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S.M.Ermakov, B.,A,Efimenko, V,GeZ20lotuchin, ¥.F.Michajlus,
Sh,S.Nickolajshvili, V,P,Polivanskii,

At present Monte Carlo method 1is a basic one for the
solution of the radiation transport problems in inhomogene-
ous (finite and infinite) media under conditicns of energy
dependence cf the cross sections and in the process of ani-
zotropic scattering. The main advantage of Monte Carlo me-
thod in comparison with the generally used numerical metho-
ds consists in suitablllty to multidimensional problems and
brightly reveals in the transport theory problems,

In fact, the solution of a general kinetic equation
for the flux(ﬁ (:(:,fL,E ) depended upan six variables appears
as insurmountable task. In many cases when 1t 1is required the
calculation of the functionals of a certain kind the problem
of multidimensionality is not facllitated by the theory of
adjoint functions since the dimension of the problem is
st11ll too high.

At the same time according to the character of the in~
formation necessary to receive Monte Carlo methcd may be
easily modified for the purpose of automstic elimination of
a number of variables, Two variants of the method are deve~
loped in a given report. Ome of them deals with the problem
of calculation of the flux P (2,7 ,5 ) for a certaln rest-
rioted set of coordinates, directions snd energles, and the
other is applicable to the problem of determimation of the
functionals of a2 certain kind.

In many oases where radiation flelds comsidered posuain
the high degree of symmetry it is reasonable to use the &2l
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ference methods. Thus, for exampl~, the numerical solution
of the problem for the angular and spectral distributions
of radiation at different distances from a point isotropic
source 1s more effective in comparison with the well-known
moments method, The region of application of difference
methods may be significantly expanded if to use the theoxy
of adjoint equations. The latter is valid in that cases
where the functionals sought for depend on a lesser number
of independent variables in comparison with the function
describing space—energy and angular distributiocus of radia-
tion,.

The difference methods,

Plane~-parallel problems, The solution of many problems on
gamma~ray penetration through the material 1s reduced to
determination of the functionJV ( Z,M, A) satistying the
equation 1 .

N%'ZJK LN =T 4 )
q 4 , .
T Fin [ G A) N (20l e ) ol
0 =1
S< pp's Y 1-uT cosd. & =A-1+§ (2)

under supplementary conditions

N(opmA)= 2 (ud), M0

N (o, m.A)= 0, M (O (3
The functionsf, x,2 and ( are supposed kmown, For the
approximate solution of equation (1) let us divide inter-
val[0<2<0] into i parts, interval(f4<H<¢ 1] intom
parts and along axis A plott the points Aoy Aq, A ye-eydp,
ooo"Ao is a least wave lenght of primary gamma-rays. The
points of division of the intervals [ocz¢a] and
[F14M &1 denote as Zxy K= 0y1yeeeyn and My U= 0515000,

yME==0,Z 20, H= 1,M,=-1, reapectively.

Approximate values of the function N (z s M ,.A ) in the point
(2,)H,s4p) denote as JYJ; .
Similar notation is used for the other functioms.
Tet us return to the equation (1) and assume A4 =iy and

A -.Ap . Then we have
d i
v

P ArP P P
363 }"v'a"g"""}-m:gu*{v (8)
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Explanation is not required for notation. The function %Pis
defined by the integral (2) at M = M, and A = A

Suppose the right side of equation (4) is known, then
the problem is reduced to the integration of ordinary first
order differential equation. Integrating this equation by
Z within (Z, ,Zk) and using the quadrature trape zoid
rule receive approxin;ately .

