SCIENTIFIC ABSTRACT GLASKO, V. - GLASSON, A.

Document Type: 
Document Number (FOIA) /ESDN (CREST): 
CIA-RDP86-00513R000500010011-3
Release Decision: 
RIF
Original Classification: 
S
Document Page Count: 
100
Document Creation Date: 
November 2, 2016
Document Release Date: 
September 17, 2002
Sequence Number: 
11
Case Number: 
Publication Date: 
December 31, 1967
Content Type: 
SCIENTIFIC ABSTRACT
File: 
AttachmentSize
PDF icon CIA-RDP86-00513R000500010011-3.pdf2.66 MB
Body: 
Investifjatiori of 1'article-Like Solutions of Nonlinear Scalar Field Equation is obtained. There are 3 fiaures and I,",' rof~jrances, 2 of ,.,iiiicii are Soviet. A5S0CIA'I'ION : Moskovslldy Eosudarstvennyy universitet (,M0!!co-"I State University) HBMITTED: Ya,'ch 22, 1958 Card 3/3 21(l), 24(7) 0 11/5 1 4"UTHORS Glas ico, V. ~4. I r,11 , 7. .ar, V. 1 . (Ind TlTLE: On zn a T y p a 0 f -,'o v r a la t i o i ii (- t iVo r t I ij i i.~ 11, -, t,,~'Il vicle korrelyatsionnoy Vi;nkt:,Ii (~I-u 'it,;wL ijUvIA) P'2.10DICAL; Optiku i ;3paktrosKopiya, 1919, Vo.~ I.;, :I* Im ANS TRACT - 11 Ir n Um r eik Im la t 1 (m 3r r ul.a t 1 'k ~ i t ~ t, ') ro t"'Ill Q 1, 11 "t rou u a I I ovie d- C %, i 11tr-'11- ing , :it, t:i ) -, - 3n factor rjeoendent on inter-elpctron distance r,, (Re". in ana-',-,,. tri u:: r x~vi,tic3i in tito carri-A o,,,t mitipli--i- ~:ar, t):, .'cr a two-iloctron s,jotcgn in vil) "n'-.11 d., where (I i:i a v-triatiowd. 111 tha t1he 2orr.-latier. funetion sho-uld (lopend oi- t'arefj -.nrr-.~Iatinn vavla.~,,F- ~ 11 f cr%u be thon represent-.)d as a s-iries in puwer~; of ~jl..~P: Z' 3). 'Ahan only one correlation variablla is iised tlio choiva of the f.w_,t_*k~n f(r,2) in the form Fjvcon vy 3"i i7, :irrttrarv one . ft'.~ (iiit;st;on arise-, as tn ano. !-nif; c~a- 3stL or. In tins ::2 ri, 't'. a 1~ ~t! f-'11' ti13 1101i ,ard 1/2 On the Typo oi* ~.;orr,)Iation Fum-tion for the Helium ~tma 11tom by a varlational t-;athod. 'rho rorult ii; i;novin as crarve I iii a fip-ure on o 700; mirvo T I roprosauts the Ilyllorwis function given by Eq (1). Both curvas ara plotted as furictioils of djGtanco in atom"ic units. Tria figure show.-, clearly that the corrolation function approxim.tioa in ti-io form of (1) i8 -,,ractic-!illy tho best choivo, at least for atmin. 'rho ptnor is ontire.Ly thooratimil. There ato 1 figuro ard C, ruf~)rencoB, 3 of whi,!h are Sovi!%t, I !-Inrll3u, I --,;firman and I mixed (~'oviot, -ZIar,11.3h. and Frojj(!*,,) j U WITT E 1) : ~Iard 2/2 90), 18(0) AUTHORS: Bonch-~iruievich. TITLL: 0 h e v, 'I, S , "lu Lattice of ,!1ekf,rur,ov I -a 4-3 ~ 0 t r U1 o C--lect ron~~ i it t~ Nc i d eI (Oh Spektr,~, 1-1~-"hot'r-e Gilt 4~1110 P i~ It 10 D I C A L D o 11~ 1, ~,dA u, H Vol 1::4 , -';r 0 0 17 lj.~ -, iz ABSTRACT: The L~j tlh,-,~ ol' iL r u ~~ t a r e- on th~ ner~,y ji)(.,,-7.ru;:! ;.,f* a --.etai is of c-,,- impo-rtunce for som~~ of of !10h,C!!-; L-. e-j:~Lcialiv 0J:i!1S tile ba~ii 0,~ th~! ti-.0ori of chemical in,: it. also plnys ar, important -lavt in i!