SCIENTIFIC ABSTRACT KHAPAYEV, M.P. - KHARA, I.S

Document Type: 
Document Number (FOIA) /ESDN (CREST): 
CIA-RDP86-00513R000721810002-0
Release Decision: 
RIF
Original Classification: 
S
Document Page Count: 
100
Document Creation Date: 
November 2, 2016
Document Release Date: 
September 17, 2001
Sequence Number: 
2
Case Number: 
Publication Date: 
December 31, 1967
Content Type: 
SCIENTIFIC ABSTRACT
File: 
AttachmentSize
PDF icon CIA-RDP86-00513R000721810002-0.pdf3.09 MB
Body: 
87392 8/020/(;0/135/Oo6/oc6/037 C 111/ C 333 Asymptotic Expansions of Solutions to Ordinary Linear DiffErential Equationn Having Small Coe:'ficients With Their Higher DeriNatives in the Neighborhood of an ::rregular Singular Point ~ irtko if 2 -~ k i9 m "M tyk( go) ~o -1 ?40 ~A K 0 - Jo m + 1 Let TO ;0 to + 2Tr . Let (13) 1 z C- Gk( -)) if - 2/3 af I'k( < arg z < 4 21/ Tk(T, 0) 2.,) G k( Sd' if 0) < arg z < 2,/ 5 JF -2/33r - Af/k( Yk( E 0) Card 4/ a 87392 S/020/60/135/006/006/037 G 111/ G 333 Asymptotic Expansions of Solutions to Ordinary Linear Difj'erential Equationa Having Small Coerficients With Their Higher Der.-.vatives in the Noighborhood of an Erregular Singular Point 5.) z C- Gk0 1 if -2/33r - I*ko < arg z < 2/37r - A+ko. Let G be the intersection of the G 0 ; G( S ) intersection of the 0 k 0 ak( ~c G(,~ 0 interse3tion of the G k( 9 , ~.). Let G,,, ( So) be narrower than G( 6 ) and lot it be contained in G(S,, for all sufficie.-atly small T . By the transformation (14) W(z. P- ) - e k, (0,)z , (r, (F,) U( lot (1) pass over into r1 (k) M IE] - 2: F_ ' Pk(z Z Pk(z E u where Karoij-1 00 00 s Pn (z' Pk (z Eaak,s(z) Z- bk,s( SV0 S.0 Card 5/6 87392 S/020/60/135/006/'(jo6/037 C 111/ C 333 Asymptotic Expansions of Sclutions to Ordinary Linear Dif:~erential Equatione Having Small Coefficiento With Their Higher De:7-..vatives In the N(ilghborhood of an Irregular Singular Point Let L C LI,E,] be representod as 00 (23) u, Z cs~, I U1 5=0 where 11A - 01 n ~ C U'l U(M) + 7 ak,o(z) u (k), [u1 ak,o-k+m (Z)U (k)+ 0 ic C 0 + L ak,s (Z) u(k) , rhere aky 0 for s < 0. K%. 0 Theorem: Lqt u(Z,E ) be th~.3 solution of (15) and have th,(! asymptotic expansion 00 (28) U(Z~ + L C19S Z-0 in G, ( io) - Card 6/Ei Sal 87392 S/020/60/135/006,/006/037 C ill/ C 333 AsymptotLc Expanaions of SAutione to Ordinary Linear Differential Equations Having Small Coefficients With Their Higher Derivatives in the Neighborhood of an Irregular Singular Point Aseume that the fuiction u 0(z) satisfies (25) 7 [u0j - 0 and has the asymptotic expansion 00 (27) 11 U (Z) = 1 + C 0 Z_s in G09 0 1 i's while the functions a S(z) are determined by the equations (26) L 0 [U 8] US-1- as well as by the conditor. that they decrease at infinity as 1/Z in G0 . Then the formal exj,unsion of u(Z, in terms of C -powers Card 7/ a 87392 3/020/60/135/0o6/006/037 C Ill/ C 333 Asymptot:ic Expansions of Solutions to Ordinary Linear DJfferential Equationi-. Having Small Coefficient,,i With Thoir Higher D(!rivEttive3 in tile Nt:,ighborhood of an .,,'rregular Singular Point 00 (24) U(z~ & ) - ~- 0 E "LB(z) is asymp-.otic in G"( SO ) :.or E -* 0 (arg E 0 ) so Via t lim u(z, u (Z) - ;-40 C The author thanks Yu,. L. Ribinovich and D. P, Kostomarov for as:~istance. There are 6 references: 5 3oviet and 1 Belgian. ASSOCIATIONx Moskovskiy goaudarstvennyy universitet imeni M. V, LomonoBova (M:)scow State7-Unlversity imeni M. V. Lomonosov) PPESEFTED: July 79 1960, by J. G, Petrovskiy, Academician SUBMITTED: July 7, 1960 Card 6/8 Z883-1 3/140/61/000/005/007/007 1, 1 11 1 / Q' ? 2 2 TITLEi Tlv~ atym,,01)~- Irrveloymout (,[ hypergeometric and fulle ti ons PERIODICIJ': I i vyushikh u:~haijnykh zn~iodeniy. Matematika, 19611 98-101 TEXT: The author -obtains asymptotic developments of the hypergeometric. funotion F(a,b,c,.) and thG degeneratod hYF,-,rK,3ometric function F(a,c...z) i7or the eai3e that n and c are large and have the same ordo". The author starts from the oquations d it du 0 - (z-c) - 2 TZ and 2 + (.,b,l),] du - abu - 0 (13) 7z dz" I respectively, where a I , a -X'l, 1 large, c4j 0, he Card 1/* 28811 5/14 61/000/005/007/007 The aeymptotio dovolopment 0111%222 intrclu,,as the now variable t. z vn,I obtains equal.'.on, r,'-h -t small parE,meter for the higbest derivativs-), e. g.~ (i) changv~ 1_", 6t VIt + [F, t(d+1) + vI + F_tdv 0 (2) - t L with v(t,) - e u t d-1 - Th e a s ymj t o tc d c, prr c,f the sol ution of (2) regular in 0 cor respo nds to F(a, :_~, Z) Thlis the author obtains the developments F (u, 1 y ~' 75) z I + y 2 2 and Card 2/1~ M12 S/140/61/000/01)5/007/007 The asymptotic development C111/C222 b(b+l) 2 b ) .1 1 ,- 6 + + (17) 2 tt (,_t)2 For large m,n and I M-n I - 0 UDC: 517. 934 ACC NR: ',.~60M47 and t an-I x-,!' DJXY. X). IV (t), aid for any finite interval 1~1 t;21 the folio.4ing b1old N (1) ill,< V, (t, c; there exists a summable function 11(t) and a constant HO, and also a non-vanishing f-Iliction ~W, lim ~W :-- 0, such that for t > 0 and xQD ".0 X (t, X') - X (t, e) I