SCIENTIFIC ABSTRACT GLASKO, V. - GLASSON, A.
Document Type:
Collection:
Document Number (FOIA) /ESDN (CREST):
CIA-RDP86-00513R000500010011-3
Release Decision:
RIF
Original Classification:
S
Document Page Count:
100
Document Creation Date:
November 2, 2016
Document Release Date:
September 17, 2002
Sequence Number:
11
Case Number:
Publication Date:
December 31, 1967
Content Type:
SCIENTIFIC ABSTRACT
File:
Attachment | Size |
---|---|
CIA-RDP86-00513R000500010011-3.pdf | 2.66 MB |
Body:
Investifjatiori of 1'article-Like Solutions of
Nonlinear Scalar Field Equation
is obtained. There are 3 fiaures and I,",' rof~jrances, 2 of
,.,iiiicii are Soviet.
A5S0CIA'I'ION : Moskovslldy Eosudarstvennyy universitet (,M0!!co-"I State
University)
HBMITTED: Ya,'ch 22, 1958
Card 3/3
21(l), 24(7) 0 11/5 1
4"UTHORS Glas ico, V. ~4. I r,11 , 7. .ar, V. 1 . (Ind
TlTLE: On zn a T y p a 0 f -,'o v r a la t i o i ii (- t iVo r t I ij i i.~ 11, -, t,,~'Il vicle
korrelyatsionnoy Vi;nkt:,Ii (~I-u 'it,;wL ijUvIA)
P'2.10DICAL; Optiku i ;3paktrosKopiya, 1919, Vo.~ I.;, :I* Im
ANS TRACT - 11 Ir n Um r eik Im la t 1 (m 3r r ul.a t 1 'k ~ i t ~ t, ') ro t"'Ill Q 1, 11 "t rou u
a I I ovie d- C %, i 11tr-'11- ing , :it, t:i ) -, - 3n
factor rjeoendent on inter-elpctron distance r,, (Re".
in ana-',-,,. tri u:: r x~vi,tic3i in tito
carri-A o,,,t mitipli--i- ~:ar, t):, .'cr a
two-iloctron s,jotcgn in vil) "n'-.11
d.,
where (I i:i a v-triatiowd. 111 tha t1he 2orr.-latier.
funetion sho-uld (lopend oi- t'arefj -.nrr-.~Iatinn vavla.~,,F- ~ 11 f cr%u be thon
represent-.)d as a s-iries in puwer~; of ~jl..~P: Z' 3). 'Ahan
only one correlation variablla is iised tlio choiva of the f.w_,t_*k~n f(r,2)
in the form Fjvcon vy 3"i i7, :irrttrarv one . ft'.~ (iiit;st;on arise-,
as tn ano. !-nif; c~a-
3stL or. In
tins ::2 ri, 't'. a 1~ ~t! f-'11' ti13 1101i
,ard 1/2
On the Typo oi* ~.;orr,)Iation Fum-tion for the Helium ~tma
11tom by a varlational t-;athod. 'rho rorult ii; i;novin as crarve I iii a
fip-ure on o 700; mirvo T I roprosauts the Ilyllorwis function given
by Eq (1). Both curvas ara plotted as furictioils of djGtanco in atom"ic
units. Tria figure show.-, clearly that the corrolation function
approxim.tioa in ti-io form of (1) i8 -,,ractic-!illy tho best choivo,
at least for atmin. 'rho ptnor is ontire.Ly thooratimil. There ato
1 figuro ard C, ruf~)rencoB, 3 of whi,!h are Sovi!%t, I !-Inrll3u, I --,;firman
and I mixed (~'oviot, -ZIar,11.3h. and Frojj(!*,,)
j U WITT E 1) :
~Iard 2/2
90), 18(0)
AUTHORS: Bonch-~iruievich.
