USSR

UDC 681.325.65:525

BARYKIN, N. A., ZAYGERMAKHER D. M., KHOKHLOV, G. N., BALUSHKIN, K. S., KOZOBRODOV, V. A.

"Logic Circuits Based on Pneumatic Relay Elements"

Pnevmatich. Privody i Sistemy upr. [Pneumatic Drives and Control Systems -- Collection of Works], Moscow, Nauka Press, 1971, pp 267-272, (Translated from Referativnyy Zhurnal Avtomatika, Telemekhanika i Vychislitel'naya Tekhnika, No 11, 1971, Abstract No 11 A74 from the Resume).

Translation: The basic characteristics and nomenclatures of pneumatic relay automation elements (PERA) are presented, as well as typical logic device circuits based on these elements. A modular-element method of planning of devices based on PERA and the experience of the application of the standard circuits are studied. 6 Figures; 1 Table; 1 Biblio. Ref.

1/1

Corresion

USSR

WC 620.194.81629.7.02

ZAYKA, A. YA. and RADCHENKO, A. I., Kiev Institute of Civil Aviation Engineers

"Statistical Evaluation of the Effect of Prior Uniform Corrosion on the Service

Kiev, Fiziko-Khimicheskaya Mekhanika Materialov, Vol 9, No 6, 1973, pp 35-40

Abstract: Smooth sections of aircraft panels, made of Di6ATV alloy, were studied to determine the criteria on which to base probability-statistical principles with respect to the permissability or degree of corrosion damage allowable before a panel will lose its static and fatigue strength as a result of this corrosion, as well as the reduction of service life. Corrosion-fatigue tests were donucted on smooth panels and panels with 4-mm-diameter holes using potassium nitrate (3% solution) as the corrosive media. From these tests, data were used to plot distribution curves for fatigue life with respect to corrosion damage and load after a 500 cycle/min-frequency exposure for a time exceeding 10° cycles, relationships of service life to corrosion damage, relationship of permissable corrosion to probability of failure, and relationship of corrosion damage to cyclic-load level. No specific conclusions were made except that corrosion-fatigue tests should be conducted for loads very close to actual operating conditions. Six figures, four biblingraphic references.

Miscellaneous

UDC 669:539.43

USSR

and VORONKIN, N. F., Kiev KARLASHOV, A.V., RADCHENKO, A. I., ZAYKA A. YA Institute of Civil Aviation Engineers

"Fatigue Resistance of Corrosion-Damaged Aircraft Covering"

Kiev, Fiziko-Khimicheskaya Mekhanika Materialov, Academy of Sciences Ukrainian SSR, Vol 7, No 1, 1971, pp 53-56

Abstract: An investigation was made of the effect that a group of corrosion craters, simulating local corresion of aircraft covering, has on the fatigue longevity of smooth and structural specimens made, respectively, of D16AT (1.85 mm thick) and D16ATV (2.5 mm thick) sheet materials. The fatigue tests of the smooth specimens of two batches were performed with net symmetrical bending ($\sigma = 14 \text{ dynes/mm}^2$) at a frequency of 70 cpm. The corresion craters on the surface of the first-batch specimens were of constant geometrical dimensions (depth t = 0.3 mm and diameter d = 1.3 mm), varying only in the number of craters per unit surface. On the specimens of the second batch, in the middle of small craters 0.3 mm deep and 1.3 mm in diameter there was one "general" crater: t = 1.0 mm and d = 3.5 mm. It was found that the adverse effect of a group of corrosion craters of identical geometrical size covering approximately 10% of the area involved is practically the same as the effect of a single damage area, in the variation of fatigue longevity 1/2

USSR

KARIASHOV, A.V., et al, Kiev, Fiziko-Khimicheskaya Mekhanika Materialov, Academy of Sciences Ukrainian SSR, Vol 7, No 1, 1971, pp 53-56

of duralumin D16AT as a function of density of corrosion damage. For the case when the group of corrosion craters included a general crater in the D16AT duralumin specimens, it was found that the added presence of the small craters did not lead to a further reduction in fatigue longevity of the material beyond that induced by the general crater. In contrast to smooth specimens, specimens with rivetted joints were found to be practically unaffected by the presence of groups of corrosion craters.

80 -

2/2

PROCESSING DATE--300CT70 UNCLASSIFIED TITLE-REDUCTION OF THE EPOXIDE RING DURING THE REACTION OF METHYLMAGNESIUM TODIDE WITH THE 20, ETHYLENE KETAL OF 16 ALPHA, 17 AUTHOR-(04)-PROKOFYEV, YE-P., AKHREM, A.A., ILYUKINA, T.V., ZAYKIN, Y.G. COUNTRY OF INFO-USSR SOURCE-IZV. ADAD. NAUK SSSR. SER. DATE PUBLISHED ----SUBJECT AREAS-BIOLOGICAL AND MEDICAL SCIENCES TOPIC TAGS-STEROL, EPOXIDE, ACETATE, HYDROXYL RADICAL, CHEMICAL REDUCTION, NHR SPECTRUM CONTROL HARKING-NO RESTRICTIONS DOCUMENT CLASS-UNCLASSIFIED STEP NO-UR/0062/70/000/003/0715/0726 PROXY REEL/FRAME-1999/1884 CIRC ACCESSION NO-APO123672

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203730003-1"

UNCLASSIFIED

2/2 011 UNCLASSIFIED PROCESSING DATE--- 300CT70 CIRC ACCESSION NO--APO123672 ABSTRACT/EXTRACT-(U) GP-O- ABSTRACT. CONTRARY TO BUBLISHED CLAIMS (SCIAKY, R., 1961; SUVOROV, N. N., ET AL., 1960) IT WAS SHOWN FROM MASS AND NMR SPECTRAL DATA THAT REACTION OF 16 ALPHA, 17 ALPHA, EPOXYPREGN. 5, EN. 3 BETA, OL. 20, ONE ACETATE 20, ETHYLENE KETAL WITH MEMGI PROCEEDS SO THAT ALONG WITH NORMAL OXIDE RING OPENING TO FORM THE 16 BETA, METHYL. 17 ALPHA, HYDROXY DERIV. . THERE IS ALSO FORMED THE 16. DEMETHYL ANALOG (I). PROBABLY VIA REDN. OF THE CIXIDE RING BY RMGX. THIS YIELDS A DIFFICULTLY SEPARABLE MIXT. OF THE TWO PRODUCTS WHICH HAVE THE SAME CHREMATOGRAPHIC MOBILITY. IF THE REACTION IS RUN IN THE IT IS FURTHER COMPLICATED BY FORMATION OF 20, METHYLPREGN, 5, ENE, 3 BETA, 17 ALPHA, 20, TRIOL, WHILE IN ET SUB2 O.C SUB6 H SUB6 THE MAIN REACTION FORMS PRUDUCTS OF WAGNER, MEERWEIN REARRANGEMENT, VIELDING SEPREENT II. FACILITY: INST. ORG. KHIM. IM. ZELINSKOGO, MOSCOW, USSR. UNCLASSIFIED

USSR

ZAYKO, N., Corresponding Member Academy of Medical Sciences USSR, Kiev

"Nerve Trophism"

Moscow, Meditsinskaya Gazeta, 9 May 73, p 3

Abstract: Nerves affect the trophism and metabolism of tissues and organs. If the innervation of white skeletal muscles, in which glycolysis predominates, and red skeletal muscles with predominant oxidative respiration is interchanged surgically in animals, the white muscles assume the metabolic, chemical, and physical characteristics of red muscles, while the latter are changed to white muscles. In work carried out by L. P. Zayarnaya at the Chair of Pathophysiology, Kiev Medical Institute, it was shown that on the 10-12th day after birth the metabolism of the cardiac muscle of rats changes under the effect of adrenergic innervation which develops at that time: the activity of lactate dehydrogenase decreases, while that of succinodehydrogenase increases. Cutting of the glossopharyngeal nerve results in degeneration of the sensitive points of the taste buds of the tongue, while regeneration of this nerve brings about structural restoration of these points. The same effects can be obtained by the removal and then reimplantation of taste neurons in animals. On cutting of the sciatic nerve 1/3

