CONCORDE

Document Type: 
Collection: 
Document Number (FOIA) /ESDN (CREST): 
CIA-RDP80-00247A004200400001-9
Release Decision: 
RIPPUB
Original Classification: 
C
Document Page Count: 
67
Document Creation Date: 
December 27, 2016
Document Release Date: 
March 5, 2014
Sequence Number: 
1
Case Number: 
Publication Date: 
November 3, 1964
Content Type: 
MISC
File: 
AttachmentSize
PDF icon CIA-RDP80-00247A004200400001-9.pdf4.67 MB
Body: 
Declassified in Part - Sanitized Copy Approved for Release 2014/03/05: CIA-RDP80-00247A004200400001-9 Declassified in Part - Sanitized Copy Approved for Release 2014/03/05: CIA-RDP80-00247A004200400001-9 Declassified in Part - Sanitized Copy Approved for Release 2014/03/05: CIA-RDP80-00247A004200400001-9 1 1 1 11.211111.0.111.6.11.1113 mriseammssay. Declassified in Part - Sanitized Copy Approved for Release 2014/03/05: CIA-RDP80-00247A004200400001-9 STAT Declassified in Part - Sanitized Copy Approved for Release 2014/03/05: CIA-RDP80-00247A004200400001-9 122 c: DESCUMON GENERALE GE.W.'2A Issue 2 ISF.175 SUD AVIATION 37 BOULEVARD DE MONTVI RENO( PARIS 16 eme FRANCE DISCRIPTIOH AIRCRAFT CORPORATION FULTON HOUSE MIMI, BRISTOL . ENCLAND Declassified in Part - Sanitized Copy Approved for Release 2014/03/05: CIA-RDP80-00247A004200400001-9 STAT - Declassified in Part - Sanitized Copy Approved for Release 2014/03/05: CIA-RDP80-00247A004200400001-9 ????,..10??????????......???????????,????"*. Declassified in Part - Sanitized Copy Approved for Release 2014/03/05: CIA-RDP80-00247A004200400001-9 Declassified in Part - Sanitized Copy Approved for Release 2014/03/05: CIA-RDP80-00247A004200400001-9 DESIGN CONCEPT LEADING PARTICULARS FLIGHT DECK STRUCTURE ELECTRICAL SYSTEM ANTI-ICING SYSTEM HYDRAULIC SYSTEM FLYING CONTROLS FUEL SYSTEM AIR CONDITIONING ACCOMMODATION POWER PLANT GROUND HANDLING PERFORMANCE TAKE -OFF CLIMB .CRUISE FLIGHT PROFILE LANDING PAYLOAD RANGE & RESERVE FUEL NOISE RADIATION AIR TRAFFIC CONTROL & NAVIGATION ECONOMICS BLOCK TIME & FUEL AIRCRAFT MILE COSTS SEAT MILE COSTS " PRODUCTIVITY PASSENGERS TO BREAK EVEN 2 PHILOSOPHIE 6 CARACTERISTIQUES GENERALES 8 POSTE DE PILOTAGE 9 STRUCTURE 14 INSTALLATION ELECTRIQUE 16 DEGIVRAGE 17 INSTALLATION HYDRA ULIQUE 19 COMMANDES DE VOL 21 CIRCUIT DE COMBUSTIBLE 23 CONDITIONNEMENT UAW 24 AMENAGEMENT 27 REACTEURS 29 SERVICE AUX ESCALES 31 PERFORMANCES 32 DECOLLAGE 34 MONTEES 36 PERFORMANCES EN CROISIERE 38 MISSION TYPE 40 ATT.ERRISSAGE 42 CHARGE MARCHANDE - RAYON D'ACTION & RESERVES DE CARBURANT 44 46 49, 52 54 56 58 60 62 BRUIT RADIATIONS CONTROLE DU TRAFIC AERIEN & NAVIGATION ETUDES ECONOMIQUES COMBUSTIBLE & TEMPS BLOC COUT D'EXPLOITATION AVION cow: D'EXPLOITATION PAR SIEGE-MILLE PRO.DUCTIVITE SEUIL DE RENTABILITE Declassified in Part - Sanitized Copy Approved for Release 2014/03/05: CIA-RDP80-00247A004200400001-9 Declassified in Part - Sanitized Copy Approved for Release 2014/03/05: CIA-RDP80-00247A004200400001-9 The prospect of a supersonic transport awaited an advance in the field of aerodynamics which demonstrated a sufficient improvement in efficiency to warrant further development. Arguments in favour of proceeding with the task have ranged from claims of economic merit to pure inevitability, but to be a successor to the subsonic jets, which already carry over 50 per cent of the world's air traffic, it was essential that a large increase in cruising speed should be made to achieve reasonable economics. DESIGN BACKGROUND Before discussing the reasoning behind the design of the Concord, it is of interest to note the amount of super- sonic flight experience available to the BAC/SUD consortium and the research programmes currently under way. Both companies began to fly significant aircraft in 1954 - the French were developing the Trident mixed-power interceptor fighter and in the autumn of that year English Electric flew the 13.1, progenitor of the Lightning fighter. Another noteworthy British supersonic aircraft flown in 1954 was the Fairey Delta, or FD.2, which went on to gain the World's Speed Record. Both the P.1 and the FD.2 embarked on intensive programmes of research into super- sonic flight while in France another aircraft, the Durandal research vehicle, was under development and eventually attained a speed of Mach 1.6 in December, 1956. The Trident achieved Mach 2.0 in early 1957, by which time the P.1 had progressed to pre-production standard and speeds of Mach 1.2 to 1.5 were becoming commonplace. The following year, 1958, saw the first supersonic flying at, and in excess of, Mach 2.0, by two French aeroplanes, the Marcel Dassault Mirage III fighter and the NOrd Griffon research vehicle - the latter achieved Mach 2.05 in October, 1958. Currently France has the Mirage IV 2 Le transport Supersonive est devenu concevable a partir dit moment oil les progres realises en aerodynamique ont Pu assurer a cette formule un rendement suffisant et lui garantir un developpennent ulterieur. Les arguments en faveur de sa realisation sont multiples, qu'il s'agisse d'avantages economiques ou simplement du fait qu'il est impossible d'arreter le progres ou d'y renoncer. Pour etre un successeur valable des Jets subsoniques qui sont parvenus a. s'adjuger plus de la moitie du trafic aerien mondial, il est imperatif que le transport supersonique possede un avantage de vitesse suffisant pour avoir une economic competitive. EXPERIENCE ACQUISE Avant d'exposer les ides mattresses du projet Concorde, il parait interessant de re-sumer l'experience supersoniquc acquise par le consortium SUD/BAC, ainsi que le programme des essais en cours de realisation. Les premiers essais en vol d' avions supersoniques entrepris par les deux societes datent de 1954, ?que a laquelle les Francais mettaient au point leur intercepteur bi-reacteur Trident a. fusee auxiliaire suivi a l'automne de cette meme annee par le P.1 d'English Electric, premier de la famille des chasseurs Lightning. Un autre avion britan- nique,le celebre FD.2 Fairey Delta vi devait conquerir le record mondial de vitesse, effectuait