SCIENTIFIC ABSTRACT SILONOV, L.N. - SILVA, K.

Document Type: 
Document Number (FOIA) /ESDN (CREST): 
CIA-RDP86-00513R001550610019-3
Release Decision: 
RIF
Original Classification: 
S
Document Page Count: 
100
Document Creation Date: 
November 2, 2016
Document Release Date: 
August 23, 2000
Sequence Number: 
19
Case Number: 
Publication Date: 
December 31, 1967
Content Type: 
SCIENTIFIC ABSTRACT
File: 
AttachmentSize
PDF icon CIA-RDP86-00513R001550610019-3.pdf2.13 MB
Body: 
! ~'oV A I N,J4.; LT~OVFKAYA, N.F.; SILONOVA, G.V- Study of the mechanism of activating action of adenylic acid on the phosphorylase B in rabbit muscles. Biokhimlla 29 no.5- 936-944 JI-Ag 164. (MIRA 18ill) 1. Institut blokhizdi Imen! Bakha AN SSSR, Moskva. -q~WNOV) L.N. Some tunnel diode circuits. Vych. tekh. no.4:5-12 162. (MITU 16:6) (Transistor circuits) (Tunnel diodes) Oct Illidtirical 2quipment Turbogenerators OTOo Cases Frcm Practical Operation of Zlectrical lquipwnt,* N. I. Silonov, XW, i p w=ok Stants' Vol. k=, No 10 Describes (1) breakdovn due to Independent excitation of turbogenorator,, and (2) opwation of generator with a damaged exciter. 10 - - pi,-,r~ Zvtrilov.-A peat --tztion. sta. SOS Monthly List of Russian Accessions, Library of Congress, "uly ly, 2 xTM Uncl. ntric 1,intE i tj ona I (I r,,tj ~)n ',*,-,-- t!ffectiv?nc-.-;,,~ of ~Utomqtdc rttclosirii; of tl,-~ctric linz--. -'lek. stz;. 23 ijo. L ft';~2) SO: Monthly Liat of Russian Accessions, Library of Congress,, August 1952 x2)M awl. Kiev D i1 063 on Aor.; Metalr, compounds, and allo s A. r l/ SGURC'_-1': Atomnayu energiya, v. 15, no. 3. 1963, 266-267 ACCESSION NR: AP3008085 P. A. Nedumov,. V. K. Grigorovich., Use of the tungsten resistance thermometer for contactless thermal analysis at temperatures up to 2500C. A. Silonov. Unit for determining the evaporation rate of Ta and W on-a microbalance for continuous weighing in vacuum. V. V. Fesenko, S. P. Gordiyenko." Investigation of the composition of evaporation products by the mass-spectrometry method. V. V. Fesenko, A. S. Bolgar. Evaporation rates and thermodynamic properties of Ti, Zr, 11f, Nb, and Ta monocarbides. G. S. Pisarenko and others. Hechanical properties of refractory materials in the 20-3000C range. V. I. Ivenson, D. N. Eyduk. Laws governing deformations. L. Kh. Pivovarov, A. V. Varaksina. The.6ffect of bonding phase Card 8/11 SILONOVA, G.V.; LISOVSKAYA, N.P.; LIVMIOVA, N.B. Vacuum-evaporation apparatus for rapid concentration of liquids. Vop. med. khIm. 10 no.41434-435 JI-Ag 164. (MIRA l8s4) 1. Institut biokhimIL imeni, Bakha AN SSSR, Moskva. '.'.ODINTSOV, B.; ZAYTSF.V, I.I.; SIUCUVA, H.S.; TF *!,'*,'i'[(;Ii, D.P. I New standard for p arning the production of foam rubber goods. Kauch. i rez. 23 no-408-41 Ap'64 (MIRA 17t7). 1. Nauchno-issledovateliskJy institut rezlrov)th i lateksnykh izdeliy, 7_ jrP7-66 -T L ~ 69M;~6i NRt AHP55%0026 2 SOURCE CODEi -UR/0286/65-10-007(jig-/6W97(~569 41" d4;~( AUTHORS: Silonova, M. S-i Trofimovich, D, ?,I F.030anskaya,11. T&A" xvdainant N. Lej ORO: none TITLE: Method for obtaining sponge rubber. Class 39., No. 175220 announced by Scientific Research Institute for Rubber and Latex Products (ftuchno-issledovatells institut rezinoyykh I latokerykh isdoU47 VISY SOURCEs Byulleten' iz0brstenV I tovarnykh znakov, no. 19., 1965., 69 TOPIC TAGS: rubber, sponge., gelatin, gelatinization agent, catapin, latex ABSTRACTs This Author Certificate presents a nothod for obtaining sponge rubber from latexes, using secondary gelatinization agents. To Improve the -arr-wtur the sponge# ostapin in used as the secondary gelatinization agent. SUB CGDEt IX/ SUBM DATIs O%ar64 UDGt TOKARZEWSKA, Maria; SILORA, Bronilslaw Redispersing co,-)lymers of stMne and methacrylic acid. Poltmery tworz violk 9 no.,lOs425-431 0 164. 