USSR

ZAYKO, N., Meditsinskaya Gazeta, 9 May 73, p 3

the structure of muscle glycogen becomes much simpler (L. A. Popova, Kiev Medical Institute). Denervated tissue regresses to the initial state of its development (L. A. Orbeli). V. S. Il in substantiated this in regard to the tissues of muscles, the liver, and tumors. Tumor cells lose the capacity for differentiation, because they are no longer under nerve control. As far as the mechanism by which nerves control trophism is concerned, there are reasons to believe that the axoplasmatic current participates in it. If an amino acid labelled with radioactive carbon is introduced into the nucleus of the glossopharyngeal nerve, the amino acid moves with the liquid in the nerve axon to the tongue and becomes incorporated in the tongue muscle cells, mainly their nuclei. Many scientists believe that substances of the type transferred through nerve axons act as nerve mediators of tissue trophism. Dystrophies of the stomach, liver, and heart tissues are produced when a sensitive region such as that of the aorta is strongly irritated (S. V. Anichkov, et al). The trophic effects that are produced in such cases are transmitted to the periphery over efferent sympathetic nerves from the reticular formation and the hypothalamus. To interrupt the arc of pathological reflexes producing dystrophies, novocain should be applied according to a recommendation by A. V. Vishnevskiy or barbiturates and centrally 2/3

USSR

ZAYKO, N., Meditsinskaya Gazeta, 9 May 73, p 3

acting cholinolytics according to S. V. Anichkov. Organs that have been transplanted are impaired not only because of immunological reactions, but also because of distorted reactions due to the absence of nerves. Cutting of adrenergic nerves produces an increased sensitivity of tissues to adrenalin, while cutting of cholinergic nerves results in an increased reaction to acetylcholine. N. D. Opanasyuk found at the author's laboratory that denervation of blood vessels results in distorted reactions to adrenalin, serotonin, histamine, and other substances. Regeneration of nerves is a problem that is of importance in connection with organ transplantation. A substance that stimulates the growth of sympathetic nerves has been isolated from the salivary glands of rats.

3/3

- 59 -

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203730003-1"

USSR

UDC 669.891.782.018.9

RYSS, M. A., ZAYKO, V. P

"Calcium-Containing Alloys Produced by the Metallothermal Method"

Metalloterm. Protsessy v Khimii i Metallurgii, [Metallothermal Processes in Chemistry and Metallurgy -- Collection of Works], Novosibirsk, Nauka Press, 1971, p 73-77. (Translated from Referativnyy Zhurnal Metallurgiya, No 3, 1972, Abstract No 3G146 by the authors).

Translation: The Chelyabinsk Electrometallurgical Combine was the first to use a technology for the production of an alloy of Fe with Si and Ca by silicothermal processing from AcO, FeSi, and CaF2. The basic technological parameters of the process are presented. As the alloy is produced, it is refined by the highly basic slag, removing P, S, C, and Al. The introduction of dolomite to the composition of the charge allows a Ca-containing modifier to be produced with a content of 2-5% Mg, while the introduction of BaSO₄ produces a complex modifier containing 5.1-5.7% Ba. When the complex modifier is produced with high Mg content, it is expedient to melt the modifier with the Mg in the ladle. 1 table.

1/1 /

88--

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203730003-1"

USSR

UDC 669.893.018.9(088.8)

GOLEV, A. K., DELYAYEV, G. S., ZAYKO, V. P., RYSS, M. A.

"Method of Smelting Barium Alloys"

USSR Author's Certificate No. 277001, Filed 9/07/68, Published 20/10/70. (Translated from Referativnyy Zhurnal Metallurgiya, No. 5, 1971, Abstract No. 5 G178P by G.Svodtseva).

Translation: In producing Ba alloy by the silicothermal method, the reduction process is performed with expenditure of quartzite in a quantity of 10-50% of the weight of the BaSO₄ in the charge. In order to assure complete separation of metal from slag, CaC_2 is introduced to the slag in a quantity of 20-40% of the slag weight. The method provides for production of an alloy of the following composition (in percent): Ba 3-50, Ca 1-20, Si 40-70, Fe 15-30, S up to 0.080.

1/1

- END -

6022 CSO: 1842-4

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203730003-1"

Acc. Nr. AAO10	8167_CHEMICAL ABST.	Ref. Code UR 0482
	de la company	
	134782b Briquets for silicocalcium production. Knihev G. N.; Nefedov, P. Ya.; Vorob'ev, V. P.; Ryss, N. Getmanchuk, V. M.; Zako, V. P.; Belvzev, G. S.; Mikul A. S. (Ural Institute of Metallurgy, Academy of Sc. U.S.S.R.) U.S.S.R. 200,653 (Cl. C. 212), U6 Jan 1970, 25 Feb 1969; From Olkrytiya, Izobret., Prom. Obraxtiy, To Znaki 1970, 47(4), 26. Briquets for silicocalcium prod were made from lime 60-70 and a carboniferous reducing 30-40 wt. % to reduce the losses of Si and the consumpt charge materials.	inces, Appl. arnye iction
		E β
	reel/frame 19891833	, 8

UNCLASSIFIED PROCESSING DATE-20NOV70
TITLE-REDUCTION OF MAGNESIUM, CALCIUM, STRUNTIUM AND BARIUM WITH SILICON
AND ALUMINUM FOR THE PRODUCTION OF COMPLEX MODIFIERS -UAUTHOR-(05)-GGLEV, A.K., ZAYKO, V.P., RYSS, M., VOLOSHCHENKO, M.V.,
KOMPANICHENKO, V.M.
ECUNIRY UF INFO--USSR

SOURCE-V SB. TEZISY DOKL. VIII KONFERENTSII PO TEORII 1 PRAKT. PROIZ-VA REFERENCE--KZH-TEKHNOLOGIYA MASHINOSTROYENIYA, NO 3, MAR 70, ABSTRACT E DATE PUBLISHED----70

SUBJECT AREAS—BEHAVIORAL AND SOCIAL SCIENCES, MATERIALS, MECH., IND., CIVIL AND MARINE ENGR
TCPIC TAGS—METAL REDUCTION, MAGNESIUM, CALCIUM, STRONTIUM, BARIUM, SILICON, ALUMINUM, SMELTING FURNACE, NODULAR IRON, CAST IRON, METALLURGIC CONFERENCE

CENTREL MARKING-NO RESTRICTIONS

PROXY REEL/FRAME--3001/1662

STEP NO--UR/0000/70/000/000/0000/0000

CIRC ACCESSION NO--AROIZ7136

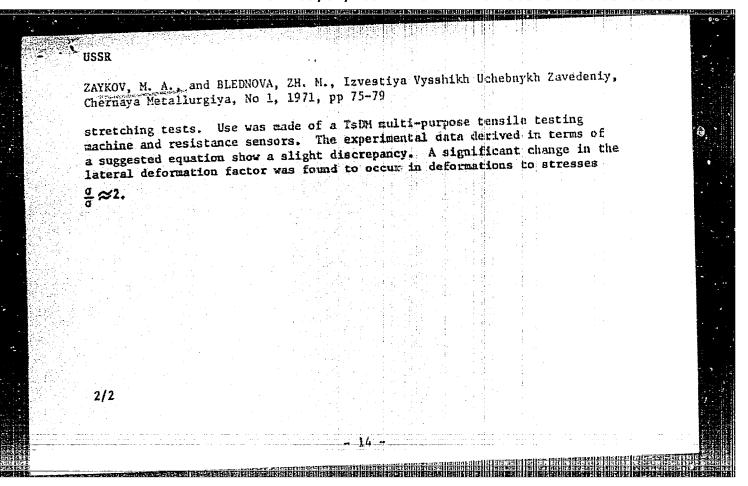
---- UNILLASSIFIED

PROCESSING DATE--20NOV70 UNCLASSIFIED 2/2 CIRC ACCESSION NO--AR0127136 ABSTRACT. IT IS NOTED THAT DURING REDUCTION ABSTRACT/EXTRACT--(U) GP-0-OF MG FACH MG OXIDE BY 75PERCENT FERROSILICON WITH THE USE OF FLUX (FLLORITE), IT IS POSSIBLE TO OBTAINE 3-4PERCENT MG IN ALLOY. WITH REDUCTION IN THE PRESENCE OF CA OXIDE IT IS POSSIBLE TO OBTAIN UP TO 5-6PERCENT MG IN THE ALLUY. CA WAS REDUCED BY 75PERCENT FERROSILICON UP TO 22-24PERCENT OF ITS CONTENT IN ALLOY. USE OF CALCIUM IN INDUSTRIAL SMELTING IS AS HIGH AS 25-35PERGENT IN THE ABSENCE OF OTHER OXIDES IN CHARGE. CEMBINED REDUCTION OF CA, AL AND ST ALLOWS TO BRING RECOVERY OF CA FRUM EXIDES UP TO 40PERCENT AND ITS CONCENTRATION IN ALLOY UP TO 24-26PERCENT. REDUCTIONUE SR WAS MOST DIFFICULT OF THE ALKALINE EARTH METALS, ITS CENCENTRATION DURING COMPLEX SILICON CALCIUM ALUMINOTHERMIC PROCESS DID NOT EXCEED ISPERCENT. BARIUM WAS MOST EASILY REDUCED. DURING RELUCTION OF BA BY 75PERCENT FERROSILICON, IT'S CONCENTRATION REACHED 35PERCENT AND ITS SHIFT TO ALLOY 45PERCENT. DURING COMPLEX CALCIUM SILICON ALUMINOTHERMIC PROCESS THE AMOUNTS WERE 45 AND BOPERCENT RESPECTIVELY.