egalement son premier vol en 1954. Les avions P.1 et FD.2 poursuivaient leur programme de mise au point acceleree tandis qu'en France un autre avion prototype le Durandal atteignait au mois de decembre 1956 la vitesse de Mach 1,6. Au debut de 1957 le Trident realisait Mach 2, alors que le P.1 produit en prdse(rie, croisait couramment entre Mach 1,2 et 1,5. L'annee suivante, 1958, vit les premiers vols super- soniques depassant Mach 2,0 realise's par deux appareils francais lc Mirage III, avion de chasse Marcel Dassault, et le Griffon, avion experimental Nord Aviation, cc dernier Declassified in Part - Sanitized Copy Approved for Release 2014/03/05: CIA-RDP80-00247A004200400001-9 1 'i Declassified in Part - Sanitized Copy Approved for Release supersonic bomber, Which has a design cruise speed in excess of Mach 2.0. In Great Britain, the follow-up to the research pro- grammes carried out by the P.1 and FD.2 aircraft is provided by the steel Bristol Type 188, first flown in 1962; this aircraft has been designed and built to investigate speeds and associated problems, particularly those of aerodynamic heating, at speeds up to Mach 2.5. Directly linked with the Concord development pro- gramme are two further aircraft, the Handley Page HP.115 and the BAC 221. The former is a small single-seat aeroplane designed to investigate the low-speed control and stability of the slender delta wing planform which will be used in the Concord. The BAC 221 is in fact a modific- ation of the FD.2, but fitted with a slender delta wing and designed to work in the high speed regime. Additionally, information on the engine and power plant installation will be augmented by results from the flying of the TSR.2 low level supersonic strike fighter which is powered by Olympus engines of which the Concord engines are a modified version. SELECTION OF CRUISING SPEED A marginal increase in operating speed into the supersonic regime is precluded by the well-marked and inevitably sharp drop in Lift/Drag ratio in the vicinity of Mach unity; thereafter the fall is more gradual and, fortunately, further increases in speed bring consequent improvements in propulsive efficiency so that, despite increasing drag and decreasing L/D, the overall efficiency of the engine-airframe combination rises with increasing Mach number once the marginally-supersonic speeds are exceeded. However, the rise in speed brings about a further complication - that of the rapidly increasing generation of heat; the major problem is aerodynamic heating and at Mach 2.2 the stagnation temperature - i.e., the highest 2014/03/05: CIA-RDP80-00247A004200400001-9 3 atteignant Mach 2,05 en Octobre 1958. A l'heure actuelle la France dispose d'un bombardier supersonique, le Mirage IV, capable d'une vitesse de croisiere superieurr a Mach 2.0. En Grande Bretagne, la refeve du provamrne des essais effectues par les avions P.1 et FD.2 etait assurCe par le Bristol 188, avion experimental en acier dont le premieL- remonte a 1962 et qui fut concu et realise'pour etucticr [es problemes lies a la vitesse et particulierement Pechauffement cinetique aux Machs allant jusqu' TRIDENT DU RAN GAL ??:\\? \ LIGHTNING VULCAN DESIGN BACKGROUND EVOLUTION DU CONCORDE Deux autres avions, le Handley Page HP 115 et le BAC 221 ont 6te ensuite realises en liaison directe avec le programme Concorde. Le premier est un petit mono- place destine' a. experimenter la rnanoeuvrabilite et la stabilite aux basses vitesses de la forme ogivale qui sera utilisee sur le Concorde. Le BAC 221 qui est en fait un FD.2 modifie par substitution d'une aile ogivale, aete concu pour explorer le domaine supersonique. De plus les essais Declassified in Part - Sanitized Copy Approved for Release 2014/03/05: CIA-RDP80-00247A004200400001-9 EFFICIENCY Declassified in Part - Sanitized Copy Approved for Release 2014/03/05: CIA-RDP80-00247A004200400001-9 ...... ts 00, AERODYNAMIC 10 20 30 MACH NUMBER OVERALL EFFICIENCY REORIENT GLOBAL temperature recorded on the airframe - is in the region of 153 degrees Centigrade. Away from the points of high temperature the level approaches 120 degrees Centigrade. At this point - Mad; 2.2 - in the supersonic flight regime, it is apparent that an area of multiple advantage exists. Firstly, propulsive efficiency is on the increase, secondly the drag-increase is within acceptable limits, and thirdly, an airframe capable of maintaining a sustained cruise at this speed can be manufactured by normal aeronautical engineering methods using conventional aluminium alloys. To design a transport aircraft with a higher speed, say Mach 3.0, would result in a slight improvement in overall efficiency which would be coupled with very much higher cruising temperatures. This would mean a departure from aluminium alloys to steel and titanium with their higher costs in materials and tooling and the more expensive development programme needed to combat the current general lack of experience in manufacturing techniques. 4 en vol du TSR.2 fourniront des enseignements utili sables pour le Concorde dont les reacteurs de'rivent directement des Olympus equipant l'avion d'appui tactique supersonique en question. CHOIX de la VITESSE de CROISIERE Une penetration limitee dans le domaine sitpersonique est vouee a l'insucces par suite de la chute inevitable et nettement caracterisee de la finesse aux environs de Mach 1. Plus loin, cette decroissance est moms accentuee et comme - circonstance favorable - la consommation kilo- 'metrique diminue lorsque la vitesse augmente le rendement global de l'ensemble cellule-propulsion s'ameliore des que la vitesse du son est franchement depassee - ceci malgre l'accroissement de la trainee et la diminution de la finesse. Toutefois a mesure que la vitesse augmcnte, apparait une nouvelle difficulte dile a Pechauffement cinetioque. A Mach 2,2 la temperature d'arret atteint deja 153 C et le niveau des temperatures en dehors des zones chaudes de la cellule approche alors de 120?C - un flux de chaleur plus important risque done de