TITLL: 0 h e v, 'I, S , "lu
Lattice of
,!1ekf,rur,ov
I -a 4-3 ~ 0
t r U1 o C--lect ron~~ i it t~ Nc i d eI
(Oh Spektr,~,
1-1~-"hot'r-e Gilt 4~1110
P i~ It 10 D I C A L D o 11~ 1, ~,dA u, H Vol 1::4 , -';r
0 0 17 lj.~ -, iz
ABSTRACT: The L~j tlh,-,~ ol' iL r u ~~ t a r e-
on th~ ner~,y ji)(.,,-7.ru;:! ;.,f* a --.etai is of c-,,- impo-rtunce
for som~~ of of !10h,C!!-; L-. e-j:~Lcialiv
0J:i!1S tile ba~ii 0,~ th~! ti-.0ori of
chemical in,: it. also plnys ar, important
-lavt in i!-.,,:ur3.t~- -Solution ~f thi-9 pr,-blem
re;:uires dynaDic inves t 16,at, ion. The authors
investic;atk~ dfects the type of the hydrc;,,en-1ike
L~toms which Ienetrat--~~' -into the lattice.. (All 1,1-rAitative
res,ilts may hL witi-oat difficulty a'-so to mare
Th, proble:i. is thIn reI,u~;ed -IQ t,-,Q
inve,sti,,,atlon of tn, javation of enevj~.j- and ele'Itron-
~Iens-.Lty oil th~! ~olkiltl~!i of arl Ao~-Ctrorl Lc tfl~,, syateul
Whil(2, coriditi-n. Phi!3 -.,roblein
Card may be solved com:):~rativi~ly qulc'~.Iy as .:;,:on :..!3 the
C'i
On the Energy Spec trur, of 'A
Lattice of a M(,tal
lfurw- parti cle" Ii4, ~ji fmj~,, k;~x for the
system is known Ife". x j doiloW foui-points iric. it holds
tha t x x ho .'I SA ma t _.. 1 x R
for the ground 5tat~- und frequeficiea U, occuriing in the
spectral decoiiipoz;itioo _z' 0io r,(X_r) im;i,ediately
supply th(- required T)IV3e
are, within the frumev.,r: of the imjr~vi~d pertill-bation
theory, 'fie ei6eriv;ilue~3 1-.f ~_; t;iv,.i ~,nd explained
equation. This eq1;ati,-,n to obt-,-~inud ly si.~rct-ssiveiy solving
the marv-electron probl,-m with~.u~ the otl-erwissu 110cessury
as3umptiutn of smallness off
constant Although this cqua~ion a~;rA~vs formally with
certain 3,,hroedingor t2quation3 for --in Liectron, IT; actually
describes a I`,!Lny-e1eCt1'0.-1 3YStLIM, .1nd its ei~;envalues have
'by no mieans the ri-_!axiin~- of nnyt,hing "One -el~~!ctrozi-
enerGies'l The moot lensible way of deali.-q- with the problem
ac(,ordin,,- to th;~
the effects ~d witi: the strii,-tur~il effel~t in the CaSe
Card 2/4 of a kno-an Fermi ST),~ctr~u%t )f tlectri~ns erfe._-t lattice,
" I /,j 2
On 1~he Ener,-y
Lattice of a :,'r~ 1,;
itl L i I, I ~ L 9 's w i i
;'o f I I,-., ',I f.1 41 1, El - rk% u r1i I
~~f I,( t an~ t;.. .3 0L'! -"sip IV 1 I'h ~il I i 1, t -; e ~3
k I I,:,- '' r. 11 ~clll
1 lo 3
a o !.I', cal :I irt-ound tifate and
In
v!-- r t,.,, in
.-he 1:11~! !)Jjtf.~l --g al,le
i;r-,sg crom --,n,~
'luall-t.utivs- th'-~
V ~A 3 ~'f For
sojv.-~(l by icl'~ans t:'L' tl'e vy7r.,121itell:yly
t3entr '-'Grj
und~mr 'L, i (-s i, t i Il "d Vll~~
t,.i~ :;-juplin6; F-i-st,
1 0- '. ,
",I)Ic F F .',)l
a Cs il. ~. Ya I " d A I- I ls'ciis s 1i ~. 0
Card 3/",
I
On the Energy Spectrum of ~,le(.tr4.,no in the
Lattice of a Yetal
ASSOCIATION: Moskovskiy gosudarstvennyy universitet im. M. V. Lomon,:-,ova
(Iioscow State University imeni M. V. l,omono.'30V)
PRLSENTED: October 31, 19)8, by A F. Iofft:-,
SUBMITTED: August 12, 1953
Card 4/4
z-1--i r--V TTWRV -
S4 sy 4-I.T.P.0
-II-b2
'VA
%'t ~ ~. 'T".m -7I1-4
-4 7- .1 ~A J.
-910 -11-11
Vc
J. III's __12
r., -l-A
flT
9v
'7'q -~-C
-0 1-a
mrA -1-A
J-J.~'j
P.'z.nqld
--V _,, J~o
T-..Z~j
J-.-0 -Y
-2-j- -1
smnma
--rc :-,1 -.3. f ... JT~~
.:""F P"-T7~4 'V11 'A'O r-
'xT%_;2.v -7-2 --P2
ccg.z -p--T 4n.