Mechanical Properties

USSE

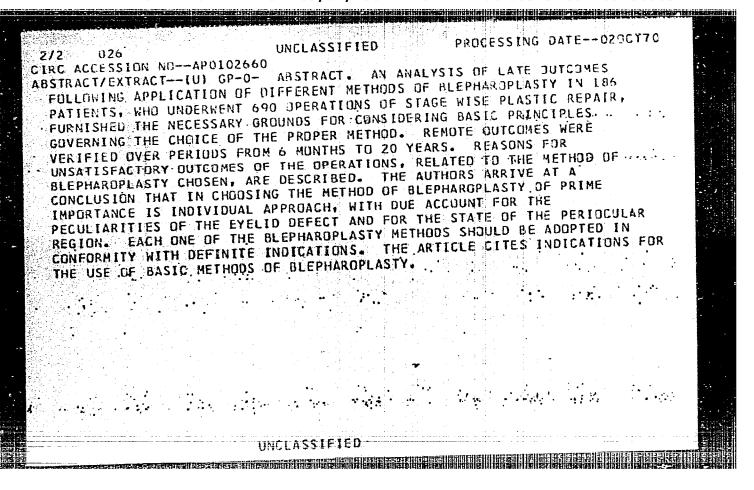
UDC: 621.771.0


ZAYKOV, M. A., and BLEDNOVA, ZH. M., Krasnodar Polytechnical Institute

"Coefficient of Lateral Strain in Elastic-Plastic Forming"

Moscow, Izvestiya Vysshikh Uchebnykh Zavedeniy, Chernaya Hetallurgiya, No 1, 1971, pp 75-79

Abstract: Most practical problems in the theory of plasticity are solved under the assumption of the incompressibility of the material, basically due to the lack of knowledge of the nature of changes in the lateral deformation factor in the elastic-plastic region as a function of strain and stress. This study describes an attempt to determine the lateral deformation factor in the elastic-plastic region for a group of carbon steels and M1 copper as a function of lateral deformation and the dimensionless and M1 copper as a function of lateral deformation in cases of ordinary parameter o/o (apparent stress to shear strength) in cases of ordinary


1/2

PROBESSING DATE -- 27NGV70 TITLE--SPECIAL REPRESENTATION OF THE TWO POINT FUNCTION FOR THE FIELDS BESCRIBERG COMPOSITE PARTICLES -U-AUTHOR-TOZI-BLOKHINISEV. O.I., ZAYKOV, R.P. COUNTRY OF INFO--USSR SOURCE-TEORETICHESKAYA I MATEMATICHESKAYA FIZIKA, 1970, VOL 3, NR 2, PP 165-170 DATE PUBLISHED-----70 SUBJECT AREAS -- HATHEMATICAL SCIENCES TOPIC TAGS-FUNCTION, LORENTZ TRANSFORMATION CONTROL MARKING--NO RESTRICTIONS OCCUMENT CLASS--UNCLASSIFIED STEP NO--UR/0646/70/003/002/0166/0170 PROXY REEL/FRAME--3003/0327 CIRC ACCESSION NO--APO129559 OMGTASS LETTED

ONCE ON CONTROL ON CON	TLY, OF UNCTIONS ESENTATIONS ICS RESULT	OF THE	FIELDS THE LORE THE THEI	TRANSFORMI NITZY GROUP NITTE COMPO	NG UNDER . MAND
OR, EQUIVALEN R TWO POINT F UNITARY REPR LLOWS FROM TH	TLY, OF UNCTIONS ESENTATIONS ICS RESULT	OF THE	FIELDS THE LORE THE THEI	TRANSFORMI NITZY GROUP NITTE COMPO	NG UNDER . MAND
UNITARY REPR LLOWS FROM TH	ESENTALLU IIS RESUL	T THAT	THE INFI	NITE COMPO	DNENT
				CILITY:	
LTUT YADERKYK	(H ISSLED	GAWETI.			
	化二氯化物医二氯化物 医二种		生工 医乳乳 工工 韓二生		
				•	
					:
	SSIFIED				
	UNILA	UNCLASSIF 100	UNCLASSIFIED	UNCLASSIFIED	Unclassified

I/Z 026 IIIE—PRINCIPLES UNDERLYING	UNCLASSIFIED THE CHOICE OF	PROCESS THE BLEPHARDPL	ING DATE-	-020CT70 3D -U-	. 6.0
AUTHOR-(02)-ZAYKOVA, M.V., ZU	JS, G.S.	(April 1981)			
COUNTRY OF INFOUSSR		Grant Level Commercial		:	
SOURCEVESTNIK OFTAL MOLOGII	1, 1970, NR 2,	PP 68-72		• .	
DATE PUBLISHED70					
SUBJECT AREAS-BIOLOGICAL AND	D MEDICAL SCIEN	CES			
TOPIC TAGS-EYE DISEASE, PLA	STIC SURGERY. P	EDIATRICS			
					,
CURTRUL MARKINGNU RESTRICT	IONS				
ODCUMENT CLASSUNCLASSIFIED PROXY REFLYFRAME1986/0676	STEP NO-	-UR/0357/70/30	0/002/0058	1/0072	
CIRC ACCESSION NO-APO102660				:• 	

USSR

A STATE OF THE PARTY OF THE PAR

UDC 669.1:548.0:538

SHUR, YA. S., ZAYYOYA, Y. A. and KHAN, YE. B., Institute of Metal Physics, Academy of Sciences USSR

"Domain Structure in Single Crystals of Silicon Iron in a Variable Magnetic Field"

Sverdlovsk, Fizika Metallov i Metallovedeniye, Vol 29, No 4, Apr 70, pp 770-776

Abstract: A study was made to investigate the behavior of the domain structure in a variable magnetic field in relation to the induction amplitude. Samples were strips of silicon iron (3%,Si) measuring 50 x 5 x 0.3 mm whose surfaces were close to the (0ll) crystal plane. Silicon iron was used because there is a more complete change in the domain structure in quasistatic fields, which significantly simplified the study. The surfaces of the samples were mechanically polished and vacuum annealed at 1100° C for two hours.

Conservations of the single crystals showed that domain structure behavior in variable fields depends on the magnitude of magnetic induction ($B_{\rm max}$). At $B_{\rm max}$ = 50 Hz, six domains were observed. The width of the domains remained fairly constant until a $B_{\rm max}$ of 11,500 Hz was induced. At $B_{\rm max}$ = 12,600 Hz the number of domains increased to eight, and at 15,000 there were nine domains. The new domains formed along the edge of the surfaces, parallel to the [100] axis. Upon approaching the saturation point the domain structure again changed, so that at $B_{\rm max}$ = 1/2

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203730003-1"

USSR

SHUR, YA. S., et al., Fizika Metallov i Metallovedeniye, Vol 29, No 4, Apr 70, pp 770-776

17,000 Hz only three domains were noted.

According to the authors, magnetic (polarity) reversal in a dynamic mode differs substantially from magnetic reversal in the quasi-static mode and, in relation to the magnitude of $B_{\rm max}$, can proceed by three methods. At small values of $B_{\rm max}$, one observes a fluctuation of 180° domain boundaries near their equilibrium position (Method I). At higher values of $B_{\rm max}$, along with the boundary fluctuations, the number of domains increases (Method II). At the saturation point there is a shifting of domain boundaries from the side surfaces to the center (Method III).

2/2

Semiconductors and Transistors

621.315.592 UDC

USSR

ZAYKOVSKAYA, M. A., KLIMKOVA, O. A., NIYAZOVA, O. R.