creer un probleme de materiaux. On voit ainsi que le vol supersonique au voisinage de Mach 2,2 presente des avantages multiples. Pour commencer, la consommation kilometrique continue a s'ameliorer, ensuite l'accroissement de la trainee se maintient dans des limites acceptables; enfin, une cellule capable d'endurer un vol ces vitesses peut encore etre fabriquee a l'aide de procedes classiques en utilisant des alliagcs d' aluminium connus. Pour realiser un avion de transport ayant des vitesses de croisiere plus elevees et des rendements globaux1e0re- ment ameliores, il faudra tenir compte de temperatu.rs bien superieures. A Mach 3,0, par exemple, cela en- trainera le remplacement des alliages par de l'acier on du Titanc, cc qui signifiera des prix de rnatiere et d'outillage accrus et des programmes de recherche plus coateux. Declassified in Part - Sanitized Copy Approved for Release 2014/03/05: CIA-RDP80-00247A004200400001-9 Declassified in Part - Sanitized Copy Approved for Release 2014/03/05: CIA-RDP80-00247A004200400001-9 It is an interesting coincidence to note that the slender delta planform adopted for the Concord, which satisfies all specific aerodynamic conditions, does so as long as the design speed does not greatly exceed Mach 2 - this is also the speed beyond which, as is shown above, conventional aluminium alloys cease to be appropriate materials for the airframe structure. SELECTION OF SHAPE The best theoretical shape for optimum cruise per- formance at Mach 2.0 is a slender delta wing about fur times as long as its semi-span, because it offers a means whereby cross-sectional areas can be arranged to be close to those which give a theoretical minimum wave drag. For much higher speeds, the aspect ratio for best Lift/Drag ratio decreases and this leads to a deterioration in low speed handling qualities to the point where a canard con- figuration becomes advisable. At Mach 2.2 it is possible to achieve a satisfactory compromise with a modified delta having a long slender nose which gives a high Lift/Drag ratio. Suitable cambering ensures greatly improved sub- sonic and transonic performance and an enhancement of low speed stability and control. SELECTION OF ENGINE The choice of the optimum engine for the Concord represents a compromise between a wide range of flight requirements. High thrust is required for.take -off, transonic and supersonic cruising flight, whilst low fuel consumption is necessary both during cruise at high thrusts and for the subsonic diversion and holding pattern during which about one-third maximum thrust is used. Starting with the cruising case, a relatively high pressure ratio engine is required with a high specific thrust necessary for low power plant weight; this leads to the choice of a moderately high turbine entey temperature. Fortunately, however, the use of a high pressure ratio leads On peut noter en passant que la forme en plan ogivale retenue pour Palle de Concorde permet de satisfaire toutes les exigences aerodynamiques tant que les vitesses pre'vues ne depassent pas sensiblement Mach 2 - cc qui coincide avec la limite definie plus haut - partir de laquelle les alliages classiques d'aluminium cessent &etre utilisables pour la construction de la cellule. CHOIX DE LA FORME AERODYNAMIQUE Pour croiser A, Mach 2,0 une aile ogivale deux fois plus longue que large, se rapproche de l' optimum theorique, car l'evolution des sections transversales peut suivre la loi donnant une trainee d'onde minimum. Pour des vitesses notablement superieures l'allongement donnant la meilleure finesse est plus faible, cc qui entratne une deterioration des caracteristiques correspondant aux portances elevees squ' au point oi la configuration canard devient une solution a retenir. A Mach 2,2 il est possible de parvenir a un compromis satisfaisant en raccordant a une aile delta une pointe effilee qui lui donnera une finesse plus elevCe. A l' aide d'une cambrure appropriee, il est possible d' ameliorer notablement les performances subsoniques et transsoniques et plus particulierement la manoeuvrabilite et la stabilite aux faibles vitesses. CHOIX des REACTEURS L'optimisation des reacteurs equipant Concorde rep- resente un compromis entre des exigences couvrant un domaine de vol tres etendu. Une poussee elevee est necessaire pour le decollage, Pacceleration transsonique et la croisiere supersonique, alors qu'une faible consommation specifique est importante tant pour la croisiere a la poussee maximum que pour les deroutements subsoniques et les attentcs effectuees au tiers de la poussee nominale. Pour cc qui est des croisieres, il est necessaire d'avoir un taux dc compression assez eleve associe a un rapport poids/poussee faible. Cela conduit a adopter, pour les temperatures a Pentree de la turbine des valcurs modertnent elevees. II se trouvc heureusetnent que dans Declassified in Part - Sanitized Copy Approved for Release 2014/03/05: CIA-RDP80-00247A004200400001-9 STAT STAT - Declassified in Part - Sanitized Copy Approved for Release 2014/03/05: CIA-RDP80-00247A004200400001-9 to low consumption in the subsonic diversion and holding cases. Bristol Siddeley were already developing for the military TSR.2 an advanced version of the Olympus engine with a moderately high pressure ratio. It was therefore decided to power the Concord with a development of the TSR.2 engine to be known asthe Olympus 593. The develop- ment includes an increased air mass flow and the use of a re-heat system developed and mariufactured by S. N.E.C.M. A. le cas des deroutements et des attentes subsoniques, le choix d'un taux de compression important se repercute favorablement sur les consommations specifiques. Bristol Siddeley mettait au point pour l'aviation militaire une version poussee de l'Olympus destinee au TSR.2. II fut donc decide d'equiper le Concorde avec un derive de ce reacteur. Sous la designation Olympus 593, cc derive comporte une post-combustion etudiee et realisee par la SNECMA, cependant que le debit d' air a ete augmente. Span 83.8 