-d TQ% -~T 'W~~ j~ JUI~,~,o
I- -!-' :01 (-1-) 7- .,11..Tx J. -lq..d)
IX-- ~XJ7-.j I WJ~Tj :Crl 1%) -TT-j I T3qllMTX t..jq_4
lprl" I-TI-1 .wgps X_ vlr_q'Tv
K)I-V-lcqj= 3rcm I swu
'J227Y
0
AUTHORS:
TITLE:
S/IB8/60/000/02/01/006
B020/B054
Bazarov, 1. P.
The Binary Distribution Function for a Liquid and the
Crystallization Criterion
PERIODICAL: Vestnik Moskovakogo univerBiteta. Seriyr:. 3, fizika,
astronomiya, 1960, No. 2, PP- 5 - 4
TEXT: As opposed to gases, the particles in liquids are situated within
the range of van der Waals' forces. The potential of intermolecular in-
teraction in assumed to be determined by the function ~(r), and di-
visible into a long-range part fo(r) and a short-range part (r):
f(r) - J'(r) + f1(r). According to Ref. 1, the expressions
1f0(r) - Vt and f(.r) --I- -O(r) (1) apply to thii) long-range forces
0 vg T
(v is the particle volume, and 9 - kT)j equations (2) and (3) are ob-
tained for the binary distribution function in first approicimntion
(Refs. 1,2). When solving equation (3) by means of the Fourier integrals,
Card 1/4
82279
The Binary Distribution Function for a S/18 60/000/02/01/006
Liquid and the Crystallization 6riterion B020YB054
the following equation is obtained:
sin))r f(r)r ain~ rdr
OD
F2(f 0 1 - 2/nGr ( 0 co (4).
0 1 + (4n/vO 0) fo(r)r sine dr,
The denominator in the integral (4) at Q~ Q') - kT 0 vanishes for any
value of P. The -temperature T0 is determined from the condition
OD+ .Lil) r 2
T , 44n/vkj min min 10)) (5), where I(V) fo(r) 9-1 -- r dr.
0 P I,
Equation (4) for the binary distribution function of liquids applies to
temperatures T> T , Condition (5) determines the phaoil. transition -
0
the crystallization of the liquid. It only applies if min min I(~)< 0.
If ~o(r) changes its sign with r, the minimum minimoram of the inte-
gral I(~)) in dependenoe on the form of' ~'(r) may be attained not only
at P = 0 but also with other '~. If min min IN) appears at V - 0,
Card 2/4
6~279
The Binary Distribution Function for a 5/188/60/000/02/01/006
Liquid and the Crystallizaticn Criterion B020/BO54
condition (5) agrees with the crystallization criterion of A.A. Vlasov
c'
(Ref. 3): To . _(4/kv) ~ '+IO(r) r 2 dr (6), but wtth the principal
0
difference that Vlasov puts the total potential of intermolecular inter-
action under the integral whereas (5) and (6) put only the potential
~O(r) ofthe long-range forces under the integral. ThIn peculiarity of
condition (5) suggests that the crystallization of the liquid is deter-
mined by the long-range forces of intermolecular interaction whereas the
short-range forces are only of importance to the determination of the
lattice constant. If the function ~'(r) is chosen in the iray indicated
and is to be included in the group which depends on some parameter a,
min min IW - Ii will be really attained at ). 1) 1 - 0 for any value
a - a1* It may, however, be that a value a - a 2 is indicated at which
min min 10)) of the same quantity I is attained at 11 - P2(a 2) > 0. Thus,
it is evident that there is an a - at which min min I(P) - 1(~ 1) -
. 1(02); in this case, it has the highest possible value for a chosen 11K
Card 3/4
B' 2279
The Binary Distribution Function for a .9/18 f')0/000/02/01/006
Liquid.and the Crystallization Criterion B020YB054
fo(r), As had been stated in Ref. 49 the division of14;(r~ into a lonk-
range component ~0(r) and a short-rango componont IP (r)'l-es riot un.kjuo,
and munt bo oarz,lml out on tho t)lnnin of addit-Lonal phfuical conside, r a -
t1ons. With tile use of (10(r) found in this way,1the ca,ystalli--ation
temperature T can be divided into fo(r) and ~ (r) , This also applies
0
to ~(r) when the experimental T 0 is substituted into (5). There are
4 Soviet referenceu-,
ASSOCIATION: Kafedra statiaticheskoy fiziki i mekhariiki (Chair -f
Statistical Physics and MechanLcs) t4
SUBMITTED: April 15, 195)
C Ek. rd 4 //4
BONCH-BRUMICH, V,L.; Gi~,'ZKO, V,11.