"Low-Temperature Alloying of Semiconductors"

Leningrad, Fizika i Tekhnika Poluprovodnikov, Vol 5, No 5, May 1971, pp 911-

Abstract: The experimental results of radiation-accelerated introduction of gold and lithium into silicon are presented in this article. The experimental conditions under which low-temperature (150-350°K) diffusion of lithium and gold occurs in silicon are indicated. Under optimal conditions, the lowtemperature diffusion rates can be the same as in the case of thermal diffusion or close to them. The electrical properties of the crystals vary identically in the case of both low temperature and high temperature alloying. The low temperature alloying method has definite advantages over thermal diffusion methods, ion bombardment, and so on: the formation of thermal donors and thermal acceptors and radiation disarrangement of the structure are excluded, comparatively simple experimental conditions are required, new possibilities for local alloying arise, and so on.

1/2

USSR

ZAYKOVSKAYA, M. A., et al., Fizika i Tekhnika Poluprovodnikov, Vol 5, No 5, May 1971, pp 911-914

The experimental data on gold diffusion and lithium drift in silicon under radiation effects show that radiation accelerated diffusion (in contrast to high-temperature diffusion) is characterized by temperature relations leading to reduced effective migration energy.

2/2

- 128-

USSR

шс 66.099.2:661.635.213

KARMYSHOV, V. F., BURYAK, K. A., ZAYKOVSKIY, A. V., (DECEASED), BAYEV, A. YA., SAVCHENKO, V. A., and PERMINOVA, L. YA.

"Gruanulation of Ammophos by the Pressing Method"

Moscow, Khimicheskaya Promyshlennost', Vol 48, No 6, Jun 72, pp 434-436

Abstract: A method for the granulation of multipurpose fertilizers by the pressing method was developed at the Scientific Research Institute of Fertilizers and Insectofungicides imeni Ya. V. Samoylov. This method is being applied for the production of granulated annophos/ammonlum phosphate fertilizer/ at the Dzhambulsk Superphosphate Plant. Ammophos pulp with a subjected to spray drying. The dry powder is classified (fresh + recycled material) yielded 4.08 t/hr plates and 2.48 t/hr of fine material that had the same granulometric composition as the initial ammophos granulated product with a grain size of 1+3 mm (2.27 t/hr from 4.08 t/hr oversize grain fraction that was reground. One of the principal problems in that has to be recycled. Formation of fine material in the amount of 37.8%

USSR

KARMYSHOV, V. F., et al., Khimicheskaya Promyshlennost', Vol 48, No 6, Jun 72, pp 434-436

in the pressing stage is due principally to the porous structure of the powder being compressed, which contains only 30% of solids, and its high air content. The air contained in the powder interferes with feeding of the powder into the space between the rollers, producing spraying of the powder. It also reduces the adhesion between powder particles. To obtain a lower ratio of fine material that has to be recycled, methods must be developed for reducing the amount of air in the powder.

2/2

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203730003-1"

UDC 669.15 539.67

USSR

LAPTEV, D. V., BERNSHTEYN, M. L., BASINA, N. Z., and ZAYMOVSKIY, V. A., Moscow Institute of Steel and Alloys

"The Change of the Amplitude Dependence of Internal Friction of Nickel Steels After Thermomechanical Treatment"

Sverdlovsk, Fizika Metallov i Metallovedeniye, Vol 34, No 2, Aug 72, pp 408-410

Abstract: A study was made of the amplitude dependence of internal friction of 40N25, 60N20, and 80N18 steels after thermomechanical treatment. Wire specimens, 250 mm long and 0.9 mm in diameter, were subjected to thermomechanical treatment and hardening. The specimens were drawn at 550 and 950°C. Martensite was produced by deep cooling in liquid nitrogen; its quantity comprised 86-90%. The amplitude dependence of internal friction (ADIF), investigated at room temperature, is characterized by the tangent of the angle of slope α of a straight line in $\varepsilon\text{-}Q^{-1}$ coordinates. The austenite ADIF shows an increase of tga with decreasing deformation temperature and increasing carbon content in the steel. The change of tgo of martensite of 60N2O steel and the change of the level of its internal friction, depending on the tempering temperature, are discussed by reference to diagrams. Four figures, one table, four bibliographic references. 1/1

USSR

UDC 62-977:669.15-194.2

BERNSHTEYN, M. L., ZAYMOVSKIY, V. A. and MATEVOS'YAN, A. P., Moscow Institute of Steels and Alloys

"Thermal Stability of Thermomechanical Hardening of Type 40 Steel"

Moscow, Metallovedeniye i Termicheskaya Obrabotka Metallov, No 9, 1970, pp 26-28

Abstract: A study was made of the effect of the unusually high thermal stability of the hardening produced by high-temperature heat and mechanical working performed under plant conditions on standard rolled products of type 40 steel (diameter 19 mm). Mechanical, metallographic, X-ray structural, and electron microscope studies were performed. It was established that a high combination of mechanical properties is retained after intermediate holding in the α and γ areas (for various lengths of time) and subsequent hardening plus tempering. It is concluded that the effect results from austenite phase separation (partial banite conversion) and the deformation involved in rolling. Elimination of the hardening effect requires quadruple annealing at 900°C for four hours. Intermediate tempering at 600°C or normalization at 840°C with holding times of up to ten hours do not decrease the mechanical properties. 1/1

CIA-RDP86-00513R002203730003-1"

APPROVED FOR RELEASE: 09/01/2001

USSR

ZAYMOVSKIY, V. A. (Reviewer)

"Preliminary Thermomechanical Treatment of D6AS Steel"

Moscow, Metallovedeniye i termicheskaya obrabotka metallov, No 2, 1972,

Abstract: Reviewed is a study of a newly developed hardening system called preliminary thermomechanical treatment (PTMT). The system specifies deformation before austenization or "preaustenization" heating followed by rapid heating for austenization to preclude recrystallization in the ferritic region. The objective of the study was the effect of certain PTHT parameters on the properties of D6AS steel as well as the factors responsible for the hardening effect. The experimental results provide a qualitative description of the hardening mechanism with PIMT. On rapid heating after deformation, the ferrite transformation occurs in such a manner that the strain hardening is imparted to the austenite; the clongated grains become equiaxial. Intermediate heating at 260-380°C will either increase the cold work or promote its complete transfer to the austenite. Prolonged holding in the austenitic region eliminates the cold work. Thus the mechanism of hardening with PTMT

ZAYMOVSKIY, V. A., Metallovedeniye i termicheskaya obrabotka metallov, No 2, 1972, pp 38-42

is based on the transfer of cold working with phase transformations. Unlike other hardening procedures, such as ausforming or marforming, the cold work in PTMT is performed prior to the austenitic transformation. (9 illustrations, 2 tables, 14 bibliographic references).

2/2

- 56 -

UDC: 669.15:621.785

USSR

BERNSHTEYN, M. L., BRUN, L. YA., AND SAVARI, P. and SAMEDOV, O. V., Moscow Institute of Steel and Alloys

"Inheriting the Thermomechanical Strengthening of 30Kh2GMT Steel"

Sverdlovsk, Fizika metallov i metallovedeniye, Vol 32, No 4, Oct 71, pp 813-818

Abstract: Described is a study of the mechanical properties of 30Kh2GMT steel quenched and tempered following preliminary high-temperature strain hardening with heating the deformed austenite as supercooled. It is shown that repeated quenching following high-temperature mechanical treatment facilitates the inheritance of high mechanical properties. The restoration of the higher properties is the more complete the longer the heating duration of the hot-deformed austenite in the bainite region. The maximum effect is observed when the high-temperature thermomechanical treatment is followed by isothermal decay. The effect of "inheritance" is also observed during repeated quenching following low-temperature thermomechanical treatment with isothermal decay of austenite. The nature of this phenomenon is discussed with regard to the metallographic analysis of the initial austenite grain

1/2

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203730003-1"

USSR
BERSHTEYN, M. L., et al, Fizika metallov i metallovedeniye, Vol 32, No 4,
Oct 71, pp 813-818

in which picric acid has failed to produce an unambiguous etching pattern
and has most likely revealed, in addition to large-angle grain boundaries,
and has most likely revealed, in additions, 5 bibliographic references)
the boundaries of a substructure. (6 illustrations, 5 bibliographic references)

USSR

UDC: 621.376.5

ZAYMOVSKIY Ye A.