-.,,:ur3.t~- -Solution ~f thi-9 pr,-blem re;:uires dynaDic inves t 16,at, ion. The authors investic;atk~ dfects the type of the hydrc;,,en-1ike L~toms which Ienetrat--~~' -into the lattice.. (All 1,1-rAitative res,ilts may hL witi-oat difficulty a'-so to mare Th, proble:i. is thIn reI,u~;ed -IQ t,-,Q inve,sti,,,atlon of tn, javation of enevj~.j- and ele'Itron- ~Iens-.Lty oil th~! ~olkiltl~!i of arl Ao~-Ctrorl Lc tfl~,, syateul Whil(2, coriditi-n. Phi!3 -.,roblein Card may be solved com:):~rativi~ly qulc'~.Iy as .:;,:on :..!3 the C'i On the Energy Spec trur, of 'A Lattice of a M(,tal lfurw- parti cle" Ii4, ~ji fmj~,, k;~x for the system is known Ife". x j doiloW foui-points iric. it holds tha t x x ho .'I SA ma t _.. 1 x R for the ground 5tat~- und frequeficiea U, occuriing in the spectral decoiiipoz;itioo _z' 0io r,(X_r) im;i,ediately supply th(- required T)IV3e are, within the frumev.,r: of the imjr~vi~d pertill-bation theory, 'fie ei6eriv;ilue~3 1-.f ~_; t;iv,.i ~,nd explained equation. This eq1;ati,-,n to obt-,-~inud ly si.~rct-ssiveiy solving the marv-electron probl,-m with~.u~ the otl-erwissu 110cessury as3umptiutn of smallness off constant Although this cqua~ion a~;rA~vs formally with certain 3,,hroedingor t2quation3 for --in Liectron, IT; actually describes a I`,!Lny-e1eCt1'0.-1 3YStLIM, .1nd its ei~;envalues have 'by no mieans the ri-_!axiin~- of nnyt,hing "One -el~~!ctrozi- enerGies'l The moot lensible way of deali.-q- with the problem ac(,ordin,,- to th;~ the effects ~d witi: the strii,-tur~il effel~t in the CaSe Card 2/4 of a kno-an Fermi ST),~ctr~u%t )f tlectri~ns erfe._-t lattice, " I /,j 2 On 1~he Ener,-y Lattice of a :,'r~ 1,; itl L i I, I ~ L 9 's w i i ;'o f I I,-., ',I f.1 41 1, El - rk% u r1i I ~~f I,( t an~ t;.. .3 0L'! -"sip IV 1 I'h ~il I i 1, t -; e ~3 k I I,:,- '' r. 11 ~clll 1 lo 3 a o !.I', cal :I irt-ound tifate and In v!-- r t,.,, in .-he 1:11~! !)Jjtf.~l --g al,le i;r-,sg crom --,n,~ 'luall-t.utivs- th'-~ V ~A 3 ~'f For sojv.-~(l by icl'~ans t:'L' tl'e vy7r.,121itell:yly t3entr '-'Grj und~mr 'L, i (-s i, t i Il "d Vll~~ t,.i~ :;-juplin6; F-i-st, 1 0- '. , ",I)Ic F F .',)l a Cs il. ~. Ya I " d A I- I ls'ciis s 1i ~. 0 Card 3/", I On the Energy Spectrum of ~,le(.tr4.,no in the Lattice of a Yetal ASSOCIATION: Moskovskiy gosudarstvennyy universitet im. M. V. Lomon,:-,ova (Iioscow State University imeni M. V. l,omono.'30V) PRLSENTED: October 31, 19)8, by A F. Iofft:-, SUBMITTED: August 12, 1953 Card 4/4 z-1--i r--V TTWRV - S4 sy 4-I.T.P.0 -II-b2 'VA %'t ~ ~. 'T".m -7I1-4 -4 7- .1 ~A J. -910 -11-11 Vc J. III's __12 r., -l-A flT 9v '7'q -~-C -0 1-a mrA -1-A J-J.~'j P.'z.nqld --V _,, J~o T-..Z~j J-.-0 -Y -2-j- -1 smnma --rc :-,1 -.3. f ... JT~~ .:""F P"-T7~4 'V11 'A'O r- 'xT%_;2.v -7-2 --P2 ccg.z -p--T 4n. -d TQ% -~T 'W~~ j~ JUI~,~,o I- -!-' :01 (-1-) 7- .,11..Tx J. -lq..d) IX-- ~XJ7-.j I WJ~Tj :Crl 1%) -TT-j I T3qllMTX t..jq_4 lprl" I-TI-1 .wgps X_ vlr_q'Tv K)I-V-lcqj= 3rcm I swu 'J227Y 0 AUTHORS: TITLE: S/IB8/60/000/02/01/006 B020/B054 Bazarov, 1. P. The Binary Distribution Function for a Liquid and the Crystallization Criterion PERIODICAL: Vestnik Moskovakogo univerBiteta. Seriyr:. 