SCIENTIFIC ABSTRACT RENTSCH, W. - RENYI, A.

Document Type: 
Document Number (FOIA) /ESDN (CREST): 
CIA-RDP86-00513R001444620013-6
Release Decision: 
RIF
Original Classification: 
S
Document Page Count: 
100
Document Creation Date: 
January 3, 2017
Document Release Date: 
August 1, 2000
Sequence Number: 
13
Case Number: 
Publication Date: 
December 31, 1967
Content Type: 
SCIENTIFIC ABSTRACT
File: 
AttachmentSize
PDF icon CIA-RDP86-00513R001444620013-6.pdf6.58 MB
Body: 
i. "The Ap,r I.-IL,.-Aion of Ic.,Iern E'lectroni, c la thcAs in ldn-inc . 11 3, 218-21 (1-ay, 1953) %, Ab.dl~,~ 1~;,16 7 1 - ju: j I . j sac~ioll B, ;"lect.rical ZngIne,,ring Abstmct',r,. 1:953), UnclLISS. S/194/62/000/005/150/157 D271/D308 ,WTHOR: Rentsch, V1. TITLE: Blectroni-c apparatus for storing and re-transmitting pulse sequences 1) ! C,.D DC A L1Iefer--_-.tivnyy zhurnal. Avtomatika i radioelektronika, no. 5, 19062, abstract 5-~-275 f (East German patent specification, class 21a , 32/01, no4 21151, 14.4-1961) 1 - A store is patuented in which the initial instant of informa- tion rc-trieved, pulse repetition frequency and intervals between pulse groups can be varied within wide limits. One cold cathode tube is used for storing each-pulse sequence; control of pulse storing and retrieval is performed by a circuit with cold cathode tubes. The X start of pulse sending is determined by the controlled ignition in- stant of the tube which governs the pulse retrieval. The interval between pulse groups which are sent out is det-ermined by a tifne circuit, and pulse repetition frequency is determined by the frequen- cy of the pulse generator. A-re-set tube is provided which returns the store to its initial condition. The circuit is shown for the Card 1/2 S/194/62/000/005/150/157 .'"Electronic apparatus for storing ... D271/D308 control of two sent-out pulse groups, with arbitrary repetition frequency and interval betwe6n groups; -this circuit is intended for long-distance telephony. Dekatrons are used as memory elements; they. are not-I shown in the circuit. [Abstractor's note: Complete transla- tionj. C a Y, d 2/2 JINDRA. A.;IMNTZ, J. Ion exchange chromatography in the determination of sympathomime- tic amines. Cesk. farm. 1 no. U-12:625-630 1952. (CLKL 24:1) I*P Of the Institute of Pharmaceutical Chemistry of Charles Univer- sity, Prague. I 17 Deft'"'otmatlem of Socal ameethatka by ton exch-n v. A. [IndrA All'i 1. Refits (Charli., I'lliv., Pragile). J. "Injument of allesthetici (20-60 nil.) is admirlied oil a column of 8-11) g. of Arnherlite IRA400 ftorn soln. in 20 nil. of a euixt. of .11,0 A, and 95% EtOlf 15 ml.;Jam! the Wvm are chard %ith 41 t 30 nil. of hot RtOH(96%) a itrat"t with 0.1 N ll(T I'lic nivilimf 14 applied Sucem4fully to primidtir. laiwame. filk.