ;
C 4 -,, -
, - :-I ", f; -, '? 1@ .)f ) , .,@ @,@ _), 0
, I ., rf, 1@ -) ". -. - mat. 1)
Jo '63. (MIRA 1'!. 8.)
I-10SHOWISKrY, N.A., doktor tekhn.nauk, prof.; ZOLOTNITSKIY, I.M.,
kand.teklin.nauk; SOLOMAIR, V.I.1 SHNEYDEROVA, V.V.;
KOSYAKINA, Z.K., red.; KASIMOV, D.Ya., tekhn.red.
(Plastics and synthetic resins in anticorrosion technology]
Plastmassy i sinteticheakie smo3,v v protivokorrozionnoi
tekhnike. [By] N.A.Moshchanskii i dr. Moskva, Izd-vo lit-
ry po stroit., 1964. 136 p. (MIRA 17:3)
@A
ACCESSION NR: AP5014972 UW02281604A
AUTHORz Solamatov, V. 1. (Candydate of techidcal7aciencea) _7
TITLE: Creep.of polymer-cement concrete
SOURM. Stroitel I-nyye__ mate rialy # no.,-7, 1964, 6-7
--- ------- -
TOPIC TAGS-: concrete, polymer, cement tempirature.
.Abstract: J;Jjce*t4Fmjpdrature changes chiefly affect the phys'ied-6echani-
cal properties of polymeres a relationship betwen deformation and tem-
perature cl)nditions can be expected. Consequently, creep vas studied at,
various temperatures of the medium: __160,, -200,,:/@00, and /500C. The
copolymer of vinylacetate and dibutylmaleate vas the polymer used. The
proportion of polymer vas 20% by velgbt to the cement in a dry condition#
Specimens of ordinary concrete vith the same composition but without the,
polymers vere used as wcomparison. The experiments aboved. that the In-
troduction of the thermoplastic component many times increases the creepi
of concrete that is air-dried. The presence of moisture intensifies eyeA
more the deformation of polymer-cement concrete xWer load. Teiverature
bas a significant effect on the creep of this coAcretet Xn tUs can-
Card 1/2
L 45198- 65
ACCESSION SR: AP5014972
@dection polymers vitb high vitrification points an4i thermoreactive resins
are preferable for combining Vith concrete. 'When using polymer-cement
concrete ka construction It to espee 'Ially important to consider their in-
creq%4 Preep. Concretes vith thermoplastic and elestoplastic inclusions
can be advantageously used as protective floor coverings, for roads# and
in otber cases where their Increased elastic-strength properties wA,
p@ysico-cheaicsl. dwAbility-cam be useltobest advantage,
Orig. art, has I figisre. and graph a-..-
ASSOGiATICU:'none
SUBMITTEM 00 ENCL: 00 SUB COMAT9 TD
NO REIr Sol's 002 MIMRt 002 JPRS
Li;qrd
- CIO.. . 11 r. .. " - . ,
.m@ I . -'. . k, . II. ... II , 1. r @ - @-".
, - - I " * I., -- .:'. , : "@ I - @'- i
@:'ft,ct t-@: . I - ", , @ - @ @' I, % '. ; . . I
.' .. . , I - , I @,."
; I @.t@ @: - . .. . I . 1 - @@ @ . '! :.@II.Z-., i @'; : @ )
4 @ I .,
TSIFER, Y.A.; kand. teklm. nauk; SCUMATOVA, N.A.; sanitarnyy vrach.
Hygienic properties of floors covered with polymer materials.
Gig,, sanit, 28 noe2t95-98 163 WIRA 17:2)
1. Iz Institut-a obshchey i kommmallnoy gigiyt@ny imeni A.N.
Synima ATT SSSR i Gorodskoy sanitarn-epidemiologicheskoy utan-
+"31i ""Osk"ry.
PETUKHOVSKIY, A.A.; TIMOSIIKOV, V.V.; SOLWATOVA, N.A.; VIZIROVO B.N.
Results of the control of murine rodents and flies on
Moscow livestock farms. Gig. i san. 28 no.7:97 n 163.
(KIRA 17:1)
1. Iz Moskovskoy gorodskoy sanitarno-epidemiologicheskay
stantsii, Moskovskoy gorodskoy dezinfektsionnoy stantaii i
Moskovskogo gorodskogo veterinarnogo otdela.
SOLOMCHENKO., A.