3, fizika, astronomiya, 1960, No. 2, PP- 5 - 4 TEXT: As opposed to gases, the particles in liquids are situated within the range of van der Waals' forces. The potential of intermolecular in- teraction in assumed to be determined by the function ~(r), and di- visible into a long-range part fo(r) and a short-range part (r): f(r) - J'(r) + f1(r). According to Ref. 1, the expressions 1f0(r) - Vt and f(.r) --I- -O(r) (1) apply to thii) long-range forces 0 vg T (v is the particle volume, and 9 - kT)j equations (2) and (3) are ob- tained for the binary distribution function in first approicimntion (Refs. 1,2). When solving equation (3) by means of the Fourier integrals, Card 1/4 82279 The Binary Distribution Function for a S/18 60/000/02/01/006 Liquid and the Crystallization 6riterion B020YB054 the following equation is obtained: sin))r f(r)r ain~ rdr OD F2(f 0 1 - 2/nGr ( 0 co (4). 0 1 + (4n/vO 0) fo(r)r sine dr, The denominator in the integral (4) at Q~ Q') - kT 0 vanishes for any value of P. The -temperature T0 is determined from the condition OD+ .Lil) r 2 T , 44n/vkj min min 10)) (5), where I(V) fo(r) 9-1 -- r dr. 0 P I, Equation (4) for the binary distribution function of liquids applies to temperatures T> T , Condition (5) determines the phaoil. transition - 0 the crystallization of the liquid. It only applies if min min I(~)< 0. If ~o(r) changes its sign with r, the minimum minimoram of the inte- gral I(~)) in dependenoe on the form of' ~'(r) may be attained not only at P = 0 but also with other '~. If min min IN) appears at V - 0, Card 2/4 6~279 The Binary Distribution Function for a 5/188/60/000/02/01/006 Liquid and the Crystallizaticn Criterion B020/BO54 condition (5) agrees with the crystallization criterion of A.A. Vlasov c' (Ref. 3): To . _(4/kv) ~ '+IO(r) r 2 dr (6), but wtth the principal 0 difference that Vlasov puts the total potential of intermolecular inter- action under the integral whereas (5) and (6) put only the potential ~O(r) ofthe long-range forces under the integral. ThIn peculiarity of condition (5) suggests that the crystallization of the liquid is deter- mined by the long-range forces of intermolecular interaction whereas the short-range forces are only of importance to the determination of the lattice constant. If the function ~'(r) is chosen in the iray indicated and is to be included in the group which depends on some parameter a, min min IW - Ii will be really attained at ). 1) 1 - 0 for any value a - a1* It may, however, be that a value a - a 2 is indicated at which min min 10)) of the same quantity I is attained at 11 - P2(a 2) > 0. Thus, it is evident that there is an a - at which min min I(P) - 1(~ 1) - . 1(02); in this case, it has the highest possible value for a chosen 11K Card 3/4 B' 2279 The Binary Distribution Function for a .9/18 f')0/000/02/01/006 Liquid.and the Crystallization Criterion B020YB054 fo(r), As had been stated in Ref. 49 the division of14;(r~ into a lonk- range component ~0(r) and a short-rango componont IP (r)'l-es riot un.kjuo, and munt bo oarz,lml out on tho t)lnnin of addit-Lonal phfuical conside, r a - t1ons. With tile use of (10(r) found in this way,1the ca,ystalli--ation temperature T can be divided into fo(r) and ~ (r) , This also applies 0 to ~(r) when the experimental T 0 is substituted into (5). There are 4 Soviet referenceu-, ASSOCIATION: Kafedra statiaticheskoy fiziki i mekhariiki (Chair -f Statistical Physics and MechanLcs) t4 SUBMITTED: April 15, 195) C Ek. rd 4 //4 BONCH-BRUMICH, V,L.; Gi~,'ZKO, V,11. Theory of chemical adcorption on mmLaiq. ~rcbL iin-, i , 10-~i4l.