Theory of chemical adcorption on mmLaiq. ~rcbL iin-, i ,
10-~i4l.--154 160. 0,11RA 1-4, 5)
1. Fizielleskiy fakulltet Moskovskogo gosudar3tvmmop-o universiteta.
(Adsorption)
CrUmSKO, V.B.; '3'VFSFIIIK(,V, A.G.
Electric fields of ocean currents oroduced by thc eparthlq ma notic
f leld. Goomag. I aer. I no.1:73-81' Ja-F 161. W-11LI 14:75
1. Moskovskiy gosudarstvennyy univ-rsitet imeni M.V. Lomonosova,
fizichesIdy fak-ulltet.
(Ocean currents) (ElectrIv fields) (:Iapt~tlsrq, Torrestrial)
89;e o
S/1 6 1/61 /005/042
.V~1, 7,6-to 0 (113 41 /,a/ 3,, 146 0) B102/B2 12
AUTHDRSi Bonch-Bruyevich, V. L. and Glasko, V. B.
TITLE: Theory of electron states related to dislocations.
I. Linear dislocations
FERIODICALt Fizika tverdogo tela, v. 5, rr. 1, 1961, 56-46
TEXT: While qw-rtum-mechanical investigations of electron spc-ctra of real
semiconductors havu so far been limited to point effect.,], experimental
results seem to in0cate the existence ~-' acceptoi-type levels which arc
related to linear di.locations. This problem has been titudied theoreti-
cally by Read, but hia purely clasoici 1. considerations :showed no satiS-
factory results. The authors havL, ncei made a quantum-me-charlical study of
the effect of linear dislocations u,~jn the energy spectrurn of an electron
(hole) system in a semioon('lictor. Since this problem i~; very complicated,
it is necessary to start wit' a siiplified model. The -.1islocutions in
question are defects which aru a'--o to trap electrons, or holes but they
expand in one direction only. Tl.e2e linear dialocation~.i ~-.re characterized
by a quasi-c,:-ntinjW. energy spectfum. Thi)ru are one or sev-'-~ral one-
Card 114
~Vl,' 1/ (' 1 /'-- 2 1/3C 3/0 42
Theory of electron states related... B1~2/'B212
dimensional "dislocation bands", th,~ width of wli!ci '0,,auld he t~.cmparablo
to that of the conduction band; it may be overlapp~?L 1-y ~ntrirj-ic bandc
of the crystal. Dislocation bands may be an im----rtent fi-:-tor in the
electrical conductivity of semicon-~Iuctorc at low t,::qteratures
if there are no carriers in the intrinsic bz~Lnds;a '3tron,, !~-Sctrojjy in the
electric conductivity is expected in thi.i case . The, d i s Lc- - a t i ~ -: ~-ands o f
Go and Si are ansumed to have n-type conductivity. I I ~) w (! v i! z , t, h; 1, a n I- ~'~
only affirmed if it is known, to Oiat doklruo Oo! 1),ind Li fi I! -!d, F j r ~ i t ,
the mathematinal formulation of thr. problem, i:, dirl Li. C)
~ (- i!i: I i r, (I i: t,! T
set up the wave equation, it is asrumod that the hand!; ii.r,: ar"!
the wave functions oil trapped holes chanj-~e 8moothly onou,~,h with ircreaninj~
distance from the dislocation. Starting from the well-"nown wave '~'quation
E(-i,nv - i7.-31
in cylindrJcal coordinates I r,tR , Z) + V(r, WIT - 0 with the
nubstitutton eikr X(r,j) one obtainat ~,n2/ 2m(k)]V 2,
with W + E(0,0, '~k), Now, a linear dislocation i.~; c(:,ri-iid-rod to be a
charged line, and the potential behavior near thi~i di3I,:)catj.on is examined.
V(r,j) is defined 1) by the screened c:I,--(,tro!itatic field VC Df the charged
Card 2/4
89273
5/161/6',/30',z/01/305/042
Theory of electron states related... B102/'B21~
dislocation, and 2) by the deformation potential Vdi which are given by
VO(r) (2e/2irt)Ko(r/L) and Vd-Dinl/ri E. is the dielectric con:--tant;
ExT_ of
q,6 > 0,L 4ine Z is the Debye radiuu; and n is the concent, _i
majority carrier in the"intrinsic" band. Concrete examples spectrum)
are used to discuss the problem. The problem io reduced to a determination
of the solutions of the corresponding Cauchy problem. Th-) eigni'alues are
computed, and the dependence of the integral curves upon the introduced
2 2
dimensionless quantities x.r/L, 'A' JIEO, g . nde /2T6Eo (nd = Ve is the
number of electrons per unit lAngth of dislocation; d is the Lattice.