Ho (e Mo )+ ZEEE— (Y, + M )=
= ﬂi( gl.l:(+l+ VK +J(VPK+4 +3(u’:< )

OB =2y Exy K= 0y1y00000y n-1. Additional conditions
following from the boundary ones (3) are necessary to add to
the latter systenm

iwg:i(/—'u./‘p)» Hy30:

N, =0, My o, (6)
After this, the system (5) is solved in the direction of
increasing K , 1f My, 0 , and in opposite direction, if
Mylo**

Proceeding to the approximate calculation of the fun-
ction T (z sM s A) at the right of equation (4) note that
its expression (2) representing usual record of the soat-
tering integral is not suitable for our purposes., The me-
thod proposed is based on the other representation of this
integral obtained by the substitution of integration wvari-
ables and has the following form

F(z,u.4) jolo(jG(H)JY(z,u,Ai)df (7)

whnere
p'e u ¥+t [f1- 37 cos o (8)

% It is supposed that 2 is not depend on Z . This
restriction is not substantisl,
¥% The division of the interval [-1<M £ 1] is perfor-
med in that manner that none of the points My is
not fall on the point Al = 0,

-3 -

(5)

¢
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I.et/H ,ua and A = Jp obtain

T’ jo{a(jG(E Ap=1+E N (24 4p=1+5)OlE (9)
where Al'  1is calculated by formula (8) at M =4 .
For calculation of the inner integral it may be constructed
the quadrature formula with the poimts qu defined from
the conditions

Aprd+ o =Agj q=p-5, P-(s4)... P (10
Then, write down the in%_egral (9) approximately in

Ff = T Rpp IV +_s; J},oqyj I (. Mpg,, Ap- g )olec. (11)

MPO,","‘prar’rV«uf, '(-ff:w o3 o (12)
Now, suppose that the values of the function W(z ,M ,4)
at A =Agl4p are already found. Then, by substituting the_
relation (11) into the equation (4) and transfering WﬂPoJ\!V
into 1eft obtain the following' expression:

p—Ste d I (5t Ry, A S_-ﬂpa,JN(zym. p ) chok (13)
The right side of +the la'tter equation contains known func—

tions and the problem is solved by the method decribed abo-
ve. It remains to find the following integrals.

Jog* SN(sza,Jow (1)
at M =fu_ . (See formula 12), For this purpose interval
[-1L,us+1j is divided into two parts (-=1,0) and (0,+1) and
on each let be ap {oximately

O CGsp(Z) A ro,
(2 o)~ g% (BI04 153
S Bse(z) S M<o.
Here, 24 4ndg, #€ some constants and the coefficients

O ap and f gp 28Y be determined by different ways, for exam-
ple, by the least-square method.

By substituting the expression (15) into (14) obtain the
integrals which are not difficult to calculate. Thus, the
determination of gpace and angular gamma~ray distributions
for every new value of energy variable is reduced to solu—
tion of the ordinary differential equation (13) with known
r:}gp‘c side defined at previous steps of estimztion. There-
-
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fore the necessity of application of the successive appro-
ximation method used for the difference solution of multi-
velocity kinetic equations (2,3) is eliminated. It is also
necessary to note that the decribed method may be used for
the solution of neutron +transport problems in light mode-
rators without siguificant modifications.

Spherically~-symmetric problems, In this case the problem
is reduced to 'l:he‘2 solution of the equation (2)

4-Mc QN
MGT S Gh NS (16)
with boundary condition

N(o,mA)=(MA), M<oO. €17)
In the equation (16) the scattering integral & is determi-
ned by the same formula as in the case of the plane-parallel
problems (with the difference that z is replaced by ).
Hence, the prcblem is reduced to the differential equation
(16) with the known right side which may be solved by diffe-
rence methods described in reports (3,4).

Monte Carlo Methods.

e -
Calculation of the flux ¢(z,1,E),

It is known that the method of direct modelling of par-
ticle motion in a substance is suitable for the comparatively
narrow class of problems. A number of modifications of the
method was developed for increasing its statistic efficiency.

