SCIENTIFIC ABSTRACT MAKHOVIKOV, V.I. - MAKHSUMOV, A.G.

Document Type: 
Document Number (FOIA) /ESDN (CREST): 
CIA-RDP86-00513R001031610003-6
Release Decision: 
RIF
Original Classification: 
S
Document Page Count: 
100
Document Creation Date: 
November 2, 2016
Sequence Number: 
3
Case Number: 
Publication Date: 
December 31, 1967
Content Type: 
SCIENTIFIC ABSTRACT
File: 
AttachmentSize
PDF icon CIA-RDP86-00513R001031610003-6.pdf4.35 MB
Body: 
28808 S/14 61/000/005/004/007 Some problems of the theory . . . C111YC222 2F 2F 2F 0 (13) - -~,-2 x2 ~.2 the author obtains the expression n-1 F = f(z)T2n+l + f'(z)'y2. + Z [f (2n-2k )(') (T2k+1 + Ck+l) + k-0 + f(2n-2k+l) (z)(T2k + ~2k)] (14) where f(z) is a polynomial of (2n + 1)8t degree, 'Ps , '98(t) -- analytic function, n-k z ( )m +2m a (15) m=1 4 M! m Here denotes an m-fold integration with respect to 9, and the prime Card 5740 288C8 S/140/61/00;1/005/004/007 Some problems of the theory C111/C222 denotes the conju.-ate complex magnitude. For the functions Foo Flo F2 satisfying (;1) it follows FO == Re 1(Az)~Zn+l +P (Z) ~In + [Pn-2kI(Zm2k+1 + 'Ir 2k+1)+ kmo (Z) (~Ijk + '1'2011 1 n-' Fs Re jf(z) ),2.+. + f I (Z) A2. +Y ( f(2,,-2k) (Z) (X2k+ I +A2,6+1)+ A-9 + f(2n-2k,, 1) (Z) ()".0 + (16) n-1 F2= Re Az) Tall+, + P (Z) T2. + j f (2n -1k, (Z) (,?2,t+ I ++ k-0 Card 614o 28808 Some problems of the theory . . . -.Yi th + f(2n-2*+)) (Z) (72k + 02A)1) 3/14 61/000/005/004/007 Cl*iIYC222 n-k IYO Y ajmS ~1+2m A A, bj ).,+2m dt, M-I M am~ 4 rat M-1 M M bm b' . "2 4 )M;I 4 ml (17) where are analytic functions of and s 0,1,.. 2n+!. The a 8 Card 7/40 188c)'A S/14 61/000/005/004/007 Some problems of the theory . . . C111YC222 shifts (10) after the substitution of (16) read W= Re If' (z)(C1'.,n,, + CST"",) + P (Z) (Cd-2- + cvp"d + n-1 + I I f(2,.--211+11 (Z) (CI).2k+ I + T2,t+ 1) j_ f (2,,-2k+2) (Z) (C X,,, + T,,)jj, k-0 U-iV=f(Z)(k2.+l +T2.11 + n-1 + Y.( f(2.-2k) (Z)(k" k+1 + ?2k+1 ~2k+l + Q.'k+l) + k-0 + f(2,,-2k+l) (Z) (~21 + +11 + Q2.~ 1, (18) with Card 8/11a 26808 S/14 61/000/005/004/007 Some problems of the theory . . . C111%222 T c IF + a + 0 2 -L [Re (4 +1~.) + i Re iY,,] (19) 2 s s 2 0,' Q13 where etc. The boundary conditions on the generated surface of the cylinder can be satisfied if the shifts on the generated surfaoe are given in the form n (2n-2k+l)/z) + f(21n~2k+2) w Ef t2k,1 (Z) t2k] k=O n (2n-2k) + (2n-2k+l) (20) U iv = 7 [f (z)q2k+l (z) q2k] k=O where t q8 (s - 0,1,..., 2n+1) are functions of the arr of L. Detailed formulas for the case n - 2 (i.e. f VI (z) - 0) are given. The case where u and v are missing and w does riot depend on z is considered Card 9/10 S/140/61./000/005/004/007 Some problems of the theory . . . Cli"/C222 in detail, where a three-fold connected region bounded by ) circles and an elliptic region, respectively, is chosen as D. In all cases the boundary conditions are satisfiec! approximately only on the generated surface. There are 2 figures, 1 table and 6 Soviet-blr.,c references. ASSOCIATION: Kharlkovskiy avtomobil-no-dorozhuyy institul 1,Kbarlkov Automobile and Highway Institute) SUBMITTED: March 3, 1959 Card 10/10 MAKHOVIKOV_j_V.I- [Makhovykov, V.I.] (Khar'kov) Solution of the wave equation. Prykl.mekh. 7 no.5:566-568 161. (YdRA 14: 10) 1. Khar'kovskl.y avtomobil'no-dorozhnyy institut. (wave mechanics) S/140/62/000/003/005/007 C111/C333 AUTHOR: Yakhovikov, V. I. TITLE: The plane problem in the theory 9f anisotropic elastic mediums for the exterior of an uAbounded number of equal elliptical holes PERIODICAL: ~ysshiye uchabnyye zavedeniya. Izvestiya. Matematika, no. 3, 1962, 84-90 M.T. Considered is an anisotropic plane with infinitely many equal elliptical holes which axe arranged equi-distant from each other. In order to solve the elasticity problem where all holes are under equal stress, the circles K11 with the radii 1 and the equations io + )h, h > 2, C" = e are mapped on the exterior of the ellipses. The mapping is approximate and done with the help of the function Card 1/-5 + moY(5 -1) (18) !5/140/62/000/003/005/007 The plane problem . . . C111/C333 where ~ 0 is a cons iant, m I and Y is defined by* 00 Y kh) (2) k- oo It is shown that, if 00