SCIENTIFIC ABSTRACT MARCUS, S. - MARCUS, F.
Document Type:
Collection:
Document Number (FOIA) /ESDN (CREST):
CIA-RDP86-00513R001032330009-0
Release Decision:
RIF
Original Classification:
S
Document Page Count:
100
Document Creation Date:
November 2, 2016
Document Release Date:
June 20, 2000
Sequence Number:
9
Case Number:
Publication Date:
December 31, 1967
Content Type:
SCIENTIFIC ABSTRACT
File:
Attachment | Size |
---|---|
CIA-RDP86-00513R001032330009-0.pdf | 6.31 MB |
Body:
MARCUS, Solomon
-------9Ya-tionary ensembles of the finite or in-finite derived functions,
Comunicarile AR L~ no.4-399-402 Ap 162.
1. Comunicare prezentata de academician M.Nicolescu, membru
al. Comitetului de redactieY "Comunicarile Academiei Repu-
blicii Romine."
MARCUS, Solomon
On a theorem of A.S.Kronrod. Gomunicarile AR 12 no.3.287-
288 Mr 162.
1. Comunicare prezentata de academician Miron Nicolescu, membru
al Comitetului de redactie, "Comunicarile Academiel Republicii
Populare Romine."
MARGUS, Soloman
On a problem set up by O.Frink Jr. Gomzdcarile AR 12
no.3&281-286 Mr '62.
1. Comunicare prezentata do academician Miron Nicolescu,
membru al Comitetului de redactie, "Gomunicarile Academiei
Republicii Populare Romine."
MARKUS, Solomon [Marcus, Solomohl
On a logical model of elementary grammatical category.
Pt. 3. Rev math pures 7 no. 4:683-691 162.
MMUSP S.
Some aspects of mathematical linguistics in the So-Aet Union. II.
And-lele mat 15 no.4-:3-34 O-D 161.
(Mathematics) (Russian language)
(Bucarest)
On quasi-continums functions in the sense of S.Kempisty. Coll =th
8 no.1:47-53 061. (EFAI 100)
(Functions) (Topology)
MMUS, Solomon .. I
------
Description of awe morphologic phenowna with the aid of
the theory of owembles. Rev math pures 6 no.4035-71A
1610- a
MARCUS, Solomon
Linguistic structures, and structures in topologY. Fev math pures 6
no,3:501-506 '61.
M&RCUS, S.-(Bucarest)
On a descriptive property analogous to the N property of Lusin.
Col math 7 no.2:213-220 160. (OW 10:1)
(Aggregates) (Functions)
HARCUS,.S.; VASILIU, En.
Mathematics and phonology; the theory of graphs
of the Rumanian language. II. Rev math pures 5
(Mathematics)
(Gra=ar, Comparative and general)
(Rumanian language)
and the consonantism
no-3/4:681-703 160.
(EEAI 10:5)
MARCUS, S.
Synthesis of the functions of bounded variation. Rev math puree
no.2:375-382 160. (KFAI 10:9)
(Functions) (calculus of variations)
(Integrals) (Topology)
HARCUSO S.; VASILIU, Em.
Mathematics and phonology; the theory of graphs and the consonantism
of the Rumanian language. I. Rev math pures 5 no.2;321-340 160.
(EFAI 10: 9)
(Mathematics) (Rumallian language)
MARKUS# Solomon[Marcus, Solomon]
On a theorem formulated by A. Lindenbaum and dewnstrated b7
W. Siarpinski. Rev math pures 5 no.1:103-105 160.
(EEAI 10-9)
(Aggregates) (Nwbers, Theory of) (Functions)
MARCUS, S.
-- -- On the superposition of two integrable functions in the sense of
Riemann and on the change of variable in the Riemann integral.
Rev math puree 4 no.3:381-389 159. (EFAI 1039)
(Functional analysis) (Integrals) (Riemann surfaces)
(Transformations('.qathematies))
. Doklady Akad.gaulc 112, 812-814 (1957) CMW 2/2 PG - 068
and if they are continuous in all points of D in every variable, then they
are identioal in D.
For n o 2, D is the product of certain intervals (X,- If x 0+ i) and
(yo- I q YO + 1 ).
p p
INSTITUTIONt Math. Inst. Acad. Rumanian Republic.
SUBJECT USSa/mATHMWICS/Thfiory of functions CARD 1/2 PG - 868
AUTHOR MARKUS S.
TITLE, --'0n--Tu-u-aTfcns being continuous in every variable.