One of this modifications of the method applicable to
the radiation transport problem is a method ¢f local calcu~
lation of the flux. In the primary formulation of the method
(5,6) it is made use of the fact that the scattered part of
the flux@ (2 ,J_'T. E) in a fixed point of space E’:*a(x*,é/*, Z*)
is equal to t?ﬁ[naverage of raudom variable

=5 Wa —"i—-—i—-’f-”-)f (2, By S T2, )08 B)0(EL E), 46

p:]7,-3+|, = Esle i
where 72,‘,5"1 'E, indicite the position of the 2 -th particle

scattering, direction and energy after scattering, respecti-
363
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vely. f (gn,E;_,,ﬁ.m,ﬁ'n) is a scattering function, i.e.,
calculated for the solid angle unity the probability of a
particle with the energy before scat‘rering Ern- and directi-
on —f'—n-: to scatter 1n the direction JLn (it possess the
energy En = (En ,JL.‘ ,JL ))s In the formula (18) Wn is
a "weight" of the h -th scattering, (-‘Z",—'E', E.) is an op-
tical distance between 2, and Z points for the particles
with energy E. 4 (Cf-n,- Xx) is a characteristic function of

the interval AXnear., .

Every individual realization of the process of parti-
cle waudering ("history") gives the sampling values of par-
ticle coordinates in a phase range® (T ,7L,E ) by which
may be calculated the corresponding value of random variable
% . According to the theorem proposed by A.J.Hinchin (7)
the convergence on probability of the average from N "His-—
tories" towards the accurate value of the flux at N— <°
takes place. Due to the fact that the higher moments of the
random variable f and, in particular, the standard deviation
do not exist this convergence is highly slow, The other
deficiency of this method is in the necessity of survey of
a very great number of histories for the obtaining of a
reliable information about angular and energy distribution
of the flux.

M.Kalos (8) have proposed the modification of the me-
thod mentioned above having the finite standard deviation
of the total flux

b (Z) =S ST A,E)clAL dE
This method 1s based on the inclusion of the multiplier 1/ﬂ,,

causing the divergence of the standard deviation f into
the transition probability density of Markov's chain of
particle positions in a phase space and, therefore, changes
the sampling character,

It may be proposed the modification of Monte Carlo me-
thod giving the standard deviation for the total flux anmd
not changing the sampling character. The other valuable

763

I
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feature of this method is a possibility of obtaining of
energy distribution ‘ﬁ (z ,J’L E ) for the separated fixed
direction.rl. .

In the method described above the estimation of the
flux is based on its representation in terms of the sum of
non-scattered radiation contributions the sources of which
are the separated poilnts of particle scattering., It is easy
to show that the similar representation takes place if to
summarize the contributions of a single-scattered radiation

so that o
&, (e g (Al e)sMof 50

W, e-’t(‘c_,‘ 'Vn.En) L(‘c, _.'E) ncd s
§ . x? ZS(ZmEn)-X
- -

> R X o o R )t
X j5<1’hth“ T j‘s (Tn.E'\ o ) .:d—é (19)

h ot
w. e_iﬁ > ~t 4

- ¥ > ! >
—L_En :5 =Z“+xu -C‘u -th“ )
-

Eoe AT, Tt

10(1,., il,__}__n.__),

In the formula (19)@ _" at y E ) i3 a contribution of
a single-scattered radiation, M.E. is a symbol of mathema-
tical expectation,.

It may be shown that the estimation, following from
the formula (19) has the finite deviation for the total
flux, The standard deviation of the flux cﬁs does not exist,
however, the difficulty connected with a negligible phase
volune in a space of directions is eliminated.

As an example, consider the case of the infinite homo-
geneous medium with isotropic scattering. For the isotropic
source the formula (36) leads to the followiug result:

G (v)-MES (E.s)" F (R )

where
T = 22
(R): g éo (le) Eaen) Sokz'i),{

Rhtltzhﬂﬁolnl OI: IJ
-7
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In the table 1 the results of ten sampling each inclu—
ding 200 histories for the case Z /5, =0,75, tZy=1, obtain~
ed by two methods mentioned above are presented.