--154 160. 0,11RA 1-4, 5) 1. Fizielleskiy fakulltet Moskovskogo gosudar3tvmmop-o universiteta. (Adsorption) CrUmSKO, V.B.; '3'VFSFIIIK(,V, A.G. Electric fields of ocean currents oroduced by thc eparthlq ma notic f leld. Goomag. I aer. I no.1:73-81' Ja-F 161. W-11LI 14:75 1. Moskovskiy gosudarstvennyy univ-rsitet imeni M.V. Lomonosova, fizichesIdy fak-ulltet. (Ocean currents) (ElectrIv fields) (:Iapt~tlsrq, Torrestrial) 89;e o S/1 6 1/61 /005/042 .V~1, 7,6-to 0 (113 41 /,a/ 3,, 146 0) B102/B2 12 AUTHDRSi Bonch-Bruyevich, V. L. and Glasko, V. B. TITLE: Theory of electron states related to dislocations. I. Linear dislocations FERIODICALt Fizika tverdogo tela, v. 5, rr. 1, 1961, 56-46 TEXT: While qw-rtum-mechanical investigations of electron spc-ctra of real semiconductors havu so far been limited to point effect.,], experimental results seem to in0cate the existence ~-' acceptoi-type levels which arc related to linear di.locations. This problem has been titudied theoreti- cally by Read, but hia purely clasoici 1. considerations :showed no satiS- factory results. The authors havL, ncei made a quantum-me-charlical study of the effect of linear dislocations u,~jn the energy spectrurn of an electron (hole) system in a semioon('lictor. Since this problem i~; very complicated, it is necessary to start wit' a siiplified model. The -.1islocutions in question are defects which aru a'--o to trap electrons, or holes but they expand in one direction only. Tl.e2e linear dialocation~.i ~-.re characterized by a quasi-c,:-ntinjW. energy spectfum. Thi)ru are one or sev-'-~ral one- Card 114 ~Vl,' 1/ (' 1 /'-- 2 1/3C 3/0 42 Theory of electron states related... B1~2/'B212 dimensional "dislocation bands", th,~ width of wli!ci '0,,auld he t~.cmparablo to that of the conduction band; it may be overlapp~?L 1-y ~ntrirj-ic bandc of the crystal. Dislocation bands may be an im----rtent fi-:-tor in the electrical conductivity of semicon-~Iuctorc at low t,::qteratures if there are no carriers in the intrinsic bz~Lnds;a '3tron,, !~-Sctrojjy in the electric conductivity is expected in thi.i case . The, d i s Lc- - a t i ~ -: ~-ands o f Go and Si are ansumed to have n-type conductivity. I I ~) w (! v i! z , t, h; 1, a n I- ~'~ only affirmed if it is known, to Oiat doklruo Oo! 1),ind Li fi I! -!d, F j r ~ i t , the mathematinal formulation of thr. problem, i:, dirl Li. C) ~ (- i!i: I i r, (I i: t,! T set up the wave equation, it is asrumod that the hand!; ii.r,: ar"! the wave functions oil trapped holes chanj-~e 8moothly onou,~,h with ircreaninj~ distance from the dislocation. Starting from the well-"nown wave '~'quation E(-i,nv - i7.-31 in cylindrJcal coordinates I r,tR , Z) + V(r, WIT - 0 with the nubstitutton eikr X(r,j) one obtainat ~,n2/ 2m(k)]V 2, with W + E(0,0, '~k), Now, a linear dislocation i.