School of craftsmanship in the land of the Juculs. 14est.prcm.i
khud.promys. 3 no.4:34 Ap 162. (MIRA 15:5)
1. Direktor Kosovskogo uchilishcha prikladnogo isWusstva,
Stanialnvokaya oblast'.
(Kosov-Art industries-Study and teaching)
SOLOMOHXNKO, N.I.
Xffect of arysinine on cardiovascular insufficiency. Sov.med. 20 no.
6:57-61 156. (MIRA 9:9)
1. Is gospitallnoy terapevticheekoy kliniki (savo prof. A.S.Toronov)
Stalinskogo seditstaskogo instituta imeni A.M.Gorlkogo (dir. dotsent
A.M.Oanichkin) na base ?Sentrallmoy klinichaskoy bolinitsy (g@avnyy
vrach N.I.Asnem)
(CARDIAC GLYCOSINS, therapeutic use,
arysimine (Run))
@@UT; :.!,;H ".*.ill.; '; , --, , . A lottj,-@! : t@
!-lutwil wloorp@'16n I@f -ir..,i a PO)."!"'trice im-
parting -r, *,-e s-"rfa-@, of ina,)Iillri, AI SSSR 158 no.3.
I
09-701 S 16-'. (V:RA 17:10)
- f"z`-@--3kcy r.@:", : 0) belonCs to the class A it is necessary and sufficient
Carr- I/
6906
S/055/59/000/05/009/020
On Classes of I)inctions Subha'rmonic in the Half Space
that it has the representation
(16) &k A-L cLe
Y,
@)@+ (j --I __ @c '@Goj&
T4 ;TY1'
where is the bounddry of D, i. e. z = 0, k = const, y(e) an addi-
tive function of the sets e C-r with derivative which vanishes almost
everywhere on C" , and G(P,Q) denotes the Green function of D; the
function &,-(e) is a nonnegative, nondecreasing additive function,
completely continuous from below, of e @, D which corresponds to the
function u(P) (mass distribution); furthermore it is
4 00 4
3/, + T1T
In 3 the author considers T -subharmonic functions (see (Ref.4))
Card 2/3
694-76
S/055/59/000/05/009/020
On Gla--.ses of Functions Subharnonic in the Half Space
(if kf(x) is an increasing concave function and q [u(P)]subhUrrnonic,
then u(P) is called (P-subliarmonic).
The author mentions P. J. Kuznetsov and V. J. Krylov; he thanks
Profes@;;:)r A. J. Markushevich for advices.
Th,-re 10 references: 6 Soviet, 1 Japaneoe, 1 American, 1 Prench
and 1 Polish.
SUB:41ITT1,1j; L"ai-ch 51, 19@8
Card
SOLC@-!-.".':TSI.V, Ye.D.
Expmule of a finite and continuous subhamonic Ametion not hexln:@
I
ang-Ldar boundary values. Sib. mat. zhur. I no-3:/X-'-491 S-C 16C,
(MI.-Ii. 14:2)
(Harmonic functions)
GOLUBEV, Vladlmir Vasillyevich; 11ARKUSHEVICH, A.I., red.; ArWANOVICH,
I.Q., red.;,@O1&ENT=,_Ye.D.j red.; ARANOVICH, I.G., red.;
EXAASHOVA, N.Ye.., tekhn. red.
(Single-valued analytic functions; automorphic functions] Odno-
znaclzqe analiticheskie funktaiij avtomorfnye funktsii. Vstup.
stattia A.I.Markushevicha. Moskva, Gos. izd-vo fiziko-matem.lit-
ry, 1961. 455 P. (MIRA 15:1)
(Functions, Analytic) (Functions, Autozorphic)
S70ILOV'simon [Stoilow, S.)., akademik; IERSINEY11, I. (translator] -
.SOLQ=TSEV,-.7e,j?-,, red.; PHIDANTSEVA, S.Y.., tekhn. red.
(Theory of functions of complex variables jTeoriia funktaii
kompleksnogo peremennogo. Moskva., Izd-vo inostr.lit-ry.
Vol.l.[Fundamental concepts and principles]Osnovrye ponia-
tiia i printsipy. 1962. 364 p. Translated fror the
Rumanian. (KTRA 15:9)
(Functions of complex variables)
ALEKSANDROV, P.S., red.; 13OLISHEV, L.W., red.; VLADIMLIOV, V.S., red.;
KUD.;rJAVTSEV, L.D., red.; LEONVYEV, A.F., red.; IIIKOLISKIY, S.N.,
red.; POSTNIKOV, M.M., red.;-@@Wq
qqq_@p ',Ye.D., red.; SHAFAqEVICH,
I.R., red.; GRIBWA, M.P., tekhn. rod.