constant; and Eo is the characteristic energy (E. --h2 //2mL2)) is investigated
graphically. Some of these quantities have been tabulated for m = 0 and-1;
a rough evaluation (for d =5-10-8 cm, m- 1.2mof 161 yieldst
-20 2 10 -1 T~~
E = 1.12-10 n. 300 ev, g 2.56f.10 n 7-0 and
TOK
L . 2 -1/2 1/2 of the dizlocation
4.8-1-0 n (TOY/300) Therefore, the edC(
Card 3/4
Theory of electron states related ... B 10 2/B 21 2
band is a function of temperature. The authorc thank S. G. Kalashnikcv
and A. N. Tikhonov for discussions, and the laboratory ~,ussistarlt
L. F. Suzdalltseva for helping in numerir~il computationo. There are
4 figures, 4 tables, and 10 references 5 Soviet-110c alli ' non-Soviet-
bloc.
ASSOCIATIONs Moskovskiy gosudarstvannyy universitet Fi-.-,-JO-he,,,kiy fakulltot
(Moscow State University, Division of Physics) Kafedra
poluprovodnikov i kafedra matematiki (Depi---rtrment of Semi-
conductors and Department of Mathematics.
SUBMITTED: May 16, 1960
Card 4/4
9
S/10Y61/000/0-1 0/01-4/027
D266 D302
AUTHORS: Zyuzin-Zinchenko, A.A., and Lopukh1n,
TITLE. The influence of beam scallopiriL on the noise
figut of TWT's
PERTODICAL; Radiotekhnika i elektronika, v, 6, no, 10, L061 ,
1688 - 1699
TEXT, The purpose of the present work is to study on a sirplif~cd
model the effect of -,,-,rying beam cross section on the minivum no,--.
s-r figure. Alt~iougK the work is based on material published pricr
L ) I L,-,s
915 a number of recent references on ultra-low noise LMplJ f'
are inciuded, The authors use a threc-electrode gun which ensures
a sufficie!Wly smooth potential profile, The varying beam radius ii3
,-)b-.a: - -d by cvculating the t~kjectory of an edge electron in the
,--ombit---d electric and magnetic fields neElecting the eLfect of
sp-a;:e charge forces, Without going into the details of c"'culations
~he following formula is given for the beam radius
Card -./A
-/010/1014/02
S, 09/61/00,1,
The influence of beam D266//D')02
b ~ b 0[1 +- Z~nin Pk(x) x],
where b 0 is the radius in infinite magnetic field; x - di~starice
along the axis in mm-s, -~ and Pk(x) are parumeter-i rcpresen-tiri~, tl-
amplitude ard wave number of scallopi.n1r, arid k(x) 113 ~'IVI-2rl 'rj,', Lhf--
approximate formula
k(x) - 820(x
In the subsequent calculat.~ono they employ 13. t t~ r
(Ref, 25: RCA Rev,, 1954, Ili 19 95) transmis,,iion line .n3
bu-,, assume that the reduced plasma freOUency vari,?~~ O-ue bea::i
scalloping, 22 different cases are investigaied art? s-~irama~
zed in a tabled The inhomogeneous transmission line equatio-n1s. a--,
solved (with the usual inputironditions of uncorrelated current
and velocity fluctuations) for these t)arl-tineters on a comj)'Lit':-~r
the results, noise current density agwinst distance, are
t~-t Linder the conditiow, in
j ri a number of figures. It appears 0 - .3 -
ilestigated the noise due to shot noise is negligible so the subse-
Card 214,
2'-~ " 6
S/109/61/006/01 0/01, 4/027
The influence of beam D266//D302
quent calciilations are confined to t~.c study of noise due to velo-
city fluctua.ti. ns at the potential minimum. In Figs. 10a and 10 b
the noise figu.-o is plotted against normali;,.ed drift diStance.
[Abstractor's note: Details of the calcullation ;~re not, r,!_ven, but
it is noted that the beam entering the helix is asoumed to I-,-;%,e a
constant diameter]. It is found that with the excet)LIon of olle
curve the minimum noise figure is increased if the scallop~n,~ of
the beam is taken into account. The noise gtener;_,ted by a beam of
constant diameter is given by the dotted lines. The I-AImbers on the
curves refer to the cases investigated. The final conclusion is
that if and P are different of zero the minimum available no-ise
figure is increased. There ire 1.2 figures, 1 -table and 27 referen-
ces: 7 Soviet-bloc Lind 20 non-6oviet-bloc. The 4 mos- recent re-
ferences to the English-language publications read as folloi,.rs: J.