The other method of increasing of the efficiencyof the
local calculation method of the flux is based on that fact
that the raudom quantities

[ ~> A o -

§=§1h(%) and §=§¢£(d)
possess the finite dispersion, if T * and $*are raudom vec-
tors with non-degenerated distributions in D and S, respec-
tively. Here, ¥i and Y; are arbitrary square summable in D
functions (on S, respectively), D is a region of a three-
dimensional space of the wvariables DC*, ?* ’ z” and st is a
region of a surface in the same space.

This circumstance allows to calculate the Fourier coef-
Picients of the flux function sampling the orthonormal with
weight in D functions as /i function.

If the weight function P (’? ll) is successfully sampled
the restoration of the flux function by its Fourier coeffi-
cients is performed with a sufficiently high precision. Si-
milar considerations are wvalid for the flux calculation at
the surface S,

The calculations sre performed in the following manner.
In the beginning of each™history" of a particle raudomly inD
it is sampled the position of the detector Z* . The value
¢ (‘Z*) is calculated. Further, the value § ( _?f*) msy be
additionally multiplied by¥(%T*) and P(Z*). I£ T* is s
vector uniformly distributed in D, then M.0, Z .(Z)f (T
PC(Z"*) 1s a Pourier coefficient of the flux function, f: ( 5
are orthonormal in D with weight P( T ) functions (120y1,esey
n).

However, this method of calculation of the Fourier coef-
ficients is not the best one because M.0. ¥.( i") ‘[Di_ ( z*)P
(‘7:') mey be a little quantity, while the dispersion
D{f(tt:*)fé( %*)P (-‘2"*)} may appear significant. In these
cases the following generalisation of theorems 1 and 2 of

363
-8 -
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E9:] 1s useful, Further, we use the notation of this report,
Let f(Q) be a square summable with weight P(Q)(P(3)=0) in
D function (Q€ D).

Table 1,

FTux
Ko, sampling (35) (36)

0,0678 0.0656
0.0689 0.,0660
0.0624 0.0634
0.0843 0,071
0,0596 0.0637
0.,0688 0.0628
0.0842 0.0689
0,0746 0.,0660
0,0896 0,0761
0.0567 0.0615

Average 0,0709 0.0666
Bxact value 0.,0665

W 0O 30U & W -~

-
(=]

Conslder a generalized interpolating polyromial

P©)=Cofe (@0)+Cif1(0)*Cufu (9)  constants Ci (im0y1y00eyn)
are defined from the conditions
p(Q) =;§(QJ):
where Od' are certain fixed points of a region D, The follo-
wing theorem is wvalid,
Theorem 1. If the points Q are randomly sampled in

D with the density of 8 probabilityWa (Q2Qs 5 eee s Gn )y

o= ey [t s (0n) Vot@n] . fu (@B ) I3 T4
M.0.Ci={P(0)F(g) T (Q)d@, =01, . .. n.

Undexr the same assumptions it is valid.
Theorem 2. A standard deviation of the random value (i
is equal to

Se (Q)[&(@)-}?g M.O.Cc {’c (@)]zolcp.

-9 =
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The results of the calculation of a numerical gamma
spectrum in the air by the local calculation method are pre-
sented in the Table 2,

The similar values obtained by a linear algebraic in-
terpolation by random points are presented in the Table 3.
In a given case the weight Punction is not introduced,

" The four groups of data are presented in these tables,
Bach group is obtained as a result of 1,000 tests,

A point isotropic monoenergetic source with E;=1.25Mev
is used as a gamma-ray source. The source-detector distance
is 30 meters, 0-1.25Mev energy interval is divided into
eight uniform groups. If the quantity presented in the tab-
les 2 and 3 multiplied by 10”2, then we obtain a number of
gamma~-rays /second/cme, which is belonged to the given energy

group.
Table 2,

No, of sampling

No. of group 1 2 3 4
1 1.580 0.925 0.737 0.808
2 1.039 1.162 1.123 0.975
3 0.450 0.296 04342 0,496
4 0.826 0.303 0.104 0.228
5 0.123 0.105 0.214 0.149
6 C.138 0.594 0.376 0.129
7 0.053 0.145 0.410 0,112
8 0.073 0,208 0.164 0.022