(English-liussian mathematical dictiorary]Anglo-russkii slovarl ma-
tematicheskikh terminov. Red. kollegiia; P.S.Aleksandrov (predse-
datell) i dr. Moskva, Izd-vo inostr. lit-ry, 1962. 369 p.
1. Akademiya nauk SSSR. F-atematicheskiy institut. (MIRA 15:11)
(English lsnguage-Dictionarics---~liussian)
(Mathematics-Dictionaries)
SOLOMUTSEV, Ye*D,
PhragmSn-LindelBf's theorems for harmonic functions. Trudy WI
no..42.-161-164 162. NiRA 16:7)
Olarmonia functions)
KOZH'JY,HOV. PfAr Semenovich; BRIN, I.A.x karid. fiz.-matem. nauk,
rjois., fed.; SOLOMETSEV, Ye.D., kand. fiz.-matem.nauk,
dots., red. "--l' @441-,@-, 1, @
(Ordinany differential equationsl Obyknovennye rjifferentedull-
iWe uravneniia. Moskva, Mosk. energ. ir,-t, 1963. 121 p.
(MIFA 17:5)
SOLOW-,NTSEV, Ye.D.
- 414--. .- - __-, -
Phragmen - Lindelof type theorem for harmonic functions in space.
Dokl. AN SSSR 155 no. 4:,65-766 Ap 164. (MIRA 17:5)
1. Moskovskiy energeticheakiy institut. Predstavleno akademikom
P.S.Novikovym.
TSLAY, L.Ya.; KFRIMOV, M.K.; MYSHKIS, A.D.; AMMAYEV, V.; PANOV,
D.Yu.; SOLOMENTSEV. Ya.D.
Book reviews. Zhur. vych. mat. i mat. fis. 5 no.l.-161-168
Ja-F 165. (MIRA 18%4)
SOLU%%NTSEV, Yu., kand.tekhn.nauk
Study of the dynamic load on ceilings. Zhil. stroi. no*9:30-31
162. (Ceilings) (MIRA 16:2.) @ -
IX If", I I ' na-:k-
YI...".? k-nd. t*-!J
Investio,ation oil the rif.--:d!ty ard vibrat!or, cC ribbed pawfln of
trud- ITIPTosstrola no.2:3-18 16-4.
apartment hol:ses. Na, ch. j
(mrop, lo:.-- 't
"The @ffect of -,need on t-e re3i-ti@nce of rods to llne--r
1,11n Hl-c@hur Bducation US@iR. '-Ir,,,-co,,i Qrder Df Labor Red 3.,n.er
Gonjtrurtion Eni!ineer'l,.:i IrLqt imenA 'i, V. KuylyshL-v. I-loscow, 1956 (Dissertn-
tiar, 'nr Uh- de,:m-, of C-irirlLd.-ite In 31ologied Science)
jjQL;h.-r,rl I eto; i3
SOLOMENTSEV, Yu.A., kand.tekhn.nauk
Fine concretes for rolled structures. Bet, i rhel,-bet, no, 5:226-227
my 16o. (MIRA 14:5)
(Concrete)
S)jj@-VENVISEV Yu.M., I-nzli.; PUISAIMIOVICH,
u
Share of mirts machined on lathes with a runninfr live
center. Vest.mashinoLtr. 45 no.8:64-69 Ag 165.
(MIU. 18: 12)
SOLOHNNTMA, N.N., inzhener.
'"W"Im a 4, ga -
Effect of the cutting speed on the precision of machining. Sbor.
st. CHPI no.4rl2-19 '55. NLRL lo.-6)
(Metal cutting)
26461
S/140/61/000/003/007/009
Clll/C333
AUTHORSs Slobodetskiyp L. N., Solomeshchj_j. A.