Ber-hammer, S. Bloom, J. Appl. Phys., 1960, 31, 3, 454; 71.M. Muel-
ler, Currie, J. Appl. Phys., 1959, 30, 12, 1876; 11L. Adler,
Proc. 1959, 47, 10, 1713; C. Curtis, C. JohnEson, 7. Appl.
Phys., 1960, 31, 2, 338.
Card 3/4
Tile influence of beam
2) 3 16
.9/10 q/ 6 1. /, '0 6 /0.10/0 1. 4 /0 2 7
1)266/1.)302
ASSOCIATION: Fi:~icheskiy fkulltet Moskovskogo gosudarzltvennogro uni-
Xt&dra rl~'Idic-tekl
versiteta im. M.V. Lomonosovil,
iniki
'(Physics Pacnlty of tile 14oscow Otate Uriiversit~ illi.
M.V. Lonionosov, Department of Radioent-Ineerin.,
SUBMITTED: December 22, 1960
Pigs. 10a and 10b; Dependence Of P2 - 1 on 0 '6p 1) i,-~ the redi.-
ced plasma viave number) for case I (case I corre2flOrI010 10 a Cell-
tain choice of the potential profile).
Zip
Card 4/4
5/179/62,/000/002/009/012
El vVi-141 I
AUT 1iGRS Gliksvw, V . B. , Roma IIw.-.A:.iY , yu J11,
TITLE I Iivt!!5i.ig-,x "ion of comp co-upulmll fv,-~11~14; 11c i Ps of a 11
0 la st ic avrop I a Ile (tepood I.Ity, ('11'. t 5; v -0 ()(- I t it
PV.RTODTCAL Ak,kciomi-ya nauh . 1 7, v t, i V. 10 1. (1 t! I ~;! I I j -,- (!
to k fill i ch e!i k ~kh 11 it I Ili.. "I i lit n i, k kiI; Ll t Iit I it 0.--; t r o11 1. ye
n o . 2 ,19 6 2 , 10 5- 101)
TEXT Itl Lhi..; papur tile authol-~-, cut),;i(jor t1w of tile
torsional oscillations of a on t1w n,to-w(! of th~! banding
oscii1ations prouticed by applica-,:tou oC ailerovo-,~, Tlit! -problem
is prt~scnted in -SIICII a Way LIILtL 0, caix 6,~ ,if)lv(~fi wi.,A) computing
machint~s The Sol AIL1011 is on the di IIIQ~1::i e quatim-I
derived by S , Strelk-ov and A Kha H amov
Card J/11
S/ I.'j 9/6,2 /000/002/009/012
Investigation of complex ... E199/1"'I 13
h A
I c is ass umed Lha t Theodorser, !i fmir Li oil k L that the
wing is cantillevered and acciprdin~f, I:t) .-Aawlard
b(,mding and twi.5ting ftincLions of the fir~qt Qrtlot~, T, t .1 ) ,0 ( t
and ~(t) are variables cox-responding to coordmiateF, of bending
and I im) w and II,) -
torsion of the wing and to aileron (A~Iflef: : ) ,
velocity and chord of the wLng, Oj , (In', fi~, and Uil - parameters
dotormining mochanical o1' the I~-.Okg w.itA tjje a.,Llorolk,
. 11 2' 3 - sqtiares of parai-,-,oLers of frequenci:!s of bending and
tor.5ion of the wing and rotation of.' the n~lt~j-olj. Tht3 problem !is
reduced to finding the charticter)-,itic illdic,!,15 Of
Card 2/ 1,
Investigation of complex
5/ L 7 9/~j2/000/00 2
Lwl: :i 01* C, d
wh,~rc Z, y 3 '3 ~L it
Y i It: do -.10L itepell~ orlw "1711'i.v by
equa Ling E 4-,. M wi L h Erl (2) A~i.,;11111kj t1lal, 'Y'I~ x"-) L h ort
p:
Consequent "y charac-Leri-stic equa tion of (2) i(i 1.t 4 e
De t J pilc
This equ~xtiori 11,1S rout"'; of j U1 t y 1,
Of particular interest is
DW =- Dl(f),w) + j0 (:'),W)
2
Card 3/4
S/1 79/62/060/002/009/012
Investigation of' complex ... [~,l q IF /,.1 5
and its solution i.,; worked out in ;At,,,% i.1 of r-c)oL!3 for a
nuii,.ber of values of w are '1110 1-11.-MILP ShOW 1,11,111 4,110
roots corresponding to torsional )~;cillaLiom~ .,-)t' the alld to
oscillations of tilt! aileroll 41c, lit'L ally 1-~!du(-Ajon ill the
,ill of it I-,; "llown that a
oscillatory stability warg
system having tvro degrceri of freedom :Lo ad,~(ptat-) For CJAC
investigation L)I' flutter. The mt-l-ilott c;%71 ht! u-iod to determille ~i
whole, range of frequ(mcies oil Vijj-j()jj~j pi
There are 3 figures.