-Alle Itillylotmille. alliclif.knkille. MW '11- vahir. froul tile thnwrtical c-nitent les. fliall I'rtx-.Iifjc4fcl "intolent if vild. With hol 11,0:1?tOlf(l:l) and the cit. pas-rd th"Igh the collifill, ;%4 al-mve. The rvult~ with 2-g. sainpirs (40 nilt. of mitilml ~ III-re 115~ I and 141.07, of tile tile4wrlical collell. The plu'. ,utv otf all rimtrolyte k a tlWurbing bet4w as the 11,0:- FlOll -111. 6 "Hire lmie ~Ilrfl the llll~vu 11'.. 1.V11 f- snowd. Cf. jindra and Pollorsky, C.A. 43. 72"A. S, W. Ooldq~ri.s of schjlcht furic 'Iir~o i.On the coefficientis 0 e C+ 'Debrecen 1; 1 M-23 (1949).. The auifioi~.-I~oWs that th~ Bieberba~h conjecture I tz~ n=2' ncti6n~ (1) j~i u ' - .:,g3 A. schli6t'for IzI -:,'I'I'~holds-~ or ~;regular ;in sp-cial c1 ' 1 -stigated This class, firs-t inve .0 f schli~clitjundions~ ro [$~~;~Ann AL-id. Sci.',Feninicae!-Ser.~: 37,'no- 9 1 C; :(193Y Q~~i~tz,of those schlicht.. unctions, ~wn)c Tnap,'. ' tbei urzit:ciici~ 6ri'wdoma!40'~of:b d i6tidodq_ ir pup ary.: i.e c 'j, 2) T is'', end is:.accoMpIv~hed h P. ' ' ~ 0 Ie mn , 'th~ Aornain G- is t e, limit .,o omain n~cx ini one h t at di ion. F~r`-,6~ clq f f ss o . unctions convt~x irect * ' ' . ' , dr, 6,chonjtdiuir~ i~iis` irlier:shb~vn e le, lar e th 3 b [se S., Robertson; Am - I . pe.r,e te I 6`rja. 11-9 obt~~ a case'a - r: a s iar c.-d. stima 2ir) 3 vAuch,is'-harp for cc=27r.,'(~onVc-.%, ~furi6ti6ns).biit fiot',for , 7 sh6dIc re-a ;F=eXp 11., S. Bru'fisvick~~ Tw AXI 2M .;a me. 'IsuraDle set or-positive nicastire,-Let jgkj Dejfte sc-:- f p'ar6a'I's'u*ms of t46~ f s','nortuahzeq,in t e.*usu. ::q Uance o t iat d46 f 'g~ ar6- e. mean an e variance.6 cac ic ftuthor.i .nverge-to is':t~~at if'tli~ diArihiii-ion funt.,tion's, 6, t (ne~essari ze ~~Gatissi n dj's6ibutionI:' 1110t, -a 0 t A~ F rib tipri.4:6f 'g s~' 'the T~IdtiV6 onseq ences, of me; 6rifi: ~Fr6ifi JV 1% -:7- nc conc u M i iltion; fii tioiis - one ~ ITI P R Ilalqb igence r Mp-( Vol 4 _0 ~A . .... ... . . C41. kfAyjAj and Atzfl~j.: ft composed Poisson djj9jDzjj;WS=-t-I Ac'ti. MatF, A&d. Sci.: HtinpF.,,.1, '' .209~~224 (1 ussian'sum ;iry) 950j_,'~tnglish R i in .~.Let,.X(I).b~l~ stoAasbc,p:roces� s6di that (1) Y iluii%+ ~2)`fh~, in ts, sumes on ynon~negatjve integra .v. cremen . 't ., ' . , _- ofx(l)+6i~ri'setof rion-ov'eilap,ping''t,-inte-rVals a-r*emitually ' e7:, i s in ' ' wd6f:oti rcumstan Aistrib~qiibh~ th 0 Undeithek8 ces, e - , "d: : is. there Ore.'. X(I is given"by ~an infinitely , , .[Cf..P,`~,Lkvy '. Th4oneT.:.~: comOosed Nss6ri'diit~ibiiii6n. ' 0 Gii~thieiNlilla esa toxres~, J_j . I ~ 11 1 1 1 1, 1. 4937,'.-c aptcr;, ar4~-:app'a-rentlyi.tinawiire,of~;.' , p es diie~'qtly':' A e -ning, ite Perta. wi olui'usin'g"'t~:~e'a"d,~,~ia~ii~i~s~li-In fro m'',theuseof""" I genemting I 11 - . - -, I _1 - 1 : h ~ ~ ~ . - . . . th ih~ i ext; se~ti6~ ~tiie~v Juhctxons;? n, n ~c aractenze~ eir,proc. .. _' C) ih - ose, escn )yin istri utjons.',,r,,.