ft. Envergure 25,5 m. Length 184.2 ft. Longueur 56,2 m. Height (Top of fin) 38.0 ft. Hauteur (Haut de la derive) 11,6 m. Wing Area 3,860 sq.ft. Surface de reference voilure 358,25m2. Cabin Interior Width 103.4 in. Largeur Interieure Cabine 2,63 m. Cabin Interior Height 77.0 in. Hauteur Interieure Cabine 1,96 m. Max. Cabin Pressure Differential 10.7 p.s.i. Pression Differentielle Max. de la Cabine 750 gr/cm2 Cargo Volume 618 cu.ft. Volume des Soutes 17,6 m3 Maximum Take-off Weight 326,000 lb. Poids Max. au Decollage 148.000 Kg. Maximum Landing Weight 200,000 lb. Poids Max. a L'atterrissage 91.000 Kg. Maximum Zero Fuel Weight 165,000 lb. Poids Max. Sans Carburant 74.910 Kg. Operating Weight Empty 139,000 lb. Poids a Vide en Ordre D'exploitation 63.110 Kg. Maximum Payload 26,000 lb. Charge Marchande Max. 11.800 Kg. Usable Fuel Capacity 174,000 lb. Capacite de Carburant Utilisable 79.000 Kg. Engines Reacteurs Number 4 Nombre 4 Type Rated Thrust BSEL Olympus 593B 35,000 lb. Type BSEL, Olympus 593B Poussee Notninale 15.890 Kg. 6 Declassified in Part - Sanitized Copy Approved for Release 2014/03/05 :_CIA-RDP80-p0247A004200400001-9 Declassified in Part - Sanitized Copy Approved for Release 2014/03/05: CIA-RDP80-00247A004200400001-9 a oJo ao aaaaaaaallaaaa aaaaaaa 7 Declassified in Part - Sanitized Copy Approved for Release 2014/03/05: CIA-RDP80-00247A004200400001-9 Declassified in Part - Sanitized Copy Approved for Release 2014/03/05: CIA-RDP80-00247A004200400001-9 The flight deck is designed for a crew of three - two pilots and a flight engineer - with provision for a super- numerary fourth crew member. ? Entering the flight deck, the engineering panels are on the right and the electrical distribution circuit breaker panels and navigation instruments on the left. A console on the fuselage side of each pilot incorporates some of the navigation and communication controls. Conventional control columns and adjustable rudder pedals are provided for each pilot. On either side of the main dash panel are the basic flying instruments and in the centre the controls and instruments used commonly by both pilots. A coaming designed to aim:nate reflection of the flight deck instruments on the windscreen surmounts the panel. Fitted into the face of the coaming is the master warning light and the engine fire-control knobs; mounted on top is the auto-land display. Between the pilots is a centre console which incorpor- ates throttles, trim controls, auto-throttle and autopilot control units, re-heat, air brake controls, radio, navigation SIEGE PILOTS SIEGE CO-PILOTE 2 SIEGE OBSERVATEUR 3 SIEGE MECANICIEN 4 TABLE MECANICIEN 5 TABLEAU MECANICIEN 6 PANNEAU DISJONCTEURS 7 PANNEAU NAVIGATION 8 PANNEAU DE PLAFOND 9 ELECTRONIQUE 10 '.,:LECTRICITE 11 CAPTAINS SEAT CO-PILOTS SEAT SUPERNUMERARY SEAT ENGINEERS SEAT ENGINEERS TABLE ENGINEERS PANEL CIRCUIT BREAKER PANEL NAVIGATION PANEL ROOF PANEL ELECTRONICS ELECTRICS PUPITRE CENTRAL 12 CENTRE CONSOLE PUPITRE LATERAL 13 SIDE CONSOLE PANNEAU INSTRUMENTS 14 DASH PANELS VITRES PRINCIPALES 15 MAIN SCREENS VITRES LATERALES 16 SIDE SCREENS STOCKADES 17 STOWAGES 8 Le poste de pilotage est amenage pour 3 membres d'equipage; pilote,co-pilote et mecanicien. Une place est prevue pour un observateur eventuel. A droite de Pentree du poste se trouvent les panneaux du mc.i.canicien, a gauche les tableaux de distribution electrique avec leurs dis- joncteurs. Au droit de chaquepilote se trouve une banquette laterale portant le panneau de commande de la radio. Chacun des pilotes dispose d'un volant et de pedales re'glables classiques. De chaque cOte de la planche de vol principale se trouvent les instruments de vol essentiels et au centre les instruments et les commandes communs aux deux pilotes. Les planches de bord sont surmontees d'i n auvent destine a diminuer la reflexion des instruments de vol dans le pare brise. Get auvent porte les avertisseurs lumineux generaux ainsi que les boutons commandant les extincteurs des compartiments reacteurs. Un ecran servant a Patter- rissage automatique est prevu dans la partie superieure. Un pupitre central situe entre les deux pilotes porte les manettes de gaz, les commandes de reverse, de rechauffe eventuelle et de trims, l'automanette et les boites de commande du pilote automatique, de la navigation, de la radio et des communications essentielles ainsi que la commande de secours de la visiere. Le restant des ins- truments et des commandes utilises en vol par les deux pilotes est place au plafond stir un panneau central a facettes normales au champ de vision. En plus d'un eclairage integral, tous les instruments sont pourvus d'un eclairav d'ambiance. Une'clairage blanc electroluminiscent est prevu pour les boutons de commande Declassified in Part-Sanitized Copy Approved for Release 2014/03/05: CIA-RDP80-00247A004200400001-9 LI Declassified in Part - Sanitized Copy Approved for Release 2014/03/05: CIA-RDP80-00247A004200400001-9 and primary communication controls and the emergency control for lowering the visor. The remainder of the instruments and controls required by the pilots in flight are located in a central roof panel, the forward end of which is angled in steps toward the line of vision. In addition to integral lighting of all instruments local lighting is also provided. White electro-luminescent panels illuminate the control switches and panel markings. The Engineer's panels incorporate instruments and controls for power plant management, electrical services, air conditioning, de-icing, hydraulic services and fuel management. Because the Engineer requires access to instruments on the left side of the aircraft and also to the centre console and roof panel, his seat is mounted on a turn- table fitted with tracks which permit movement sideways and fore-and-aft. The two main windscreen panels are integrally de-iced and are also toughened to withstand bird- impact. For supersonic flight the upper surface of the aircraft's nose lifts hydraulically to reduce drag; this also protects the main panels against the effects of kinetic heating. The flight deck direct-vision panels and side-screens are electrically de-misted. DESIGN CRITERIA The aircraft structure is designed to satisfy the agreed requirements of the Joint Franco-British Airworthi- ness Authorities, taking account of British BCAR and French Standard AIR 2051 :cequirements, the latter satisfying the requirements of the American CAR 4b. The design cruising speed curve shows the variation of maximum cruising speed with altitude. At normal cruising heights between 55,000 and 63,000 ft and under standard atmospheric conditions the Mach No. is 2.2, corresponding to a true air-speed of 1,450 miles per hour: The design diving speed is chosen to give adequate margin against inadvertent departure from Vc arising from upset manoeuvres and atmospheric disturbances such as entry into gusts, jet streams or changes in temperature. 