SU DX IT'f E D January 1.6, 196-1
Card 4/4
10
i~ con .( LO
rx
~'m u 110.
I ~~ A
L C
t'l
t
"u
Tjo 0, '1
:0
1
t c
bY
VO
rju cr~
c t i
0
oils t t u
0
C,
-)II
CC, I', c Ol", 11 L
bl)tt"~ Of
c
!;c i e ni n
c) r ll',~ i 's po t'Qll t 0.
Ze 2, on kr el~~
ir 7% k I t if W
At k"
ex x 1 (11' 1111
i 'l t n Lr c 0 11 .41 r1 t'L
tile "thorm"j.1" 1'.'~iv"! F~' v 0 J
t
1--uuid-ritro;,,en temperatur" all,l n 1 17 CIR, 'Fo
for
al so nollJ'!f
I'a t u re, ti s i
B 0 1
(r) -ze 1, x 1)
4, X1, r) rm r, 4 r
'i t i t ".I
n t
d
o r "m rl
C)
(2N' a
-,ve n~. i c
,
7i
1
s -2: al,
exp 2-rk.,:) (Ak cos 2',x
2:i
B
ksin2kx).
~
.
I'lk iBk = Ct, 'it t,
/Cc
Io"'
Of'
F~:
1:3
r,cotE3 S
LL C)
J
IL
-0 k
(2k
`Fk
3 In (2k -
4-
2k- -i -i
2,-, (2k
4
I v C,
z 3
c 1"
L, C, 11Z I I
iol!
lu X A,
(u (0) u (00) 0). x X,
nat ion . . .
OA
_r2
a1'2
arc t9 -- -
are sin q)/.
-arc sin a,,L
n r! . t
j ty 1) f C k I .; t v
trap. II~A X taken -.:I tht3
T.11.e C ac I I It i, 0!, Lr, Cal-vio~l Out -fol. '-'e'ralarlium an(l -siliccn:
0 0 1 ov
j()
j
T i rw L ti, oil 71
1 .89 V/") 4.05 5. 4 10 ;~7
xp 0. 7 7, r, 1.5 A, N(ml))
or
4 Coll ov
1. 67 If", :1.28 a 0. .5
X0 0.73, r,, 1 .2 1 A, N (x,) 2 8
0 V r U-7 6. j,')-0 C-., cm.
e2
V(r)=--e-
&r
Card
I Io
;Lll,~
2m IF 2 a .-th2
ref') Mal
0,.,-. ined cor t o t :1 o
ti
r 0::l 1 B I
1i' :~ c 1L -C 1: 1 1'; i L
1 1,2 t ol~
f
r) o v. u i;_, r.; V-.I!.;I",, ~ :l 'I I.. t t ::I
0 V : 1, o: In
Tt i c:;!
GLIM, V.13.; :11!0N0%', A.G.
Shielding of tho Coulonb potmtlal in nond~,-gcr,4,~ratnd
Fiz.tvur.tela 4 rio.2:336-342 .1 '&!. ("F-Jk 15:2)
1. ll,~)skov2kly j,,,ojudarstveuxIr-f UlllV(rJjWt IUMI.
(potoritial, Theory OC) (3 uld Qo lidue to r.-I )
BONCH-BRUYEVIGH, VA.; GLASKQ,__~tj~~ .... ..
Theory of "caBcade" recombination of current carriorL3 in
homopolar semiconduc tore. Fiz.tver.tela 1, no-2:510-523 F 162.
15:2)
1. 146skovuldy gosudarstvennyy univeraltot imesni Lomonoriovil.