- d `fihit~l:~ cli:6~ibk d,- -b WI f * h n~ t in' isis,essent ter a e t t t m s , r i en ia y, io o e argu m o pe '' ' ' i - , , ", _ g' introduce.th6, generating.lun haf,the~aiii ~jj6n~, 6(ceoj, +t tho r superfluous -cc not- riedessary,~ o, assum once of all~,~ the,.' . ,au h utions areAn. nite y-: " ivisible ; Wth6tigh diis rtyis usiia yiniplie in., d eirl,~ de qj~tion. W Felui tfier"a tics 1R6viewi~ ,-Elirll' '-t. "The -;',,asic Theor7 ai" Frobablh~ty.ll p.227 (WDISIaTE,~'I P,L' T~t---'ATajj T Vol. 47, no. 1, 1950/51-1951/52, Sofiyzz.) - - li East European / Vol. 3, 1~'o- 3 1954 SO! Month List of Rwm~~m Accessionsil, Library of Congress, 1',~arch Ift, Uncl. _7 7~ n 0 4=6 it -:060rulill UB66A n Alf) 6&. 11 --- -~-73 -rim 2i 6 roce! -of the 766 Pohs~on - p SS is -dirivid .-from postWates: wal Ope.-- It ii,sh -thatlf ivety,event iii a -Pokson-, U! own _ _b 'd prpcesss rtingattimeo' 6 'Ai f di _ 3s e irt q an in m ualwhom:, h 'd ith7 is 6~8__ h, life is a random vana e d wi pn w x may- i -of -indi mi bi num r pe inent of bi 6:6 nd on th e , , e I p str vidMls alhie at:tim has a oissou di ibution C DOM UrDanaF 7 7 - , 'd r -Sourcet Ila 0 71 _ K. i Y C, f th 'S id on th imple, Fiblds: iii Ahe Eu Irda-p en q: SURAN -. S, pace ' ' d Re~ C., 6 uiAg&jt:~ url'in46pqndaq~e, ~s RfpXIAV ' simples6 s~llespaccE~elidi6~A?idim~nsidns.-,- dornalnii ColloqWum' Mat i. -2,13&~.133 (195i a I no rhe sets to f arq.~ h, PI is ierq v~~ citll~~ I Th --40116M6C b or its -comp pre proyed- t, corenis - T F-1.1 , -Ib4 (A) For eabb ii~~; I the inclundqpum . -q open'ti- im" en n sional I n j~-4 -~c6 iE(-) js,~~.:; ?z= the, Euclide, b - maxt- C~. mum n . is. jf+ f ~ I""" *1 (Q,Jf-)V(k),,fs the maximum num r o po ygofia-l': "d d A ojxn convex in open enk.,ornainsin ep'lane'jea-c4poly'gon- 'th' havii:ig : Sk sides; en linjj~..'W(Wlbi k - . -~ --J-L D66 I~artii;, lib.' :(ur So~rca t lfathevlatical. r0i Raviewaj~ ,IET,fl, Alfred r~d, Remarques conc'ent" un tr&W do P.1 e Glisph - Magyar Vud. Akad. Alkalm. GOM Mathematloal Roviews t k6z ~hlat.;n 1. 1 (1952),393-397 (1953). (Hungarian . Vols 15 Ilos 2 Russian and French summaries) Feb/ 1964 Le travail' contient que1ques remarques mathiniatiques Numerioal and Gr&phioal en connexioh avec le travail, Acta Phys. Acad. Sci. Hun- Methods garicae 1, W74 (1951) [ces Rev. 13, 993]. Risumh de Vautedr' Jkthemtioal Re-dowis Vol* 14 Noe 8 Sepbe 1953 AnalywIs W/W. A- n. RE%eln-vi, A. On projections of probability istributions. h. Sci. Hungar. 3, 131-142 (1952). (Russian summary) The following theorem is due to Radon: Let D be a 6unded domain, and f(x, y) a continuous function defined it, it. Assume that 'tile integral of f(x, y) vanishes along Omry chord of f (x, y); then f (x, y) is identically 0. The '111thor first of all points out that Radon's theorem follows from the following result due to Cram& and Wold: Let 1 P(x, 3-) be a distribution function. Then F(.v, y) is uniquely! (lPtermined by tile values of its projections on all the strdight lilles through the origin, i.e., by the values of the integrals. Ft. (P) dF(.v, y), ff x coi p +y sin rip 101ere tp denotes the angle between the'line /,and tile X-axis. 7- The author then-gives Haj6s's proof for his conjecturc: A discrete mass distribution consisting of n distinct mass points is Completely determined if its projections oil n+1 arl)itr.ir)-ififfvrei)tt;tr,iiglit lijivs I brough ( lie origin are given. The author points out that lhis Ilworem N best po4sibl(.