~; c(:,ri-iid-rod to be a charged line, and the potential behavior near thi~i di3I,:)catj.on is examined. V(r,j) is defined 1) by the screened c:I,--(,tro!itatic field VC Df the charged Card 2/4 89273 5/161/6',/30',z/01/305/042 Theory of electron states related... B102/'B21~ dislocation, and 2) by the deformation potential Vdi which are given by VO(r) (2e/2irt)Ko(r/L) and Vd-Dinl/ri E. is the dielectric con:--tant; ExT_ of q,6 > 0,L 4ine Z is the Debye radiuu; and n is the concent, _i majority carrier in the"intrinsic" band. Concrete examples spectrum) are used to discuss the problem. The problem io reduced to a determination of the solutions of the corresponding Cauchy problem. Th-) eigni'alues are computed, and the dependence of the integral curves upon the introduced 2 2 dimensionless quantities x.r/L, 'A' JIEO, g . nde /2T6Eo (nd = Ve is the number of electrons per unit lAngth of dislocation; d is the Lattice. constant; and Eo is the characteristic energy (E. --h2 //2mL2)) is investigated graphically. Some of these quantities have been tabulated for m = 0 and-1; a rough evaluation (for d =5-10-8 cm, m- 1.2mof 161 yieldst -20 2 10 -1 T~~ E = 1.12-10 n. 300 ev, g 2.56f.10 n 7-0 and TOK L . 2 -1/2 1/2 of the dizlocation 4.8-1-0 n (TOY/300) Therefore, the edC( Card 3/4 Theory of electron states related ... B 10 2/B 21 2 band is a function of temperature. The authorc thank S. G. Kalashnikcv and A. N. Tikhonov for discussions, and the laboratory ~,ussistarlt L. F. Suzdalltseva for helping in numerir~il computationo. There are 4 figures, 4 tables, and 10 references 5 Soviet-110c alli ' non-Soviet- bloc. ASSOCIATIONs Moskovskiy gosudarstvannyy universitet Fi-.-,-JO-he,,,kiy fakulltot (Moscow State University, Division of Physics) Kafedra poluprovodnikov i kafedra matematiki (Depi---rtrment of Semi- conductors and Department of Mathematics. SUBMITTED: May 16, 1960 Card 4/4 9 S/10Y61/000/0-1 0/01-4/027 D266 D302 AUTHORS: Zyuzin-Zinchenko, A.A., and Lopukh1n, TITLE. The influence of beam scallopiriL on the noise figut of TWT's PERTODICAL; Radiotekhnika i elektronika, v, 6, no, 10, L061 , 1688 - 1699 TEXT, The purpose of the present work is to study on a sirplif~cd model the effect of -,,-,rying beam cross section on the minivum no,--. s-r figure. Alt~iougK the work is based on material published pricr L ) I L,-,s 915 a number of recent references on ultra-low noise LMplJ f' are inciuded, The authors use a threc-electrode gun which ensures a sufficie!Wly smooth potential profile, The varying beam radius ii3 ,-)b-.a: - -d by cvculating the t~kjectory of an edge electron in the ,--ombit---d electric and magnetic fields neElecting the eLfect of sp-a;:e charge forces, Without going into the details of c"'culations ~he following formula is given for the beam radius Card -./A -/010/1014/02 S, 09/61/00,1, The influence of beam D266//D')02 b ~ b 0[1 +- Z~nin Pk(x) x], where b 0 is the radius in infinite magnetic field; x - di~starice along the axis in mm-s, -~ and Pk(x) are parumeter-i rcpresen-tiri~, tl- amplitude ard wave number of scallopi.n1r, arid k(x) 113 ~'IVI-2rl 'rj,', Lhf-- approximate formula k(x) - 820(x In the subsequent calculat.~ono they employ 13. t t~ r (Ref, 25: RCA Rev,, 1954, Ili 19 95) transmis,,iion line .n3 bu-,, assume that the reduced plasma freOUency vari,?