1. Research Laboratory of the Chenical Works, Oswiecim. USSR/Ciiitivat.,.d Plants - Potatoes. Vegetables. Melons. M Abs Jour Ref 2.hur Biol., No 18, 1958, 821053 Author S i lo~~V. ~Ya. I-., F ..'t Timirrazev AGric -1t ral Akademy Tit.Le Theoretical Basis aiid Experime,,tal Data o:i Hcati,ig Hothouses with a Steam-Air 14ixt,,re OriS Pub Izv. Timirynzevsk. s.-kh. akad., 195'!, No 2, 111-120 Abstract Accordi-ig to the data of TSIWk Veget-,blc Experineatal Station, the priacipal advaii-tages of hotho,.ses heated with steam-nir mixt,.irc are : tilizatioa of heat wasta Li tAe for,-i of steam -:'.der a pressure of 0.7-0.5 atmospheres, a coiistant moisteaLIg of the soil, at.s raice of a uiiform heatitg withiii eaca botho--se a-.d the low tuTer3tare of the heati;19 PiPes (50-570). -- M.N. Mynzdrikova Card 1/1 - 41 - ! . I . . .. ... ord r," , Tm,: ~ ) iie f t . , W1,10C :)-L r-; I . I ,int,. rall :,irv~-:n .,I' ', f " t i i,! . " 1 , ,:, t) Cf. F. Clit a theorein AL Golfatuf and Its gener- PoIAs(Ty Akad. Naid. S-,;R (N.S.) 72, 641- l'I't r bc a i~i-w ralizril nilpotoit kinctit. in a normed ring w:(h iflolllitv Clellicilt C .11141 Ict X-C-Y, (;dhiid [Rcc. Math, [Mat. Shomik] N.S. 9(51), 49-50 (19,11): thc-se He%% 3. .36-1 provcrl that. if '1r Tr 7-- ft I-listlfict- primary ie eals 11, - 14,-' where Ij i,; gene zated by- I ". S.,A. 3'0, M fif) (10-11); th-e Rev. 5, .01 improved this Motuciver. the element (X-X(A1,,)W I is Will- I,- fill by rtpl-irin;~ 0(l) I-,%. r,(t). S4ono [J. Indian N11--ith. 1,ainccll in. every pimary ideal o--- R4. [I'lik Idst. statintwilt is only implicit GvI(and*9 falwir.] As ats illusim(i9ni. I It- 1 4 ~;llt fill 111,1- 1)). ill%: I kkt, A liuve -~~ary 1111*41 stuffirient ('0"Sider tile rwse I hy StIllir rind lv.t-,Ro be the I itli"; IN generated b fr,,t- Y"',10 (ru-p. is that ct,,~!Od, " .) I (1) for k-N+2. Furthermore, Ro his a uniine maxiniall thm tho- above residisare r(intained lit (lie followink, theoreill ideal Mo. X(Ara)-I, and Ilie zc-o ideal is printaiviii Ro. I (if Gc1fand Math. [Mat. Sbornik] N.S. 9(5-1), 41-41 It follows from the last statement of the Gelf-tid theorem (1911): Hcv. 3, 52-1. LO. R., lie ;I nornied ringgenctated that y"'41=0. Thc care cr.=o(j~tl") is liandil"I 14111ilarly. fly y arid x--', and for q, ~~ !1x, 11 a5sunic The paper also coitains an example to shf1tv (Ilm th". co;l- dition a.-O(I) fcr positive n is not 311flicivist for lite! first (1) fins lim (l-r)1ia-.r1-O. Gelfand result. C. E. Rickart (New 11.1vett, Culln.). 'I*Iirn Cach maximal ideal AACRo contains at most k-- I Source- Hathpitlatical Reviews. Vol 12. N a 2 DUOV ty. ib. VIA rUXJnB 91 AUXICUons W= UnUuLJU CQn-'%.=;I' U ~~ gurnal 3, 40"11 '(1951) Terg-ence. LTkmn. at. (Rusoan) * f the' im roakt t bli h l t fi h h es a s es a s a o rs e gene or w t au T p ex form of the Stot.i~Weierstrass themen. H. compl StoneAlath. Afag. 21, 167-194, 237-254 (1948); these Rev. I 10 255J, as followiL Let C(G) be the (complex) Banach algebra of all continuous complex-valued functions on the Mathematical Reviews compact Flausdorff space G, with the usual algebraic opera- Vol. 14 No. 9 tions and norm. Let L be a closed subalgebra of C(G) October 1953 containing all constants. Let A be a closed subalgebra of L Analpis such. that x t A implies I i A. The equivalence rtlation on G such that ti,il if and only if f 00 -f (12) for all f C A I obviously dissects G into disjoint closed 8Ct3 T. For every i such r, let J(r) be the ideal in L of all functions in L whichi, vanish on r. There is an obvious and natural isomorphism I carrying the difference algebra L - Ar) onto an algetOw-of I functions defined an r. The generalized Stone-Weierstrass titeorem asserts that if f t C(G) and if f agrees on every r with a function in L-J(r), then f t L. For L -A - C(G), this is exactly the