-, i.e.' 11+1 mount be replaced by it, ful-011.1" lie (64cussics three-dimensional generali7ations. The author further raiseq the follpwing problem: Put Ax. A - 1/7r 0 - X2 - v7)11! ft,r x'A-y2 < I and f(x, y) -0 for xl+y'g L Then cleark the integral off(x, y) on evvr)- chord of the unit cirrIc is 1. Is there anx. other curve of CoUsU1111 breadth for which there cxists a function f(x, %-) WIIOSC': i.a tegral is constatit on every chord ? 11. Erehis. ~, Ra!n24L- Alfrdd et TakfLcs, Lajos. Sur les processus... Hathematioal Reviews dlo~v6nernents d6rives par un processus de Pais'son etsur-'5- leurs applications techniques et physiques. Magyar Vol. 15 YO., 3 Tud. Akad. Alkalm. I'viat. Int. K6zl. 1 (1952), 139-146 Ma-ch 1954 (1953). (Hungarian. Russian and French summaries) The first autlor proved earlier [Publ. Math. Debrecen 2, 66-73 (1951); Magyar Tud. Akad, Alat. Fiz. Oszt. K6zle. m6nyei 1, 202-212 (1951); these Rev. 13, 51, 958] that the. number of happenings inaugurated by the events of a Poisson process forms also a Poisson process. A new proof of this theorem isgiven which is based on a limit theorem, for Poisson convergence of sequences of suntg of random variables. E. Lukacs (Washington, D. C.)., L PENYI-, Alfred Mathematical .--,rlewn It6nviy,Alfrod, On a con~ertijre of H. SteinhauH. 'Ann. . - Vol- 14 40, 11 Math. 2- ( 1,, 1 52), 270-287 (1953), 9 Dec. 1953 A countable fam-11Y n r of bounded measurable funAioni'--,,3, Analysis h on the unit interval is called ma-cimal whenever i1 ere. exists a m6asurable set Z of measure zel-o such that ir X, (y) for till, nt. then.--,;,f~ and y do not belong to Z and If fin(x) = f . in ihci~al theorem of the paper asserts that If x The pr' ' ni then (9) the set of all finite produqts of, Is maximal Is i 1 The te in L' m l ti I t f the v Pos i, ~ s co e powers o . p t to h tic d t 1l d At t ith f am y s ac as a e ura e respec s (w indepen ence) if it is stochaptically independent but is not any other stochastically independent properly contained in _ ie ture of Steinhaus (rererred to In the title) set. ' The was that if is saturated, then (r) holds. This Is dis-' l ved by a amily of one termi 11M x or laccording as a. ne connection 'hetween Steinbaus' or _J0, 0 if Y:5 0. Here a> 0 is an arbitrary positive constant while D (z) (2 r).-I exp Atl]dl, an 4 I)k )= E- L( r (2k + 1)-71 z exp V k-0 2k +I L 8.,;2 Tables of L(YEal(I-a)II) are given for y=0.1, 0.5(0.5)17 and a=0.01(0.0l)0.l(0.l)0.5. Asymptotic probabilities for ' a of relative deviations over an interval (a, b) the supre with O