"Calculating the Transient Thermal Resistance of a Power Thyristor"

Tr. Radiotekhn. In-ta. AN SSSR (Works of the Radio Engineering Institute, Academy of Sciences of the USSR), 1970, No 1, pp 148-160 (from RZh-Radiotekh-nika, No 11, Nov 70, Abstract No 11D460)

Translation: Thyristers have recently found application as pulse dischargers in pulse power modulators. The use of thyristors has made it possible to improve many of the technical characteristics of modulators, especially their reliability. The pulse mode of modulator operation has a number of peculi-reliability. The pulse mode of modulator operation has a number of peculi-reliability as well to the thermal state of the thyristors. The arities which apply as well to the thermal state of the thyristors. Y. P. transient thermal resistance of a power thyristor is calculated. Y. P.

1/1

_ 54 _

USSR UDC: 632.95

SIMONOV, V. D., IVANOV, A. V., ZAYNAGABUTDINOV, S. A., KRASHE-NINNOKOVA, O. S., Ufa Affiliate of the All-Union Scientific Research Institute of Chemical Agents for Plant Protection

"A Method of Making Tetrachloroglutaconic Acid and Tetrachloro--4-Cyclopentene-1,3-Dione"

USSR Author's Certificate No 345125, filed 14 Sep 70, published 9 Aug 72 (from RZh-Khimiya, No 10, May 73, abstract No 10N583P by N. V. Lebedeva)

Translation: Tetrachloroglutaconic acid (I) and tetrachloro-4-cyclopentadione-1,3 (II) are synthesized by reacting octachlorocyclopentene (III) or hexachlorocyclopentene with Cl₂ in HSO₃Cl at 100-150°C. Example: Cl₂ is bubbled through a mixture of 1 mole of III and 4 moles of HSO₃Cl at a rate of 30 1/hr with the application 1 of heat at 145°C for 10 hours; after cooling the reaction mass is poured over ice and filtered, giving 0.455 nole of I, melting point 107-8°C(chloroform). An organic layer (127 g) is treated with 200 g or 100% H₂SO₄, the mixture is held for 7 hours at 105°C, poured over 1/2

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203730003-1"

USSR

SIMONOV, V. D., et al., USSR Author's Certificate No 345125, filed 14 Sep 70, published 9 Aug 72

ice and filtered, yielding 0.4 mole of II, melting point 64-5°C (heptane). Compounds I and II can be used as fungicides, herbicides, and also in the synthesis of unsaturated self-quenching polyester resins.

2/2

. 3n --

USSR

8.74 UDC:

ZAYNASHEV, N. K., KUZNETSOV, M. M.

"Some Problems in Determining the Readiness of Periodically Monitored Technical Devices"

V sb. Osnovn. vopr. teorii i praktiki nadezhnosti (Basic Problems in the Theory and Practice of Reliability-collection of works), Moscow, "Sov. radio", 1971, pp 81-102 (from RZh-Kibernetika, No 1, Jan 72, Abstract no 101026)

Translation: Methods are outlined for determining the readiness of periodically monitored recoverable technical devices assuming various properties of the restored elements and causes for failures. It is assumed that elements which have failed may be replaced either by new or old elements, which have been used for a certain length of time. The authors consider the case where failure of the device in the period between checks and during inspections is due to breakdown of various component parts, and the case where the same parts of the device fail both under storage conditions and during inspections.

1/1

- 45 -

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203730003-1"

UDC 54-162.2:546.824'26'21

USSR

ALYAMOVSKIY, S. I., ZAYNULIN, YU. G., SHVEYKIN, G. P., and GEL'D, P. V., Institute of Chemistry UNIS, Academy of Sciences USSR

"Concentration Relationship of the Degree of Filling the Unit Cell in Cubic Titanium Oxycarbide"

Moscow, Neorganicheskiye Materialy, Vol 9, No 4, Apr 73, pp 596-599

Abstract: Results are reported on a study of the effect of composition on the completeness of the TiC_XO_y lattice for x + y = 0.7 to x + y = 1.2, which practically encompasses the entire region of homogeneity for titanium oxycarbide. The characteristics of 39 samples of TiCxOy were used (13 from this work and 26 from previous works) to determine the equations for oxycarbides work and 20 from previous works; to describe the relationship $n_{\text{Pl}} = f(x)$ and components with x + y equal to 0.70-1.20 using the relationship $n_{\text{Pl}} = f(x)$ and components A, B, and C yielding $n_{\text{Pl}} = Ax^2 + Bx + C$. It is noted that twinning defects exist in the lattices of oxygen-containing cubic tricomponent phases of transition and the lattices of oxygen-containing cubic tricomponent phases of transitions. sition metal-base oxycarbides and nitrocarbides. 1 figure, 3 tables, 22 bibliographic references.

1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203730003-1"

USSR

UDC 546.831:171.1-21

ZAYNULIN, YU. G., ALYAMOVSKIY, S. I., SHVEYKIN, G. P., GEL'D, P. V.

"Domein of Homogeneity of Zirconium Oxynitride With MaCl Structure, at 1,500°C"

Moscow, Zhurnal Neorganicheskoy Khimii, Vol 16, No 2, 1971, pp 315-317

Abstract: The binary systems Zr-N and Zr-O have been studied in detail; however, there is no information on the ternary system, and especially its cubical component (of NeCl type). Only a few papers have appeared dealing with certain characteristics of ZrNx0y with low oxygen content, and those dealing with partial zro2-ZrN systems.

Using 99.9 percent pure 2r02 and oxynitrides of composition ZrNo.7600.12 and ZrNo.8700.12, and also 99.9 percent pure Zr powder as starting meterials, the authors prepared samples for X-ray analysis and determination of Zr and N content.

1/2

- 26

USSR

ZAYRULIN, YU. G., et al, Ehurnal Neorganicheskov Rhimii, Vol 16, No 2, 1971, pp 315-317

It was found that at 1,500°C and 10°5mm pressure, the domain of homogeneity of zirconium oxynitride with NaCl structure is limited (ymax ~~0.3, while the lattice periods, within these limits, vary only very slightly (from 4.574 to 4.575 A). For ZrNxOy, vacant points are a distinctive feature, both in the sublattice of the metal and in that of the nonmetal.

2/2

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203730003-1"

PROCESSING DATE--230CT70 1/2 TITLE--INVESTIGATION OF THE ANTIFERROMAGNETISM FERROMAGNETISM TRANSITION IN THE COMPOUND MN SUB1,88 CR SUB0,12 SB -U-AUTHOR-(05)-GRAZHDANKINA, N.P., BURKHANOV, A.M., BERSENEV, YU.S.,

ZAYNULLINA, R.I., MATVEYEV, G.A.

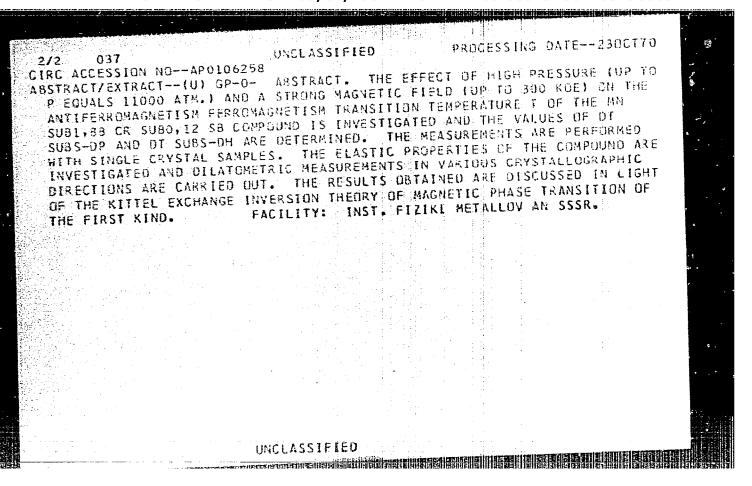
COUNTRY OF INFO--USSR

SOURCE--ZHURNAL EKSPERIMENTAL NOY I TEORETICHESKOY FIZIKI, 1970, VOL 58, NR 4, PP 1178-1185 DATE PUBLISHED----70

SUBJECT AREAS -- PHYSICS, MATERIALS

TOPIC TAGS--MAGNETIC TRANSFORMATION, TRANSITION TEMPERATURE, FERROMAGNETIC MATERIAL, ANTIFERROMAGNETIC MATERIAL, STRONG MAGNETIC FIELD, HIGH PRESSURE EFFECT, CRYSTAL ORIENTATION, CRYSTAL DEFORMATION, ANTIMONIDE, MANGANESE COMPOUND, CHROMIUM COMPOUND