Stone-Weierstrass theorem. The theorcri isapplied to prove the following result. Let C be the algcb, t C(Izl;g 1) and A the closed subalgebra of C conS13tIIIF.Uf < I. Let 14. Z I be the functions which are analytic on lit. . the smallest closed subalgebra f C TI) tL.n.ng A and the aid to be t S I i 0 i d b i Z A I f r s s . nse au se unct nfl-I f t rea admissible if S has void interior and for A to non-O, .4 1 < 1, there is a continuous -urve running from S4 to 31 - I which does not inter: ect S. Then it is proved that I 1 I A, Z I - C if and only if all sets of points equivalent under the &~t of functions Z alp admissible. This generalizes a theorem attributed toligigi&IMoskov. CA"UnIv. UEenyt: Zapiski 145, SLr. hfat.-.3 (1-9-V9) (unavailable)]. Silov G. V_ It; P.Fe 0 C 6, no. 1(41). 91-137 (1951). (Russian) 'J The present paper presents another chaptcr in thicaireaciv 0 .E extensive theory of commutative Banach al;;eb.-:!-,;. Thc r5 paper is divided into six ��. whose contents may be suni- rnarized as follows. In �1, certaiin e~_-~!ntial prclirrum~x!_S Irl~ described. Let G be a. compact Abelian group, iadd;tively, and let L be a complex Banach spac2 ~"Vh"Cn I may be a commutative Banach a!g gebra or the rcm,-.!L~x number field), with norm denottA by Consif-1, er Plex Enear s,ace R of L-valued cant;nuouG funct;o-s oz, _ddition and scalar multiplication beir.,z; defir.Ld pGt'nVV'-"4- ". Suppose that R admits a norm, 11-11 which -teed h,~ve no connection %with the norm 1-1. SUIpPOSe fil!-UhCr tl-,-,~ tur' 7:~ -traas!atc r(!+A) belon;:-. to - and f,:)tR and ~rG, the t.~Lit for all ~rG, th,~re exist,., -L constant C% CChat For :III frP. Such a S1:1111~1 or 11 L-valued uric6ons is called a space 01 IU:!c- tions. N convergence in the norm. ti-ji of a _~L-JmaetncL 1 jj,.(i)jZ_j implies tze convergence in oF I-! I'D- 0.1ch 'ixed Itc, then the operator "'*'11)-f(.'+~) is nc~'arilvtl bounded. A hinction f(I)ER is H for! ghborhood 117(0) in G such that every e>O, there exists a' ntig iniphes The author ifirst proves Oj U~at every homogeneous space of functions R which con- 7 , , s rn u S. tains a dense set of trans Lation -con tin u ous element t ~ ~u nctions (a) consist entirely of iranslation-continuoua I and (b) admit a n' orm 111,111 equivalent to ffif(t)III for all heG. For the case L - the corn- dense set of continuous ple_x numbers and R containing a ntinuous), characters (which are obviously tran-station-co assertions (a) and (b) apply. In �2, a homogeneous space R of L-vallued functions is considered which satisfies (a) and (b) of the preceding paragraph. The L-valued integral JjMdl (at reprmnting Haar measure on G) exists, in any of a number of sense3 for all feR. Let X-N.l be the character group of G ~h, ath Fourier coefficient C.(f) of feR ;s defined as ff(t)~~(_Odtt I)rR. A and is an element of L. it is proved that C.(I)x.(. brief proof is then given for the theorem of Bochner and von Neumann generalizing FejWs. L%eorem on trigonometric series Crran& Amer. Math. Soc. 37. 21-50 (1935)]. whkh shows how f(t) can be reconstructed from the elements C.(f) and the characters x.(1). A comllary is that C.(J) -0 for all a implies f-0. Alw, the Riernann-Leb"gue lemma is gcne--alized by shcrwing that for every e>0, only a finite number of the elements C.(f) have norms exceeding e. The oontents of 13 am Oken in toto from an Carlicr treatiseby theauthor [TrudyMat. Inst.Steklov2l (1947); these Rev. 9, $961. to the review of wlikk we mfcr for terminolosly not explained here. Mao- (to a aim Met*4 In kftfetllOr URI at t ear ---.f*J dillirtatial Ca a) 'Storm Akat! Nalu Ak au ssmz (,V.S.) 102 (1955j), 1065-1068. aires: soit S(u, P; A, b) Yespace dc s fonctions inddiniment diffdrentiables sur R (z, 11, A. B positifs) tel- les que pour tout s, 6>0, i1 existe N,,d(r)