SCIENTIFIC ABSTRACT IONESCU, D.V. - IONESCU, FL

Document Type: 
Document Number (FOIA) /ESDN (CREST): 
CIA-RDP86-00513R000518710005-4
Release Decision: 
RIF
Original Classification: 
S
Document Page Count: 
100
Document Creation Date: 
January 3, 2017
Document Release Date: 
July 27, 2000
Sequence Number: 
5
Case Number: 
Publication Date: 
December 31, 1967
Content Type: 
SCIENTIFIC ABSTRACT
File: 
AttachmentSize
PDF icon CIA-RDP86-00513R000518710005-4.pdf3.38 MB
Body: 
7L Romtne. Bul., 'Sett- $ti. MaL Fiz- 9 (19S61. 67-100- ------- --- kA 4k 7 :2~a~7 U IONESCU) D* V.0 prof, Application of forwalas of numbrical derivation to the nworical integration of differential equations, Studii car mat 10 no.2s 259-315 159. (EW 3.0t9/10) 1. Univernitates. Babes-Bolyai, Cluj, Catedra do ecuatii diferentials, membru, al Comitetului do redactio, "Studii si cerestari do matematicall (Filiala Cluj). (Differential equations) (Integrals) (Nmerical functions) LS66 8/044/62/006/007/052/100 -cl-11/0333 AUTHOR: lonescu, D. V. TITLE:" (-akm--a~caition "of 's"'u"ccessive approximations. to the numeri- Cal integration of differential equations PERIODICALt Referativnyy zhurnalt Matematikat no. 7,-1962, 26, abstract 7V129. ("Bull. math. Soo*.-sci. math. et phys. no'.. 4, 423-431) TEXT: The approximate solution of the equation yl f(x,y) with fD-' the initial oonditiln y(x 0 0 is determined by the successive ~~approximations x x (0)(, Y Y. d~ (a-lp2 0 ]dj, toy X 0 0 It is suggested that the value s"oi Y:(B)(x) in the points xjj ... 9x be calculated using an improved trapezoid formula, thereby using the obtained values y (xi The necessary exactness of the approximate solution in the Card 1 2 S/044/62/000/007/052/100 The application of successive CIII/C333 points x 1 xn with corresponding-s is guaranteed by some-natural. .assumptions concerning the function f(x,y). An analogous method for the solution of the hyperbolio equation -,2 i z f(xpyqzvpyq) (Z(X,O) Z(O,y) 0) X.) 4z where p 7 z i a giv on. q ~Abstracterls notei Complete translation Card 2/2 IONMU D V . prof - (Glui) The cubeture fo=ulas; application in the numerical integration of the equations vith partial derivatives of the second order of a byper- bolie type. Studii care mat Gluj 11 no.1;35-78 '60. (=I 1019) 1. Gomitetul do rodactio wStudii si cereetari do matematical. (Equationsi (Integmls) (Hyperbola) 44366 S/044/62,/000/012/031/049 AOW/AOOO AUTHOR: Ionescu, D.V. TITIS: Application of the method of successive approximations to the nume-_ rical inte"gration of differential equations F~MIODICAL: Reforativngy zhurnal, Matematika, no. 12, 1962, 29 - 30, abstract 12V156 (Stddii oi cercet9ri mat. Acad. RPR Fil. Cluj, 1960, v. 11, no. 2, 273 286; Rumanian; summirtries in Russian, Prench) A numerical realization is constructed for the known method of Pl- A TqT caikdl ssuccessive approximations for the solution of the Cauchy problem Y' - f (x" Y), Y (X0) ..j0 consisting in that the segment xO 4 x 4 X0 + of the x line is covered by a grid r with points xO, xj, Xn xO + and at the J-th step of the process X (x) f d?., v- 1. 2, (2) XO Card 1/3 S/044/62,/000/012/031/049 Application of the method of subobasive .... A060/AOOO one defines the quantities y 1, n and the integrals Xi f (g)) dt XO are calculated by the quadrature formula 2 (x) dx + 4) + R (3) 2 12 OL R (x OL) 2 x)2 IV (x) dx 24 The following theorem is proven: Letz- 1) the function f (x, y) be defined on' the rectangle D(xO