~~ O-ue bea::i scalloping, 22 different cases are investigaied art? s-~irama~ zed in a tabled The inhomogeneous transmission line equatio-n1s. a--, solved (with the usual inputironditions of uncorrelated current and velocity fluctuations) for these t)arl-tineters on a comj)'Lit':-~r the results, noise current density agwinst distance, are t~-t Linder the conditiow, in j ri a number of figures. It appears 0 - .3 - ilestigated the noise due to shot noise is negligible so the subse- Card 214, 2'-~ " 6 S/109/61/006/01 0/01, 4/027 The influence of beam D266//D302 quent calciilations are confined to t~.c study of noise due to velo- city fluctua.ti. ns at the potential minimum. In Figs. 10a and 10 b the noise figu.-o is plotted against normali;,.ed drift diStance. [Abstractor's note: Details of the calcullation ;~re not, r,!_ven, but it is noted that the beam entering the helix is asoumed to I-,-;%,e a constant diameter]. It is found that with the excet)LIon of olle curve the minimum noise figure is increased if the scallop~n,~ of the beam is taken into account. The noise gtener;_,ted by a beam of constant diameter is given by the dotted lines. The I-AImbers on the curves refer to the cases investigated. The final conclusion is that if and P are different of zero the minimum available no-ise figure is increased. There ire 1.2 figures, 1 -table and 27 referen- ces: 7 Soviet-bloc Lind 20 non-6oviet-bloc. The 4 mos- recent re- ferences to the English-language publications read as folloi,.rs: J. Ber-hammer, S. Bloom, J. Appl. Phys., 1960, 31, 3, 454; 71.M. Muel- ler, Currie, J. Appl. Phys., 1959, 30, 12, 1876; 11L. Adler, Proc. 1959, 47, 10, 1713; C. Curtis, C. JohnEson, 7. Appl. Phys., 1960, 31, 2, 338. Card 3/4 Tile influence of beam 2) 3 16 .9/10 q/ 6 1. /, '0 6 /0.10/0 1. 4 /0 2 7 1)266/1.)302 ASSOCIATION: Fi:~icheskiy fkulltet Moskovskogo gosudarzltvennogro uni- Xt&dra rl~'Idic-tekl versiteta im. M.V. Lomonosovil, iniki '(Physics Pacnlty of tile 14oscow Otate Uriiversit~ illi. M.V. Lonionosov, Department of Radioent-Ineerin., SUBMITTED: December 22, 1960 Pigs. 10a and 10b; Dependence Of P2 - 1 on 0 '6p 1) i,-~ the redi.- ced plasma viave number) for case I (case I corre2flOrI010 10 a Cell- tain choice of the potential profile). Zip Card 4/4 5/179/62,/000/002/009/012 El vVi-141 I AUT 1iGRS Gliksvw, V . B. , Roma IIw.-.A:.iY , yu J11, TITLE I Iivt!!5i.ig-,x "ion of comp co-upulmll fv,-~11~14; 11c i Ps of a 11 0 la st ic avrop I a Ile (tepood I.Ity, ('11'. t 5; v -0 ()(- I t it PV.RTODTCAL Ak,kciomi-ya nauh . 1 7, v t, i V. 10 1. (1 t! I ~;! I I j -,- (! to k fill i ch e!i k ~kh 11 it I Ili.. "I i lit n i, k kiI; Ll t Iit I it 0.--; t r o11 1. ye n o . 2 ,19 6 2 , 10 5- 101) TEXT Itl Lhi..; papur tile authol-~-, cut),;i(jor t1w of tile torsional oscillations of a on t1w n,to-w(! of th~! banding oscii1ations prouticed by applica-,:tou oC ailerovo-,~, Tlit! -problem is prt~scnted in -SIICII a Way LIILtL 0, caix 6,~ ,if)lv(~fi wi.,A) computing machint~s The Sol AIL1011 is on the di IIIQ~1::i e quatim-I derived by S , Strelk-ov and A Kha H amov Card J/11 S/ I.'j 9/6,2 /000/002/009/012 Investigation of complex ... E199/1"'I 13 h A I c is ass umed Lha t Theodorser, !i fmir Li oil k L that the wing is cantillevered and acciprdin~f, I:t) .-Aawlard b(,mding and twi.5ting ftincLions of the fir~qt Qrtlot~, T, t .1 ) ,0 ( t and ~(t) are variables cox-responding to coordmiateF, of bending and I im) w and II,) - torsion of the wing and to aileron (A~Iflef: : ) , velocity and chord of the wLng, Oj , (In', fi~, and Uil - parameters dotormining mochanical o1' the I~-.Okg w.itA tjje a.,Llorolk, . 