Integrated flux 4,832 3e322 4,107 24917

Table 3,

1 1.006 0.864 c.678 0.827
2 1.463 1.359 0.910 1.322
3 04335 04437 0.753 0.173
4 04301 0.127 0.117 0.292
5 0,461 0415 0.289 0,576
6 0.398 0.095 0.281 0.356
7 0.192 0,050 0.694 0,000
8 0.000 0.417 0.087 0,460

Integrated flux 3,986 3,763 3,809 4,006

3t3
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Calculation of the functionals from the flux
P (T, A,ED.

1. Monte Carlo method is often used for calculation of
the functionals f from the flux & (Z ,il,E ) 1n a space-
energy region in the inhomogeneous problems of a neutron
transport theory

S+ fdA, f oAE [d T, S(T., 1L, E,) (il [dlE [dEf (L) p(E.ER LA

Eo aVe AE Ay ( 20)

where @ (7 ,71,E ;7,,/,E) 1s a Green function of the cor-
responding transport equation., As a rule the regions of de-
termination of the source S (Z,,.n ,E) and the function
$(Z,A,E) are greatly differed, therefore, the increase
of a statistic efficlency is achleved when a sampling of the
original coordinates of history is performed in accordance
with a adjoint function in relation to i’unctionalj [1 ol.
Accurate finding of a adjoint function is nor less complex
problem than the original one, therefore for evaluation
of the functional :f 1¥ is naturally to try to comstruct
such adjoint function. If this function Q ('Z.‘,,.n.,, E) is
constructed, the functional :f may be written in a following
manner [: 1 .

Fefdi, jJEa_fah S(R, 3, E)R(T, T, o)

xjdn.jolﬁjdn tJLE)¢(ﬁ?E;J_?:°,?'a,E¢], (21)
§(TolteEa) @ (Lo Ry Eo)

Sl Sl §olT, s (To, o, Eo)Q('Zo,ﬁ,,E_)
R(Z, Lo 5.) s Sehdegder s ?
and sampling of original coordinates of the history may be
performed in accordance with density S and initial weightRk,
When determining the parameters of the resolved neutron
levels according to the results of the radlation capture
measurements the necessity is appeared to calculate the fun-
ctionals of a type (20) which represent in this case the
average absorption rate in a planar sample of thickness H

of the neutrons from a plane source with a given spectrum
363

where
§(%o.0,E)=

11 -
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S(E o) in the energy intervala E_ entirely comprising the
resonance considered (11,12,13). In this problem Monte Car-
lo method is used for evaluation of the average absorption
rate of neutrons suffering scattering Ps which has the
following form: o

p jdEas(E }Jol,uj Ejdzz (Ejsb( /“"E’E°) (22)

where §D (Z kg E Eo) is a neutron flux after a single scat-
tering. The application of a adjoint function for estimati-
on of a functional (22) is of importange as a region of
determination of the source AE, always coppiderably exceeds
the region where a adjoint function Q&) jcﬁ-lfoffjdzz (e)@(z,H.EE,)
1s differed from zero.

For a construction of the approximate function ) ()
take a following model of the neutron transport. let us be-
lieve that the neutrons diffuse-through a sample of an effe —
ctive thickness i without a collision but at the boundary
some fraction of neutrons is reflected with an energy change
by the magnitude of an average logarithmic loss _f ‘

Then an approximate adjoint function is written down

in the 'following manner.