CONTROL MARKING--NO RESTRICTIONS


DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1988/1502

STEP NO--UR/0056/70/058/004/11/8/1185

GIRC ACCESSION NO--APO106258

----UNGLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203730003-1"

USSR

Commence of the Commence of th

UDC: 547.944.954

ISLAND, KH. A., Z.ENTDENOV, U. N., KUSHMURADOV, YU. K. and SADYKOV, A. S., Tashkent State University imeni V. I. Lenin, Tashkent, Kinistry of Higher and Secondary Specialized Education UZSSR

"New Didehydro-Derivatives of Matrine Tsolupanine Alkahoids"

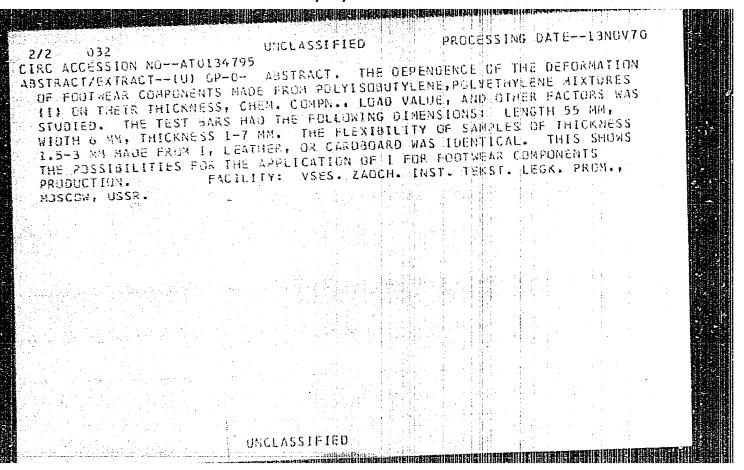
Tashkent, Khimiya Prirodnykh Soyedineniy, No 3, 1970, p 381

Abstract: From matrine via 5-hydroxy-6,7-dehydromatrin, a matrine series didehydroccopound where double bonds encompass three or four optical centers was synthesized. Dehydration of 5-hydroxy-0,7-dehydromatrine with P,0, by the Follman method led to a complex mixture of compounds, while dehydration in an n-xylol solution led to the matrine didehydroderivative with a hOF yield. This study suffests that in selecting conditions for hydrogenation of the didehydro product several new stereoisomers of matrine can be obtained.

1/1

USSR

MATVEYEV, YU. M., ZAYONCHIK, L. I., SITNIKOV, L. L., OSTRYAKOV, V. V.


"Strain Study of Mechanically Inhomogeneous Rodies Using Optically Sensitive Coatings"

Moscow, Zavodskaya Laboratoriya, Vol XXXVII, No 4, 1971, pp 468-471

Abstract: A study is made of the stress-strain state of mechanically inhomogeneous bodies using entirally sensitive coatings. The effect of mechanical inhomogeneity of the medium on the stress-strain state and the nature of development of the zones of plastic flow are estimated. The layer of coatings is applied to the reflecting surface of a bimetal sample, and the optical effect is established in the form of a Moray pattern and the isochrome pattern. The penetration of the zone of plastic flow as a function of the degree of relative reduction during the process of reducing homogeneous discs made of soft and hard lead-antimony alloys and bimetal discs is plotted, and the kinetics of development of the normal stresses in the center of a disc are illustrated for two inhomogeneity diagrams.

1/1

PROCESSING DATE--13NOV70 UNCLASSIFIED TITLE--MECHANICAL PROPERTIES OF INNER FOOTWEAR COMPONENTS MADE FROM PLASTICS -U-AUTHUR-(02)-LEYNOV, YA.N., ZAYONCHKOVSKIY, A.D. 1924:01-1111 COUNTRY OF INFO--USSR SOURCE--IZV. VYSSH. UCHEB. ZAVED., TEKHNOL. LEGK. PROM. 1970, (1), 98-101 DATE PUBLISHED-----70 SUBJECT AREAS--MATERIALS, MILITARY SCIENCES TOPIC TAGS--MATERIAL DEFORMATION, FOOTGEAR, POLYISOBUTYLENE, POLYETHYLENE, TEST HETHOD CONTROL MARKING--NO RESTRICTIONS DOCUMENT CLASS--UNCLASSIFIED STEP NO--UR/0323/70/000/001/0098/0101 PROXY REEL/FRAME--3006/1109 CIRC ACCESSION NO--ATOL34795 UNCLASSIFIED

Hydraulic and Pneumatic

USSR

UDC 629.78.062.2

POGODAYEV, F. G., ZAYONCHKOVSKIY G. T.

"Application of Integral Criteria to Analyze the Quality of Transfer Processes in a System With a Hydraulic Amplifier"

Sb. nauch. tr. Kiev. in-t inzh. grazhd. aviatsii (Collection of Scientific Works of Kiev Institute of Civil Aviation Engineers), 1970, No. 6, pp 16-22 (from RZh-Raketostroyeniye, No 9, Sep 71, Abstract 9.41.188)

Translation: Analytical relationships are obtained for determining in the linear formulation the combination of parameters of a hydraulic servosystem to produce the most favorable transfer process. Since the optimal combination of values of the parameters of the hydraulic servosystem corresponds to the minimum value of the integral square error or is close to this value, an integral of the type

1-124 can serve as a criterion for selecting optimal parameters of a hydraulic

amplifier of a control system (as a first approximation). The results obtained in considering the linear problem can be the basis for a further study of problems in the dynamics of hydraulic amplifier systems considering nonlinearities.

1/1

USSR

UDC 536.421.4+556.421.1

GENDINEY, S. Sh., SAYONGHIOUSELY, Ya. A., and LYUKSHIN, V. V.

"Effect of Crystallization Conditions on the Smoothness of Manganese Ferrite Pilm Surfaces"

V sb. <u>Kristellizatsiya i faz. prevrashcheniya</u> (Grystallization and Fhase Transformations--collection of works) Minsk, "Kauka i tekhn." 1971, pp 86-90 (from <u>RZh-Fisika</u>, No. 9, 1971, Abstract No. 92399)

Translation: The effect of temperature and rate of crystallization on the dimensions and form of the bumps in the growth of manganese ferrite films is investigated. The films were grown by the method of chemical transport reactions in a small gap. With increasing temperature, there were at first many and very small growing tumps; these reached a maximum and then degenerated. The size of these reached bumps increased continuously. With an increase in the truncated bumps increased continuously. With an increase in the rate of growth, the height of the bumps increased, and their shape changed from pyramidal to conical. Author's abstract

1/1

50...

1/2 026 UNCLASSIFIED PROCESSING DATE--23UCT70
TITLE--USE OF A NEW LUBRICATING ADDITIVE FOR DRILLING MUDS DURING DIAMOND
DRILLING OF GEOLOGICAL BOREHOLES -UAUTHOR-1051-ZAYONTS, O.L., KOMAR, V.YA., PUKAS, A.I., YAROV, A.N., KENDIS,

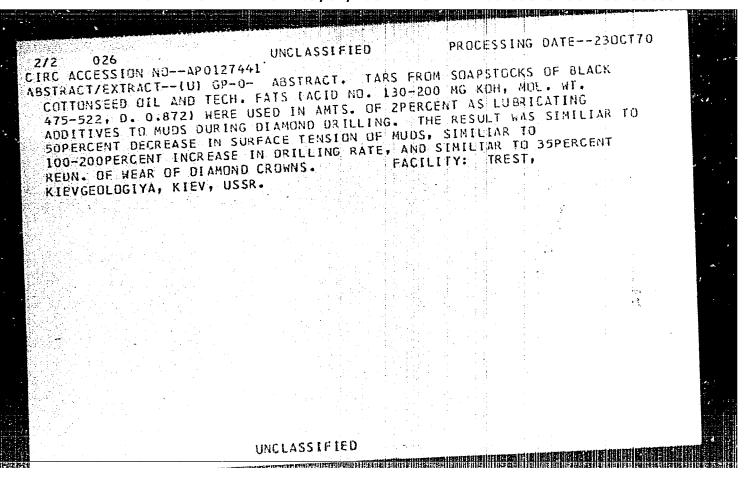
COUNTRY OF INFO--USSR

SOURCE--RAZVED. OKHR. NEDR 1970, 3613), 37-40

DATE PUBLISHED----70

SUBJECT AREAS-MECH., IND., CIVIL AND MARINE ENGR. EARTH SCIENCES AND DCEANDGRAPHY, MATERIALS TOPIC TAGS-LUBRICANT ADDITIVE, VEGETABLE OIL, LUBRICATING OIL, DRILLING MUD. DIAMOND, GEOLOGY, DRILLING MACHINE

CONTROL MARKING--NO RESTRICTIONS


DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3001/2068

STEP NO--UR/9083/70/036/003/0037/0040

CIRC ACCESSION NO--APO127441

LINCLASSIFIED.