11 2' 3 - sqtiares of parai-,-,oLers of frequenci:!s of bending and tor.5ion of the wing and rotation of.' the n~lt~j-olj. Tht3 problem !is reduced to finding the charticter)-,itic illdic,!,15 Of Card 2/ 1, Investigation of complex 5/ L 7 9/~j2/000/00 2 Lwl: :i 01* C, d wh,~rc Z, y 3 '3 ~L it Y i It: do -.10L itepell~ orlw "1711'i.v by equa Ling E 4-,. M wi L h Erl (2) A~i.,;11111kj t1lal, 'Y'I~ x"-) L h ort p: Consequent "y charac-Leri-stic equa tion of (2) i(i 1.t 4 e De t J pilc This equ~xtiori 11,1S rout"'; of j U1 t y 1, Of particular interest is DW =- Dl(f),w) + j0 (:'),W) 2 Card 3/4 S/1 79/62/060/002/009/012 Investigation of' complex ... [~,l q IF /,.1 5 and its solution i.,; worked out in ;At,,,% i.1 of r-c)oL!3 for a nuii,.ber of values of w are '1110 1-11.-MILP ShOW 1,11,111 4,110 roots corresponding to torsional )~;cillaLiom~ .,-)t' the alld to oscillations of tilt! aileroll 41c, lit'L ally 1-~!du(-Ajon ill the ,ill of it I-,; "llown that a oscillatory stability warg system having tvro degrceri of freedom :Lo ad,~(ptat-) For CJAC investigation L)I' flutter. The mt-l-ilott c;%71 ht! u-iod to determille ~i whole, range of frequ(mcies oil Vijj-j()jj~j pi There are 3 figures. SU DX IT'f E D January 1.6, 196-1 Card 4/4 10 i~ con .( LO rx ~'m u 110. I ~~ A L C t'l t "u Tjo 0, '1 :0 1 t c bY VO rju cr~ c t i 0 oils t t u 0 C, -)II CC, I', c Ol", 11 L bl)tt"~ Of c !;c i e ni n c) r ll',~ i 's po t'Qll t 0. Ze 2, on kr el~~ ir 7% k I t if W At k" ex x 1 (11' 1111 i 'l t n Lr c 0 11 .41 r1 t'L tile "thorm"j.1" 1'.'~iv"! F~' v 0 J t 1--uuid-ritro;,,en temperatur" all,l n 1 17 CIR, 'Fo for al so nollJ'!f I'a t u re, ti s i B 0 1 (r) -ze 1, x 1) 4, X1, r) rm r, 4 r 'i t i t ".I n t d o r "m rl C) (2N' a -,ve n~. i c , 7i 1 s -2: al, exp 2-rk.,:) (Ak cos 2',x 2:i B ksin2kx). ~ . I'lk iBk = Ct, 'it t, /Cc Io"' Of' F~: 1:3 r,cotE3 S LL C) J IL -0 k (2k `Fk 3 In (2k - 4- 2k- -i -i 2,-, (2k 4 I v C, z 3 c 1" L, C, 11Z I I iol! lu X A, (u (0) u (00) 0). x X, nat ion . . . OA _r2 a1'2 arc t9 -- - are sin q)/. -arc sin a,,L n r! . t j ty 1) f C k I .; t v trap. II~A X taken -.:I tht3 T.11.e C ac I I It i, 0!, Lr, Cal-vio~l Out -fol. '-'e'ralarlium an(l -siliccn: 0 0 1 ov j() j T i rw L ti, oil 71 1 .89 V/") 4.05 5. 4 10 ;~7 xp 0. 7 7, r, 1.5 A, N(ml)) or 4 Coll ov 1. 67 If", :1.28 a 0. .5 X0 0.73, r,, 1 .2 1 A, N (x,) 2 8 0 V r U-7 6. j,')-0 C-., cm. e2 V(r)=--e- &r Card I Io ;Lll,~ 2m IF 2 a .-th2 ref') Mal 0,.,-. ined cor t o t :1 o ti r 0::l 1 B I 1i' :~ c 1L -C 1: 1 1'; i L 1 1,2 t ol~ f r) o v. u i;_, r.; V-.I!.;I",, ~ :l 'I I.. t t ::I 0 V : 1, o: In Tt i c:;! GLIM, V.13.; :11!0N0%', A.G. Shielding of tho Coulonb potmtlal in nond~,-gcr,4,~ratnd Fiz.tvur.tela 4 rio.2:336-342 .1 '&!. ("F-Jk 15:2) 1. ll,~)skov2kly j,,,ojudarstveuxIr-f UlllV(rJjWt IUMI. (potoritial, Theory OC) (3 uld Qo lidue to r.-I ) BONCH-BRUYEVIGH, VA.; GLASKQ,__~tj~~ .... .. Theory of "caBcade" recombination of current carriorL3 in homopolar semiconduc tore. Fiz.tver.tela 1, no-2:510-523 F 162. 15:2) 1. 146skovuldy gosudarstvennyy univeraltot imesni Lomonoriovil. (Sciniconductorij) (GryjLrd iattlcuj) GLASKO., V.13. (Moskva); R0114NOVSKJY, Yu.