9 et les inscriptions sur ,les panneaux. Les deux glaces frontales du pare brise a d6givrage integral sont capables de resister a, l'impact cfventuel de's oiscaux, En vol a faible vitesse, une bonne visibilite est assuree grace a un nez bas,,i!...lt de 10 dont la partic supericure formant visiere c.- cf:;;:amotee. En vol supersoniquc, le tout est releve hydrauliquement, non seulement pour reduire la trainee mais aussi pour proteger les glaces frontales contre Pechauffement cinetique. Une visibilite avant reduite est alors assuree aux deux pilotes au moyen d'ouvertures transparentes pratiquees dans la visiere. Les glaces assurant la visibilite directe, panneaux lateraux compris, sont a desernbuage electrique. Une attention particuliere a ete apportee dans la conception du poste de pilotage pour reduire au maximum la fatigue, imposee a Pequisage. Les instruments sont rapproches et logiquement disposes; le siege a support pivotant monte sur glissieres permet aussi bien des mouvements lateraux que longitudinaux suivant le desir du rnecanicien. Meme en position extreme avant, tous les instruments restent facilement observables. CONDITIONS DE CALCUL La structure de l'avion a ete etudiee de facon repondre aux exigences combinees des autorites Franco- Britanniques bases sur le BCAR anglais et la norme AIR 2051 francaise, cette derniere tenant compte des exigences americaines definies dans le CAR 4 B. La courbe donnant les limitationsde la vitesse en Fonction de l'altitude rnontre les vitesses maxitnales at- teintes en croisiere. Aux altitudes norrnales de croisiere entre 17.000 et 19.000 metres, dans des conditions at- riques standard le nombre de Mach de 2,2 correspond )? tine vitesse vraie de 2340 km/h. La vitesse do pique rctenue pour le calcul a ete choisie de facon a assurer tine marge suffisante par rapport aux vitesses de croisiere pour couvrir les ecarts causes par des manoeuvres Declassified in Part - Sanitized Copy Approved for Release 2014/03/05: CIA-RDP80-00247A004200400001-9 70,000 60,000 50,000 ILI 40,000 s- - 30,000 r- -J 20,000 10,000 Declassified in Part - Sanitized Copy Approved for Release 2014/03/05: CIA-RDP80-00247A004200400001-9 ep C7. tN0C4 Vc - o vo cool:. 04' 2 *- ore 09 05 1.0 15 MACH NUMBER 20 DESIGN SPEEDS LIMITATIONS DE VITESSE 25 Gust intensities at supersonic cruising altitudes are sufficiently low for the rough airspeed to coincide with cruising speed without incurring additional structural penalty. At subsonic speeds however, deceleration to a rough airspeed applies as for present day aircraft. The design limits of the manoeuvre load factors are +2.5 and -1, these being of the same magnitude as for current civil transport aircraft. Loads on the fuselage due to cabin pressurization correspond to a maximum pressure differential of 10.7 p.s.i. and loads on the wing structure due to fuel tank pressurization (over 40,000 feet) correspond to a maximum of 2.14 p. s.i. The life of the airframe is a major factor in struct- ural design. Because of the more exacting environment in which the Concord will operate, the effects of metal fatigue and creep assume greater significance in determin- ing the working stress levels for a life of the required order. intempestives, des perturbations atmospheriques telles que rafales et jet streams ou discontinuites de temperature. Les intensites des rafales aux altitudes de vol en supersonique sont suffisamment faibles pour que la vitesse de croisiere maintenue en atmosphere agitee n'entratne point de penalisations structurales. Toutefois, en regime sub-. sonique la rencontre de turbulences necessite une reduction de vitesse comparable a celle des avions en service. Les facteurs de charge limite correspondant au domaine des manoeuvres symetriques sont + 2,5 et - 1 comme pour , les avions de transport classiques. Les charges de pres- surisation correspondent a une difference de pression maximum de 750 mb pour la cabine et a 150 mb pour les reservoirs structuraux de l'aile (permettant de maintenir une pression absolue de 230 mb a 19.000 metres). L'endurance de la cellule est un facteur essentiel pour le dimensionnement. Etant donne les ecarts d' ambiance rencontres par Concorde, les effets cumules de fatigue et de fluage sont des facteurs tres importants dans la deter- mination des niveaux de contraintes compatibles avec unc vie en fatigue donnee. L'elasticite inherente de l'aile effilee et mince dc Concorde a des repercussions importantes. Aussi le dimensionnement des extremites de l'aile est largement influence par des considerations de rigidite minimale in- dispensable pour pr6venir l'apparition du flutter et assurer une bonne efficacite des gouvernes. 