Q (&) ..Zo P P n Se, (<3)

where ) (Ex) -HE (Ex)
_ Gy (Ex] (4-—2 Et(fx))}. Sk -g:—(—g;) (’1‘ )
K Gt (Ek) EK=Eo e.-Kf

The normalized adjoint function is always used in an
importance sampling of original coordinates, therefore the
deviations of parameter values H® and P from H and I,
respectively do not influence greatly on the efficiency of
approximate function application,

The main feature of this function - a maximum displace-
ment relative to a resonance energy - is well interpreted
by introduction of an average logarithmic loss f into the
expression (23). In the case of realisation of Monte Carlo
meztlsmd for estimation of the functionals of a type (22) it

-2 -
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is important that introduction of importance sampling by a
adjoint function (23) does not prevent from the application
of the similar trajectory method for the simultaneous corre-—
lated calculation of a wide range of sample thickmnesses,

This method of improvement of a statistic efficiency
is highly useful in a problem of calculation of a resgonance
absorption in a stratified activation detectors [14 ], With
the help of one approximate adjoint function for a sample
of intermediate thickmess it is managed to carry on the es-
timation of activation absorption at a single level in the
inner detector layer simultaneously for a wide range of
Tilter thicknesses, These calculations were carried out for
some activated isotopes with the purpose of obtaining some
optimal sample thickmesses for the neutron spectrum measu-
rements within a reactor,

2. The other way of statistic efficiency improvement of
Monte Carlo method in the case of estimation of functionals
(20) when its region of determination 4 E xAV is conside~-
rably less than the region of determination of the flux den—
sity ‘P (:L.,R,E ) is based on obtaining of some information
about an importance function in the process of sampling and
its application for choice of further fate of a neutron,
This is a method of splitting.

If in the process of randon sampling before next collisi—
on a neutron has the coordinates ("Zk,.ﬁ.n,E,.) not belonging to
the region of a functional determination, then the probabili-
ty to contribute to this functional after collision is
equal to corresponding part 63 of a single volume of hyper-
cube. Sampling randomly and uniformly the point S from
this part of a hypercube we obtain at every collision a
contribution to i’unctionalj and one of the branches for a
further neutron fate. The second branch ensuring the com-
pensation of a bias of such sampling corresponds to the
random point from the hypercube region additional to G; .
Sampling between these two branches is performed in a ran-

dom manner in accordance with its welght factors Crf and
363
- 13 =
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1—(v}f, respectively.

The application of the method of splitting is highly
useful in the case of Monte Carlo calculation of the influ—
ence function for monoenergetic isotropic source located
at the block surface in the infinite cylindrical lattice,
This function being analogous to the Plachek's function in
a homogeneous medium is interest in the resonance absorption
problems in heterogeneous media,

In this problem the following quantity was considered
as a functional f

5 jdnv{ d¥ fdes, (TE) P (T, AE)
represent{ng the average density of collisions in a block
in the energy interval E{ ¢ E ¢ E;+s

As a rule the determination of boundaries of a multidi~
mensional region Cr § and sampling of random point from this
region is a very difficult task, therefore, it is desirable
to arrange the splitting by one of the variables.

In the case considered a region ensuring the contribu—
tion to the functional § is defined by the following condi-
tion:

, Sin fHH ¢ %‘i)’l = J,
where 3‘““ is a2 azimuthal angle of the neutron velocity direc-
tion after scattering; Ry is 2 block radius. The splitting
is performed by one variable, 4 , a cosine of scattering
angle in a system of inertias., There, one can obtain the fol-—

lowing ratifs for weights of the branches.
Gi=3 Y Gy o 4-Gy

!
where A1")- ..z.Lf(ngac,,.. sint @+ MY -k, S0
M(sin*6 ¥, +n', )

! ] .
while ., A tV1iar Qi %, sHcosPEYa-qt sinf,
_f-,'= Sihk dinFn+COS h COS F COYQn; D's LN COSfn =~ COSK - SiM f COS Qn
M- is a nuclear mass,
Calculation of a heterogeneous Plachek's function showed a
considerable improvement of a statistic efficiency of Mon-

te Carlo method at the expence of application of the split—
363
-l -
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ting techniques particular in a case of very thin blocks.
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