~L (Moskva) Involotigating combined natural vibrations of an alrplanfii dopending on the flying speed. Izir.PJI SOSFt.Ct(l.tekii.niiiik.Ifet:li.i mushinostr. no.2-105-109 M~-Ap 162. 0,IIPA 15:5) (AArplanes.-Vibration) -, GRCGHEV, A. L., IMPTEr ()V, V. V., S, VF~3 KDV, A. (,., SEMASHKO, N. N., RUEPANOV, V. M., '~Study of Individual Charged Partic-le Motton in Magnette Ftelds," report presented at the 6tb Intl. Conf. an Ionization Phenomena in Gases, Paris, France, 8-13 Jul 63 GLASKO, V.B.; SAVARENSKIY, re.F.; SUCHKOV, B.N. Data on phase and group velocition of surface arilsi-nic waves. Izv. All SSSR. Ser. geofiz. no.10:1486-1493 0 163. (NIRA 16:12) 1. Institut fiziki Zemll AN SSSR. BUDAK, B.M.; VINO(,T-4.DOVA, Ye.A,,; GLASKO, V.B.; KONONKOVA, G.Ye.; FOBORCIMA, L.V. Problem of wisteady water movement in a re2erroir solved by an electronIc computer. Metoor, i gddrol. no.12:14-21. D '63, (MIRA 17:3) 1. Moskovskiy got~udiirstvownyy univer,itat, fizioho3kLy fakulltet. S/051/63/0114/004/008/0261 AUTIIORS: TIonch-Druyevich, V.L., Glasko. V.B. TITI.E. 1-~nergy levels In a Dabye field ~:-PERIODICAL: Optilca i spektrosRopiya, v.14., no.11"1,963., 405-504 TEXT, A numerical solutii)n (if the problem of Ui4i enorg,~ spectrum of particles in a field with a potermial 2 V (r) r r ro 1.8 given (r - tho distance betwoork contorts or force and, attracted particles, r0 - the screening ra d i u 14 Thif number and position of the eigenvalues of the energy depanding ort tho obaract.cr of tile p*ararnetcr 2 romr are determined (m the mass of thd h2 particles). The range of 8; investigated covero tho whole range of temporaturc.and concentration whiola in of intojl~-ast and the calculated energy levels are fully tiibulated. T4a transition probability with change of (principal quantum humbor N = n + L+ I,; is also estimated.. For g 10, which is typical for, semiconductoM 11, Card. 1i2 BALEBANOV, V.1-1. ; GLAS?*",~:, 17.1 ., 1" . r 1, . I IJ ~ , , L.- i .1- L " SVESIINP~07' 7..; 1:'' 'I"I" y 11., '. - , Motion cff f~hIll-gl--d in ullilli I'l, .11~ijme tdc "it-A I'l. Atom. energ. 19 no.4 :'W'- 11 ') 0 16 1. (IldlIA BAI,;-'.BA.':OV,, V.~~!.; VOLKOV., III.I.; UASY0, 7.iJ.; GROS*!EV, A,L.; XUNETSOV, V,V.; SV:'Z';,: I I KOV , A,'.,.; SE,,'M!:K0.. IN, N, i~ No t, ~ oll of Li~ohtecl ~ pil' Lcic,,, 1 ri ; !~i,,,,Tv - I:- ~ h, to" w 1 ~,~ I i w! I --,il z in. :~~e ' 1- '63. . ry. I tom. --norr. 1, F ri,,,. 09 4.10 (~ 16: .1") ~f It ACCESSION NR: AP4037262 S/0208164/004/Do3/0564/0571 AUTHOR: Tikhonov', A. N. (Moscow); Glasko, V. B. (Moncow) TITLE: An approximate SolUtion,of Fredholin integral equations of the first kind SOURCE: Zliurnal vyAc1iit;litel'noy matematiki i matemattcheskoy fiY-M, v. 4, no. 3, 1964,.564-571 TOPIC TAGS: method, Fredholm integral equation, firit kind iT~Lcgral equation, Fredholm equation approximace aolution, error eatimate ABSTRACT : The c f fe c t i va a a s 6 o f L la c re g u I a r I z a c 1. a a me th a d d c ve I o pd by A. '11. Tikhonov (DAN SSSR, v, 151, no. 3, 1963, 501-504, and v. 153, no. 1, 1963, 49-52) for the approyLnatc fioluftou of the Frodholn integral equation of thu, first kLnd (f.ricc.)rructLy definei problem) ia presented as applied to the following, form of thacquation Card 1 3 ACCESSION.NR. AP4037262 +1 Afx,zj M K(x,s);(s)ds a(x), -Z4x_