10 NORMES STRUCTURALES Toutes les charges de calcul peuvent etre support&s sans ruptures ni deformations permanentes. Le dimensionne- ment de la structure de base a cite effectue en ayant en vue unc vie en fatigue an moms egale a 30.000 heures. La conception fail-safe a cite appliquee dans la ,,,-surc du possible, la solution multipoutre utilisee permet d' assu re r Pacheminernent des efforts dans le cas d'une defnillance partielle ou totale d'un element important sans entratner la rupture de l'ensemble ni abaisser la resistance r6 siduel le en dessous d'un standard suffisant pour tenir les charges appliquees en vol normal. Le niveau general des contraintes Declassified in Part - Sanitized Copy Approved for Release 2014/03/05: CIA-RDP80-00247A004200400001-9 STAfl I1-1.. El El El El El El S TAT Declassified in Part - Sanitized Copy Approved for Release 2014/03/05: CIA-RDP80-00247A004200400001-9 Because of the longer slender Concord airframe the implications of airframe flexibility are significant in basic design. For instance, to avoid the onset of flutter and ensure adequate control effectiveness, the outer wing design is largely influenced by flexibility considerations. STRUCTURAL REQUIREMENTS The primary structure is capable of withstanding all design loads without failure or permanent deformation. It is designed for a service life of not less than 30,000 hours. Fail-safe principles are embodied wherever practic- able; the multi-load path concept being used to ensure that complete or partial failure of a single main structural member will not in itself cause the collapse of the whole structure or reduce its strength to a level insufficient to sustain normal flight loads. Low design stress levels afford protection against catastrophic failure of the struct- ure resulting from cracks or local ruptures which might occur 'during the intervals between periodic inspections. At the high cruising speed attained by the Concord, friction between the aircraft skin and surrounding air results in kinetic heating and a consequent rise in structure temperature. The highest skin temperatures recordsd on the air- frame at a cruising speed of Mach 2.2 are 153 C at the nose and 130?C at the wing leading edge. Away from these areas the equilibrium temperature is in the order of 120 deg. C. The effects of this high temperature environment on the structural materials used in the design are twofold. Firstly, it is well known that the load bearing properties of metallic materials reduce with increasing temperature, some materials being more adversely affected than others. However, for much of the structure it is the recovery properties that are more significant as the greater design loads occur either in subsonic flight or in landing or ground manoeuvring. Secondly, sustained exposure to elevated temperatures associated with sustained stress will result in creep of the material and therefore permanent deform- ation of the structure. est peu 'eClev6 et ecarte le risque d'une rupture catas- trophique de la structure qui pourrait ntre provoquc'!c par des criqucs ott des defaillanees locales survenanc entre les revisions pe.riodiqucs. ..\ux vitesscs de croisiere atteintes par Concorde, lc frottement de Pair contre le revC.-.1tement se transforme en chalcur et Sc traduit par une elevation de la temperature de la -,r; ueturc. En, croisierc a Mach 2,2 les temperature8 les plus elevees a l'extericur ds la cellule atteignent 153 C pour le nez du fuselage et 130 C pour le bord d'attaque de l'aile. En dehors de ces endFoits la temperature d'equilibre s'etablit aux environs de 120?C. TEMPERATURES D'EOUILIBRE DE LA SURFACE SUPERIEURE DU REVETEMENT CROISIERE A MACH 2,20 ET 18300 METRES- ISA. SKIN EQUILIBRIUM TEMPERATURES- TOP SURFACE CRUISE MACH 2.2 AT 60,000FT. LS.A. TEMPERATURE DU NEZ NOSE TEMPERATURE 153% 125% 7 0 BORD 0.ATTAQUE LEADING EDGE 130 C 2eC ISeC 117% FT. M. 10( 3,05) 30) 9,16) DISTANCE DU BORT) D'ATTAOUE DISTANCE FROM 500 5,25) LEADING EDGE 70(21,35) 90 (27,45) 116% 3,05 61 15125 30,5 45,75 METRES 10 20 50 /00 150 FEET DISTANCE A PARTIR DU NEZ DISTANCE FROM NOSE SKIN TEMPERATURES TEMPERATURES DU REVETEMENT Les effets sur la structure des temperatures ambi- antes elevees sont de deux sortes. Premierement, il est bien connu que la resistance des metaux decroit lorsque la temperature augmente, certains materiaux etant plus affectes que d'autres. Toutefois ce sont les proprietes residuelles apres refroidissement qui importent pour la majeure partie de la structure, le dimcnsionnement corres- pondant soit au vol subsonique, soit aux manoeuvres au sol. Deuxiemement, le maintien a temperature elevee associe avec l'application continue de charges, donne du fluage qui se traduit par des deformations permanentes k la structure. Declassified in Part - Sanitized Copy Approved for Release 2014/03/05: CIA-RDP80-00247A004200400001-9 Declassified in Part - Sanitized Copy Approved for Release 2014/03/05: CIA-RDP80-00247A004200400001-9 Thermal stresses need to be considered when there is a significant temperature gradient in different parts of the structure. The temperature of a wing spar boom during supersonic acceleration will rise rapidly, whereas the middle of the associated web remains relatively cool. The TENSILE STRENGTH/DENSITY (10' IN, O8 O6 0 ? 4 0 ? 2 ?..,..,.....................,..?.- -.,,t, TITANIUM ALLOY \ \ \ \ \ ' ALLOY a, \1. ''''"'""`"??,???,....?..,.. ----..a2==4---- 1818 RR 58 HEAT RESISTANT ALUMINIUM ALLOY STEEL 1 . 173 ALUMINIUM 0 100 200 300 20.000 HRS. SOAK AT TEMPERATURE .0 STRENGTH/DENSITY RATIO OF Vi?RIOUS MATERIALS AT ELEVATED TEMPERATURES RAPPORT RESISTANCE/DENSITE POUR DIVERS MATERIAUX A DES TEMPERA1URES ELEVEES Les contraintes the rm ique s soot prendre en consider- ation chaque fois que le gradient de temperature entre les differentes parties de la structure est important. Durant P acceleration, la temperature des semelles du longeron caisson de l'aile monte rapidement, alors que les parties nt ra le s des ame s corre spondantes n' atte ignent leur temperature d'equilibre que t re s progre ssivement. L'inverse se passe durant la deceleration. Dans les avions subsoniques les contraintes the rmique s soot faibles et n'ont aucune influence pratique stir le dimensionnement. Dans Pavion supersonique, ces con- traintes s'ont suffisamment importantcs pour influencer aussi bien le dimensionnement de la structure que le programme des essais.0 A Mach 2,2 lorsque la temperature d'equilibre atteint 