TITLE; On the first boundary value problem for some degenerate
elliptic equations
PERIODICAM Izvestiya vysshikh uchebnykh zavedeniy. Matematika,
no. 3, 1961, 116-126
TEXT: Let 11 be a finite domain of the n-dimensional space
x = (x ll ... t xn. ); S -- sufficiently smooth boundary of SL . Let
6'-,f(x) be a (2k + 1) - times continuously differentiable function
in + 3 for which
Alf (x) < t(x) < A 23(x) (1)
where ?(x) is the distance from x to S and A,, A 2 are positive constantE6
Let u - U(X) F W(k) (A) (0 4@o& < 1), if u is square summable over -.fL
2, oL
and posses6es all generalized derivatives of order k in R. where
it holds
Card 1/8
26461
S/14 61/000/003/001/009
On the first boundary value . . . C11IYC333
n
D(k @U) ku ik) I (%0t'dx < + co (2)
01- X. ... ax
ill...,ik2A
Let
lull U.2dx + J)(k) (u) 2 (3)
W(k) 60-1
2, ob .4 1
Assume that the subdomain A (S>O) of-fL consists of the points for
S
which 9(x)> E. Let Sr be the boundary of Let fop f19-9 f
4 -11-s- k-1
be functions defined on S; v = V xI is assumed to be unit vector
of the interior normal of S in xleS. Let
ue W(k)(f), if u 6 W(k) (IL) and if it holds
2,a-1, 2,ob
C ar d 2/9
On the first boundary value . . .
'a JUIS - fj (i - 0919-0 k - 1),
09 i
26461
S/140/61/000/003/007/009
C111/C333
(4)
where the equality ul, . f is understood in the sense of u ISS -> f
in the mean for CF-40-
Let the Sobolev spaces W(l) be defined as usual.
The boundary 3 of IL is assumed to satisfy the conditionst
a.) B can be covered by a finite number of overlapping surfaces
dq where each of the surfaces 6 has the equations
x1 xl(ll,--., In_,) (1 - 1,2,...,n) (6)
where x,(tlf ... I tn-1 ) - xl(tQ are defined in a cube r of the space
of the t' = (ti'...' tn-1); b.) there exists a S> 0 such that for every
Ca=d 318
26461
S/140/61/000/003/007/009
On the first boundary value . . . C111/C333
a = 192tse.9 q the equation
x - x(t,) + V tn (7)
defines a one-to-one transformation of SLS onto the rectangular
parallelepiped M s : t, e 9 S, 0 4C tn< 2S (fL,. consists of thoss
points of A which are in a distance from 6' s smaller than 2d);
c.) x(t) is k-times continuously differentiable with respect to
tl,..., tn and t = t(x) with respect to x 1.... 9 xn-
Theorem 1: If u G W(k)(,CL), then u possesses all generalized derivati-
2pO
ves of orders 1 < k in where on each sufficiently smooth mani-
fold r of t.1je dimension m > n' - 2(k - 1 -oQ the derivatives D1u of
the order I are summable in the power
2n (io)
nl-2(k-l:g)
Card 4/9
26461
S/14 61/000/003/007/009
On the first boundary value . . . Clll%333
and
DIU 11 Lcl&(r-) < C k U IW(k)
2,oL
holds, where C does not depend on u.
Theorem 2: If the class W(k) (f) is not empty, then there exists a
2,d
unique function u e W(k) (f), which gives a minimum to the integral
(k) 2,W
(2) in the class 2,c4 M. This function is 2k-times continuously
differentiable in A and is the single solution of
n
,ak CIL kU
2X ax. JX CIR
1 k k
k
Card 5/?
26461
S/14 61/000/003/007/009
On the first boundary value . . . C111%333
in W(k) (f).
2,oL, W
Theorem 3: If u 2,oL, then the boundary values of its
normal derivatives of the order j_-e- n - 1 on S belong to the spaces
WN )(S) with k - 1 - 1+04 . Here it holds
2 2
@ju 0 11U 11
99i W (k) (.fl,)
W 2, c(,
2 (S)
where C does not depend on u.
Theorem 4s Let f :W (TO(S) 0,1'..., k-1). Then there exists a
je 2
function u E W k) (A) which satisfies the boundary conditions (4).
Here it holds
Card 6/9
26461
S/140/,61/000/003/007/-009
On the first boundary value C111/C333
k-1
114 < C f j (29)
2 2
where C does not depend on f
Theorem ' x class W(k) (f) be not empty it is ne-
5: In order that the 2,,4
,_W (I
cessary and sufficient that f ::::@ -@)(S) U k-1).
2
Theorem 6: In order tAat the boundary value pro@blem (5), (4) be
sclvable in W(k)(_Q )it is necessary and sufficient that
f W(V;j ) 2,c@, "
2 (S) (j a 0,1,..., k-1 - If these conditions are satisfiedt
then for the solution xA = u(x@ it holds:
k-t
C, 11fill tj@