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203730003-1"

1/2 023 UNCLASSIFIED

PROCESSING DATE--160CT70

TITLE--A METHOD OF RELATIVE SEMIQUANTITATIVE SPECTRAL INVESTIGATION OF THE

SEMINAL FLUID -U-

AUTHOR-(03)-SMOLYANINOV, V.M., PASHINYAN, G.A., ZAYSEV, V.V.

COUNTRY OF INFO--USSR

SOURCE--UROLOGIYA I NEFROLOGIYA, 1970, NR 3, PP 36-38

DATE PUBLISHED-----70

SUBJECT AREAS-BIOLOGICAL AND MEDICAL SCIENCES

TOPIC TAGS-REPRODUCTIVE SYSTEM, SPECTRUM ANALYSIS, SPERMATOGENESIS, SPHOSPHORUS, IRON, CALCIUM, COPPER, SODIUM, ALUMINUM

CONTROL MARKING--NO RESTRICTIONS

PROXY REEL/FRAME--1998/0170

STEP NO--UR/0606/70/000/003/0036/0038

CIRC ACCESSION NO--AP0120870

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203730003-1"

armasina kusantsa sitaun isusi asintsi kampanesit singinta ilinkar alia biliki kadin 18. kampa kampa 19. kasa p PROCESSING DATE--160CT70 UNCLASSIFIED 023 2/2 CIRC ACCESSION NO--APO120870 THE AUTHORS REPORT A METHOD OF ASSTRACT. ABSTRACT/EXTRACT-- (U) GP-G-SPECTRAL ENISSION ANALYSIS AS APPLIED TO THE STUDY OF INDRGANIC COMPOSITION OF NORMAL AND PATHOLOGICALLY CHANGED HUMAN SEMINAL FLUID. DETERMINATION OF 6 MACRO AND TRACE ELEMENTS OF THE EJACULATE PHOSPHORUS, IRON, CALCIUM, COPPER, SODIUM AND ALUMINIUM) IS PRESENTED THE RESULTS OF THESE INVESTIGATIONS WERE TREATED STATISTICALLY. THE METHOD IS RECOMMENDED FOR DIAGNOSIS OF SOME CONDITIONS OF THE EJACULATE IN CLINICAL PRACTICE. FACILITY: KAFEDRA SUDEBNOY MEDITSINY II MOSKOCSKOGO MEDITSINSKOGO INSTITUTA IM. N. I. PIREGOVA. UNCLASSIFIED

A STATE OF THE PERSON NAMED IN PROCESSING DATE--160CT70 TITLE--SELF DIFFUSION OF MERCURY, SULFUR, AND SELENTUM IN HOSE SUBI-X S SUBX AND HETE SUB1-X S SUBX SOLID SOLUTIONS -U-AUTHOR-(04)-KHARAKHORIN, F.F., GAHBAROVA, D.A., ZAYTOVISIONAL LUTSIV, R.V. COUNTRY OF INFO--USSR SOURCE--IZV. AKAD. NAUK SSSR, NEORG. MATER. 1970, 613), 564-5 DATE PUBLISHED----70 SUBJECT AREAS-CHEMISTRY TOPIC TAGS-MERCURY COMPOUND, SELENIUM COMPOUND, SULFUR COMPOUND, SOLID SOLUTION, SINGLE CRYSTAL, ACTIVATION ENERGY, RADIDAGTIVE ISOTOPE CONTROL HARKING--NO RESTRICTIONS STEP NO--UR/0363/70/006/003/0564/0565 DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1996/0865 TIRC ACCESSION NO--APOLISO41 UNCLASSIFIED

PROCESSING DATE--160CT70 UNCLASSIFIED ABSTRACT. TEMP. DEPENDENCES OF SELF 2/3 . . 021 TRC ACCESSION NO--APO118041 DIFFUSION COEFFS. OF S. SE. AND HG IN SINGLE CRYSTALS OF HGSE SUB1-X S ABSTRACT/EXTRACT--(U) GP-0-SUBX AND HETE SUSI-X S SUBX IX EQUALS 0.1-0.41 OF THE ELECTRONIC TYPE WITH A CURRENT CARRIER CONCN. OF SIMILAR TO 5 TIMES 10 PRIME18 CM PRIME NEGATIVES WERE STUDIED. THE STUDY OF THE SELF DIFFUSION WAS DONE WITH THE AID OF RADIOACTIVE ISOTOPES PRIMEZO3 HG, PRIMETS SE, AND PRIME35 S BY THE METHOD OV REMOVING SUCCESS LAYERS. DIFFUSION ANNEALING OF THE SAMPLES WAS DONE IN EVACUATED QUARTZ AMPULS AT 200, 300, 350, AND 400DEGREES FOR 30-80HR. THE DIFFUSION PROCEEDED FROM THE GAS PHASE. WITH INCREASING S CONCN. IN THE HGSE SUBI-X S SUBX SYSTEM FROM 1 TO 36PERCENT, THE SELF DIFFUSION COEFF. OF S AT 300DEGREES DECREASES FROM 5 TIMES 10 PRIME NEGATIVE13 TO 1.1 TIMES 10 PRIME NEGATIVE13 CM PRIMEZ-SEC. THE DECREASED IN THE SELF DIFFUSION COEFF. WITH ITS INCREASED CONCN. IN THE SOLID SOLNS. INDICATES PREFERENTIAL DIFFUSION OF S ALONG THE HG VACANCIES. IN THE HGTE SUB1 NEGATIVEX S SUBX SYSTEM THE SELF DIFFUSION OF S PROCEEDS PRIMARILY ALONG THE S AND THE TE VACANCIES. UPON ANNEALING OF THE LATTER SOLID SOLNS. IN S VAPORS THE CARRIER CONCN. DECREASES FROM 10 PRIMEIS TO 2 TIMES 10 PRIMELY CM PRIME NEGATIVES. WITH INCREASING CONCN. DF S IN HGSE SUBL NEGATIVEX S SUBX FROM 10 TO 30PERCENT, THE SELF DIFFUSION COEFF. OF SE AND HG INCREASES AND THE MAX. VALUES ARE AT X EQUALS 0.2. THE ACTIVATION ENERGY OF THE DIFFUSION OF HG IS 0.3 EV. AND THAT OF SE IS 0.67 EV. AFTER DIFFUSION ANNEALING IN HG VAPOR THE CARRIER CONCN. INCREASES FROM 1 TIMES 10 PRIMEIS TO 6 TIMES 10 PRIMEIS CM PRIME NEGATIVES, WHEREAS THE MOBILITY DECREASES BY A FACTOR OF 2. UNCLASSIFIED

3/3 OZI IRĆ ACCESSION NOAPOLIS	UNCLASSIFIED PROCESSING DATE-	
BSTRACT/EXTRACTWITH IN	CREASING ANNEALING TEMP. SE VAPORS (10 PR BRENT CARRIER CONCN. DECREASES FROM 1 TIM	IME IES 10
PRIMEIS TO 2 TIMES 10 I	RIME17 CM PRIME NEGATIVE3.	
		: :
		·
		•
		·
		•
	UNCLASSIFIED	<u> </u>
	UNCLASSIFIED.	