(Sciniconductorij) (GryjLrd iattlcuj)
GLASKO., V.13. (Moskva); R0114NOVSKJY, Yu.~L (Moskva)
Involotigating combined natural vibrations of an alrplanfii dopending
on the flying speed. Izir.PJI SOSFt.Ct(l.tekii.niiiik.Ifet:li.i mushinostr.
no.2-105-109 M~-Ap 162. 0,IIPA 15:5)
(AArplanes.-Vibration)
-, GRCGHEV, A. L., IMPTEr
()V, V. V., S, VF~3 KDV, A. (,.,
SEMASHKO, N. N., RUEPANOV, V. M.,
'~Study of Individual Charged Partic-le Motton in Magnette Ftelds,"
report presented at the 6tb Intl. Conf. an Ionization Phenomena in Gases,
Paris, France, 8-13 Jul 63
GLASKO, V.B.; SAVARENSKIY, re.F.; SUCHKOV, B.N.
Data on phase and group velocition of surface arilsi-nic waves. Izv.
All SSSR. Ser. geofiz. no.10:1486-1493 0 163. (NIRA 16:12)
1. Institut fiziki Zemll AN SSSR.
BUDAK, B.M.; VINO(,T-4.DOVA, Ye.A,,; GLASKO, V.B.; KONONKOVA, G.Ye.;
FOBORCIMA, L.V.
Problem of wisteady water movement in a re2erroir solved
by an electronIc computer. Metoor, i gddrol. no.12:14-21.
D '63, (MIRA 17:3)
1. Moskovskiy got~udiirstvownyy univer,itat, fizioho3kLy
fakulltet.
S/051/63/0114/004/008/0261
AUTIIORS: TIonch-Druyevich, V.L., Glasko. V.B.
TITI.E. 1-~nergy levels In a Dabye field
~:-PERIODICAL: Optilca i spektrosRopiya, v.14., no.11"1,963., 405-504
TEXT, A numerical solutii)n (if the problem of Ui4i enorg,~ spectrum
of particles in a field with a potermial
2
V (r) r
r ro
1.8 given (r - tho distance betwoork contorts or force and, attracted
particles, r0 - the screening ra d i u 14 Thif number and position
of the eigenvalues of the energy depanding ort tho obaract.cr of tile
p*ararnetcr 2
romr
are determined (m the mass of thd
h2
particles). The range of 8; investigated covero tho whole range
of temporaturc.and concentration whiola in of intojl~-ast and the
calculated energy levels are fully tiibulated. T4a transition
probability with change of (principal quantum humbor N = n + L+
I,; is also estimated.. For g 10, which is typical for, semiconductoM
11, Card. 1i2
BALEBANOV, V.1-1. ; GLAS?*",~:, 17.1 ., 1" . r 1, .
I IJ ~ , , L.- i .1- L "
SVESIINP~07' 7..; 1:'' 'I"I"
y 11., '. - ,
Motion cff f~hIll-gl--d in ullilli I'l, .11~ijme tdc "it-A I'l.
Atom. energ. 19 no.4 :'W'- 11 ') 0 16 1. (IldlIA
BAI,;-'.BA.':OV,, V.~~!.; VOLKOV., III.I.; UASY0, 7.iJ.; GROS*!EV, A,L.; XUNETSOV, V,V.;
SV:'Z';,: I I KOV , A,'.,.; SE,,'M!:K0.. IN, N,
i~
No t, ~ oll of Li~ohtecl ~ pil' Lcic,,, 1 ri ; !~i,,,,Tv - I:- ~ h, to" w 1 ~,~ I i w! I --,il
z in. :~~e ' 1- '63.
. ry. I tom. --norr. 1, F ri,,,. 09 4.10 (~ 16: .1")
~f It
ACCESSION NR: AP4037262 S/0208164/004/Do3/0564/0571
AUTHOR: Tikhonov', A. N. (Moscow); Glasko, V. B. (Moncow)
TITLE: An approximate SolUtion,of Fredholin integral equations
of the first kind
SOURCE: Zliurnal vyAc1iit;litel'noy matematiki i matemattcheskoy
fiY-M, v. 4, no. 3, 1964,.564-571
TOPIC TAGS: method, Fredholm integral equation,
firit kind iT~Lcgral equation, Fredholm equation approximace
aolution, error eatimate
ABSTRACT : The c f fe c t i va a a s 6 o f L la c re g u I a r I z a c 1. a a me th a d d c ve I o pd
by A. '11. Tikhonov (DAN SSSR, v, 151, no. 3, 1963, 501-504, and
v. 153, no. 1, 1963, 49-52) for the approyLnatc fioluftou of the
Frodholn integral equation of thu, first kLnd (f.ricc.)rructLy definei
problem) ia presented as applied to the following, form of thacquation
Card 1 3
ACCESSION.NR. AP4037262
+1
Afx,zj M K(x,s);(s)ds a(x), -Z4x_