120 C dans les regions eloignees des bords d'attaque, PAU2GN a ete consider cornme Palliage leger convenant le mieux a la structure principale de Concorde. La courbe jointe donne pour differents ma- teriaux la decroissance des resistances specifiques en fonction de la temperature. Le titanc et Pacier sont peu utilises et seulement dans la cas ou cola presente un avantage. DESCRIPTION DE LA CELLULE 400 La majeure partie de la structure est de type eon- ventionnel et utilise principalement l'alliage di aluminium AU2GN. temperature of the middle will then rise slowly to attain equilibrium. The opposite will occur during deceleration. In subsoni, aircraft thermal stresses are low and have little effect on design. In supersonic aircraft, however, they are sufficiently high to merit special attention both in design and in the structural test programme. At the skin temperatures associated with a speed of Mach 2.2 a heat resistant aluminium alloy, RR.58 is the most suitable prime structural material for the Concord. Limited use is made of steel and titanium where these .materials can be used to advantage. 12 ACIER AU2GN USINE TOLES RAIDIES EN AU2GN ^ ROLLED ALUMINIUM ALLOY AGGLOMERE VERRE-RESINE C.. RESIN BONDED GLASS FIBRE STEEL MACHINED ALUMINIUM ALLOY CONCORD STRUCTURAL MATERIALS MATERIAUX STRUCTURAUX DU CONCORDE Declassified in Part - Sanitized Copy Approved for Release 2014/03/05: CIA-RDP80-00247A004200400001-9 Declassified in Part - Sanitized Copy Approved for Release 2014/03/05: CIA-RDP80-00247A004200400001-9 STAT AIRFRAME DESIGN The fuselage is a pressurised cylinder of almost constant cross-section with unpressurised nose and tail cones. Construction is mostly conventional using aluminium alloy as the chief material. Hoop frames at approx. 20 inches pitch support a shell of skin panels and closely pitched longitudinal stringers which give an optimum load- carrying ability for both flight and pressure loads. The majority of stringers are extruded, and wherever possible attachments are made by spot welding. The gauge of the fuselage skin varies according to local structural require- ments but in the more lightly stressed areas of the pressure cabin, has a minimum thickness of 0.055 in. Passenger window surrounds are formed by integral skin/stringer panels machined from aluminium alloy planks, each panel spanning several windows. The windows are fail-safe, comprising a double pressure panel and an externalthermal insulation panel. Wherever possible, access panels are of non-stressed design. The design of the rear fuselage structure is influenced by acoustic requirements which dictate a configuration for minimising the effects of acoustic fatigue. The wing is a multi-spar torsion box embodying integral fuel tanks and carrying the power plant and main landing gear. The princii)al structural material used is RR.58 aluminium alloy. Integrally machined components are used for highly loaded members and for the skin panels. In the centre wing, the spars are continuous across the fuselage; the spars and associated frames being built as single assemblies which extend from left to right nacelle positions. The forward wing sections are built as separate components and are attached to each side of the fuselage, the spar loads being transferred to cross members in the lower part of the main fuselage frames. Access panels to equipment in the wing are, wherever possible, non-stressed but fuel tank inspection panels and inspection panels on top of the wing in the vicinity of the engine nacelles are stressed members. The under-wing engine nacelles consist of air intake, engine bay and nozzle support structures. The intakes are constructed mainly of RR.58 aluminium alloy with leading fuselage bilobe pressurise' est cylindrique sur presque toute la longucur, le nez et la queue non pres- surises ont tine forme ogivale. Ie irccaux des cadres espaces de 53 centimetres li des panneaux de rc4,tement lisses tr6s s constituent un ensemble optimum poue resister aux charges de vol et de pressurisation. La plupart des -;ses sont etirees, soudees par points dans toutes les ies :wee ssibles. L'epaisseur du rev i_eilient correspond charges dimensionnantes localeri mais sans que Pepais- seur. des parois de la cabine pressurisee descende au .dessous de 1,4 mm. Les bordures des hublots font partie des panneaux usines a raidissage integral. Ces panneaux sont pris dans des plaques en alliage d'aluminium et chacune couvre plusieurs hublots. Les surfaces transparentes des hublots sont du type fail-safe, Pisolement thermique etant assure par le panneau exterieur et la pression tenue par un panneau double. Chaque fois que cela est possible les portes de visite sont du type mon travaillant. La conception de la partie arrire du fuselage tient compte des ni- veaux sonores appliques, le rnaillage prevu permettant de rk.Muire au maximum les effets de In fatigue acoustique. L'aile caisson rnultilongeron cffilee et mince constitue les reservoirs integraux, supporte les nacelles des reacteurs et contient le logement. du train principal. L'alliage d'aluminium AU2GN est utilise pour la structure. Les panneaux de rev&tement et les pieces supportant des charges elevees sont a usinage integral. Les tronvpris de ? Paile centrale compris entre les nacelles et les. longerons principaux traversant le fuselage .sont construits comme des ensembles complets, les cadres correspondants aux longerons principaux faisant partie de ces derniers. Les pointes triangulaires des demi-ailes avant forment egalement des .ensembles, leur fixation sur le fuselage ;se faisant au droit des longerons dont les efforts sont transmis aux traverses situees dans les parties inferieures des cadres principaux. Les portes de visite dormant acces a Pequipement situe dans l'aile sont du type non travaillant chaque fois pie cela e:=1: possible, mais les portes d' inspection des reservoirs et les portes de Pextrados de l'aile an droit des nacelles sont du type structural. Les nacelles suspenducs sous Pailc :',..