PERIODICAL Dolclady Akad.Nauk 112, 812-814 (1957)
reviewed 6/1957
Theorem ls It exists a function f(xF) being defined in the unit aqu=a P,
vanishing on au everywhere in P dense set 9, being continuous in P~Z, with
respect to every variable and being not Identically equal to zero in P.
Theorem Z:. Let f(XVY) be defined in Q and satisfy the following conditions:
1) f(x,y) is cont-inuous in x in G, 2) it exists a set 9 CG being everywhere
dense in G, on which f(X,Y) vanishes, 3) -&(x,y) is continuous ir. G-9 in y.
Then f(xOY) - 0 in 0.
Theoram 32 Lot f(7-97) be defined in G, lot exist a couplement of a set of
first category ECG such that f(x9y) a 0 for (x y) CEO let f(x,y) be
r
continuous in G-E in.every vakiabla- Then-f(M.Yi - 0.
Theorem 4: If the functions of real variables f (x1 .... 9x.)' 9(xll ... Imn)
being defined in D are identical on a set 9 being everywhere dense in DO
I - , I -
A !.- t I
li-. ~ 1; -
A .
; ,I-
I -
1, ."
11-1-
C~:~ -
I 1~."I
il;- I
I
I
i
MARCUS, S.
The modern theoi-y of the notion of the length of a curve.
p. 2F1 (Gazeta Matematica Si Fizica) Vol. 9, no. 6, June, 1957, Bucuresti, Rumania
SO: Y,'ONTHLY INDEX OF EAST EURCFEAN ACCESSIONS (E-EAI) LC. VOL. 7, NO. 1, JAN. 1958
Erd&, -P.; et S~
Sur U d6compasWo, 4c
respace eucm a Actk Math.
Uen eft"IMMM, homageam
Acad.' agari *4- .2,'-
s~bset:01 q~didean mogene-
SaRam.9- is hol
ows (Hord) If for each two of its points X~Y the iiiida-
-lion Xy If"Orms, the kt, i~- itself. - The ~Utho 'shO
Wat any-111ka MIP*( W"tion of I int6
of Imse, rputu, auy'qxcl.tWvi It
e 111un
omog
a 101
they. prdyethat the
Ejj --uper A .'bk!:tmIiSla
-d'-set
1~ 4v'
(L A
W
YP
or
me 4
*Ab I byf .4~'
4
AM
"~4
'y'
VIARCUS, S.
------- -
Points of discontinuity and points of' differentiability. In Ri.,ssian. p. 4771-
REVUE DE H.5 MLES ET A??LI- JoUidIkL uF PUEL, ,,%b ANLI~;D
,%JMO!LA TICS. (Academia Republicii Populare R ominej Bucuresti. Rumania.
Vol. 2, 1957.
Montlily list of East European -ccessions (L;,1KA.L LC Vol. 9, no. 1, January 196u.
UNCL
icus, S.
On S. Stoilow's theorem concernin~7 continuous functions of a real variable.
In French. 1). 4C)9.
REVUE DE MATH2,11ATIQUES PUri---,'S ,','T AP-I-LI~.-UEES. JCURLNI~L 01-' PUI,-,,' :.i.'b ;,P?LIED
-'ITI~,~iiTICS. (Acader, -;.a Republicii Populare Rondne) Bucuresti. Rumania.
Vol. 2~ 1957.
Monthly List of East European Accessions (Z-~AJ,), LC. Voi. 9, no. 1, Januar7 1961-
UNCL
The Superposition or Fuji(ations and the Isometry of Certain Clascesof Ametions
?I Ham-mg SdawAm La superposition &s foactUM d
!' classes do fbactions. Bull. Math. i!
i Soc. Sci. Math. Phys. R. P. Roumaine (N.S.) 1(49) (1957).' r i w
i69-76
Cet article contient quinze propositions dont les d&
monstrations ddp~ndent plus ou moins de r&-Wtats ant6-
ri-eurs dus principalement & W. Sierpinski et St. Ruzie-
wicz. La propositign extraite et sa d6monstration peuvent
:-6tre regarddes v)mme originales et typiques. Proposition:
U existe un ensemble TZ de fonctions rdelles. borudes,'
ponctuellement discontinues, int6grables, au sens de
;Riemann(doncmesurables)etddrivablespresque artoUt
sur [0, 1). isomdtrique & 1'espace S des fonctions Cmdes,
x(g) sur [0, 1) mdtris6 par p(x, y)=sup jx(t) -y(f)j. Es-
quissedeladdmonstration:rl,ri. -,-,rs. ---:suitede
tous les nornbres rationnets de (0, Q. Fonctinn auxiliaire:
11f ($)-1;$ 2-4, la somme Y,' s'kendant A tous les n Ws
qua rs