-)piprennent les ,.!fitrees d'air, le logement des reacteurs et. i ,,truetures -tant les tuyeres. Les entrees d'air alliage d'al'uniinium avec des bords d'attaque en acic,? A l'ex- ception des portes d'acces aux reacteurs, cii citane, la STAT Declassified in Part - Sanitized Copy Approved for Release 2014/03/05: CIA-RDP80-00247A004200400001-9 Declassified in Part - Sanitized Copy Approved for Release 2014/03/05: CIA-RDP80-00247A004200400001-9 edges of steel. With the exception of the forward engine access door, which is fabricated from steel sheet, the nacelle structure between the engine firewall and wing rear spar is mainly steel honeycomb sandwich. Aft of the rear spar conventional steel construction is used. The fin is also a multi spar torsion box with the majority of the spars constructed of machined and fabricated sections. Machined ribs and spars are used in the vicinity of the rudder hinges and also where the depth of the fin is insufficient to allow the economical use of fabricated structure, e.g. at the fin tip and along the leading edge. The skin panels are of machined plank construction with integral stiffeners. As with the rear fuselage, the fin structure embodies design features which lessen the effects of noise. The Concord depends upon the electrical system for engine control, fuel supply and transfer, directional control, navigation, communications and other essential services. To ensure basic integrity, vital services, together with their supplies and controls, are duplicated. This is achieved by dividing the electrical system into two sub-systems which remain separate throughout the aircraft. Electrical power is derived from four 40 kVA brush- less self exciting alternators, the voltage being regulated to 115v per phase at the busbar. Frequency is maintained at 400 c.p.s. by constant speed drive units operating at 8,000 r.p.m. The alternators are oil cooled and overheat warning indication is provided; in the event of failure the constant speed units can be disconnected from the engines. The output of three alternators can carry the total general service load plus the maximum de-icing load, and still retain sufficient capacity to meet development growth. Power is delivered from the alternators to main busbar panels under the forward cabin floor which in turn supply feeder panels in the above-floor electrical compart- ments on either side of the aircraft behind the flight deck. Supplies arc then taken to sub-circuit panels on the flight deck where the individual service circuit breakers are available to the engineer. 14 structure des nacelles entre les cloisons pare-feu et le longeron arrie're de Pile est en acier, principalernent du type nids d'abeilles. La structure situee apres le longeron arriere est egalement en acier mais du type classique. La derive est egalement du type caisson mu ltilonge ron, la plupart des longerons etant usines a raidissage integral. Des nervures et des longerons usines sont utilises au voisinage des paliers de fixation des gouvernes de direction et egalement dans les regions oa Pe'paisseur dc la derive est insuffisante pour permettre une construction en tole raidie, par example dans le saumon et le bord d'attaque. Les panneaux du rev8ternent sont du type using a raidissage integral. Comme pour le fuselage arriere, la structure de la derive a ete etc pour minimiser les effets de fatigue accoustique. Sur Concorde, l'enerie electrique a ete choisie pour assurer le controle des reacteurs, l'alimentation en com- bustible et son transfert pour le ballastage, la commande et le contrOle des servo-dynes actionnant les gouvernes, la navigation, les communications et autres services essentiels. La securite de fonctionnement des circuits vitaux est obtenue en dedoublant les equipements et en rendant independante leur alimentation et leur commande. L'ins- tallation est divisee en deux systemes independants dont tous les circuits restent separes. Lle.nergie electrique est fournie parquatre alterna- teurs de 40 kVA a auto-excitation, sans balais; leur voltage est regle sur la barre omnibus a 115 volts par phase. Leur frequence est maintenue a 400 hZ a l'aide d'une trans- mission a vitesse constante tournant a 8000 tours-minute entrainee par chaque -reacteur. Un debrayage mecanique est prevu pour le cas de panne d'un alternateur. Le refroidissement des alternateurs est assure par l'huile utilisant le combustible comme source froide. Trois alternateurs peuverit, a eux seuls, fournir toute-la puissance necessaire y compris celle requisc pour le degivrage, tout en conscrvant uric marge suffisante en cas d'extension ultericure du bilan electrique. Declassified in Part - Sanitized Copy Approved for Release 2014/03/05: CIA-RDP80-00247A004200400001-9 Declassified in Part - Sanitized Copy Approved for Release 2014/03/05: CIA-RDP80-00247A004200400001-9 The four main a.c. busbars are connected in pairs and supply the general a.c. loads and four T. R. U. s. The de-icing load is split, one half being supplied by one alternator in. each sub-system; a transfer arrangement ensures con- tinuation of supply should either alternator fail. Four Transformer Rectifier Units supply d.c. power at a nominal 28v. Two T.R.U.s one from each main a.c. sub- system, operate in parallel to provide two separate d.c.. sub-systems. One T.R.U. can carry the full sub-system load. A.C. essential services are maintained from twobus- bars in each sub-system connected normally to the main busbars but, in emergency, supplied by static inverters. D.C. essential supplies are maintained from a single busbar in each sub-system connected normally to the main d.c. busbar. In emergency, power is provided by batteries, one connected to each essential d.c. busbar. REACT EUR ALTERNATE UR No.I =131=1 CSD DEBRAYAGE MECAN1OUE SERVICES ' ESSENT1ELS CA SECOURS CC CONVERTISSEUR ESSENTIAL AC BATTERIE INVERTER ALTERNATOR SOUS SYSTEME A SERVICE AV SOL GROUND SUPPLIES REACT EUR ALTERNATEUR H'S 0 ? DEGRAYAGE MECANIOUE NA3 ENGINE ' DRIVE DISCONNECT SUB SYSTEM 8 1DE ICING AC