ACC. NY:

AP0044402

Code: UR 0239

PRIMARY SOURCE:

Fiziologicheskiy Zhurnal, 1970, Vol 56, Nr 1, pp 55-63

«SLOW» AND «FAST» MOTONEURONS DIFFERENTIATED BY EFFECTS OF POST-TETANIC POTENTIATION AND ISCHAEMIC DEAFFERENTATION IN

> Kots, Ya. M.; Zaytsey Ar A. From the Central Institute of Physical Culture, Moscow

Post-tetanic potentiation (PTP) of the H-reflex is revealed after tetanisation of n tibialis at the 400/sec frequency but is lacking at the 40/sec or 60/sec frequency. PTP of the H-response of the stasts medial gastrocnemius motor units (increase of the amplitude of the 1st early component of the H-response of m. gastroenemius medialis) appears only fellowing relatively strong tetanisation and is essentially less evident than PTP of the H-response of the slows soleus and medial gastroenemius motor units (increase of the amplitude of the H-response of in, soleus and the 2nd late component of the H-response of m, gastroenemius medialis). Ischnemic blocking the low threshold afterents causes of m. gastrochemius medialis). Isomemic blocking the low threshold alterents causes earlier and stronger changes in the H-response of allows solets and medial-gastrochemius motor units than those in the H-response of alasts medial gastrochemius motor units. These facts lead us to conclusions that in man the H-response of the clasts medial gastrochemic medial gastr commiss motor units is evoked by the activation of the more higher threshold afferents than the H-response of sslows solens and medial gastrochemius motor units.

USSR

UDO 621.375.126

VANKE, V.A., ZAYTSEV. A.A., KRYUKCV, S.P., LOPUKHIN, V.M. [Moscow State

*Problems Of Designing A Narrow-Band Tunable DC-Pumped Amplifier"

Izv. VUZ: Radiofizika, Vol XV, No 2, Feb 1072, pp 291-299

Abstract: The possibility is discussed of designing a narrow-band tunable amplifier-filter on the basis of a diptron [diftron]. The scheme of this unit contains a ferromagnetic tip, an electron gun, an input distribution coupler, an amplification zone, an cutput distribution coupler, and a coupler. The dispersion characteristics of waves of the electron flow and delay system are presented. The advisibility is shown of using a single-row comb as an input coupler of the amplifier. The parameters are numerically calculated. A graph is shown of the dispersion characteristics of a zero-order space harmonic and the distribution of high-frequency electrical fields of a single-row plane comb. The scheme is presented of an amplifier-filter with a combined delay system and one of the variants of such a system. The physical processes during interaction between the electron beam with a delay system and the de-pumped field tore, 26 Apr 1971.

- 3 -

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203730003-1"

	是一种的 · · · · · · · · · · · · · · · · · · ·	WAVES AT HE SURFACE OF A FLOW OF FINITE DEZTH EXCITED BY AN UNDERWATER SCURCE [Article by A.A. Zaytesv, Moscow Physico-Engineering Institute, Dolgoprudny), Moscow Oblact. Honcow, Poklady Akademii Mank SSSB, Russian, Vol 201, No 5, 1971, submitted 14 May 1971, pp 1070-1073] In the article, the number examines the established wave motion at the five of a flow of ideal heavy invited of constant depth E, moving at velocity of the direction of the positive weaks. A rectangular system of coordinates by a periodically acting point source located at depth H. He waves are seried by a periodically acting point source located at depth H. He waves are seried to the source of the source	JPRS 55564 30 March 1972
--	--	---	-----------------------------

USSR

UDC 621.375.126

VANKE, V. A., ZAYTSEV, A. A., KRYUKOV, S. P., LOPUKHIN, V. M., Moscow State

"Problems of Designing a Narrow Band Tunable Electrostatic Amplifier"

Gor'kiy, Izvestiya vysshikh uchebnykh zavedeniy, Radiofizika, Vol XV, No 2, 1972, pp 291-299

Abstract: The possibility of building a narrow band tunable filter amplifier based on a diftron was analyzed. The expediency of using a single-row comb as the input and output couplers of the amplifier was demonstrated, and numerical calculations of the parameters were performed. A study was made of the physical processes in the presence of combined interaction of an electron flux with a decelerating system and an electrostatic pumping field. The possibility of partial or complete combination of individual sections of the amplifier into a single system was demonstrated, and numerical estimates are presented. The pass band of the investigated amplifier with a single combined system for $\lambda = 8$ cm, $\Delta f \approx 120$ megahertz with a separate input coupler was 60 megahertz. The ordinary filter amplifier with separate input and output couplers has a band of $\Delta f \approx 40$ megahertz.

1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203730003-1"

USSR

UDC: 538.4

ZAYTSEV, A. A. and MISKINGVA, N. A.

"Investigating Some Processes in Discharges in Binary Mixtures"

V sb. Vopr. fiz. nizkotemperaturn. plazmy (Problems in the Physics of Low-Temperature Flasmas - collection of works) Minsk, "Nauka i tekhn." 1970, pp 490-495 (from RZh-Mekhanika, No. 2, Feb 71, Ab-

Translation: An investigation is conducted into discharges in binary mixtures of Ne-Hg and Ne-Hg both with and without electrophoresis. Data is given concerning the electric field, the concentration and temperature of the electrone along the length of the axially nonuniform positive column. These parameters are compared with the parameters of the movable strata. The obtained data indicates that the ion mechanism of separating mixture components is to be preferred. The electron energy losses in axially homogeneous mixtures of inert gases and mercury vapor are measured and computed. Bibliography of 14. Author's abstract

1/1

USSR ..

UDC: 536.4+532.51

GUKHMAN, A. A. and ZAYTSEV, A. A.

"Self-Modeling Variables, II"

Moscow, Teplofizika Vysokikh Temperatur, Vol. 8, No. 4, 1970, pp 847-855

Abstract: This article is the second part of a series begun in Vol. 8, No. 1, 1970, of the journal named above and deals with several problems which can be transformed only into partially self-modeling form. As an example, the authors consider the problem of heat exchange during boiling in a large space, a situation for which there is as yet no sufficiently developed physical model for use in its analysis. They examine several approaches to the solution of this problem which, they assert, is widely being considered in the Soviet Union. They also deal with the problem of viscous, incompressible liquid flow along a tube of circular cross section on the rim of a disc and show how the method of characteristic scales can be used to simplify the initial system of equations.

1/1

150 -

USSR

UDC: 541.49:546.799.3

YEIESIN, A. A., ZAYTSEV A., KARASEVA, V. A., NAZAROVA, I. I., PETRIKHOVA, I. V.

"Synthesis of (Methyl Phenyl Phosphonyl) Methyl Phonyl Phosphonic Acid, and an Investigation of Complexing With Trivalent Ions of Americium, Curium and Promethium"

Leningrad, Radiokhimiya, Vol 14, No 3, 1972, pp 374-377

Abstract: The authors studied complexing of trivalent Am, Cm and Pm ions with an organophosphorus compound containing two P=O groups joined by a methyl bridge. This compound, (methylphenylphosphonyl) methylphenylphosphonic acid, was synthesized. The thermodynamic value of its dissociation constant was determined (pK^O = 2.04). Complexing was studied by the ion-exchange method on KU-2 cation-exchange resin. The logarithms of the constants of stability for complexes of Am³⁺, Cm³⁺ and Pm³⁺ in solutions with constant ionic strength of 0.2 (iHh ClOh) were 3.35, 3.35 and 3.40 respectively, which is appreciably higher than the corresponding values with phosphoric and methylphosphonic acids, and approaches the value of the constants with trimetaphosphoric acid. The additional stabilization of these complexes was attributed to the chelate effect associated with ring closure.

-21

USSR

UDC 541.183+541.49

YELESIN, A. A., and ZAYTSEV, A. A.

"Ion-Exchange Behavior of Trivalent Am, Cm, Cf and Other Elements in the System with Nitrilotriacetic Acid"

Leningrad, Radiokhimiya, Vol XIV, No 5, 1972, pp 731-738

Abstract: Direct experiments were performed to separate americium and curium in order to evaluate the real difference in the stability constants and, in addition, to try to evaluate the relative position of the americium and curium and rare earth metals for which promethium was also added to the separated and rare earth metals for which promethium was also added to the separated mixture. Subsequent experiments were performed in which the class of elements was expanded and californium, europium and other elements were also the experiments. The ion exchange behavior of And, Cod, Cod, Parture used in the experiments in a system with nitrilotriacetic acid was investigated and the other elements in a system with nitrilotriacetic acid was investigated and on the basis of the separation data corrections were introduced into the values of the stability constants of the complexes for matching with the results of potentiometric measurements.

The separation factor of the curium-americium pair is 1:3, and that of the curium-promethium pair, 2.2. For the ratio of concentrations of of the curium-promethium pair, 2.2. For the ratio of concentrations of nitrilotriacetic acid and of-oxyisobutyric acid used in the experiments, nitrilotriacetic acid and of-oxyisobutyric acid used in the experiments, 1/2

USSR

YELESIN, A. A., and ZAYTSEV, A. A., Radiokhimiya, Vol XIV, No 5, 1972, pp 731-738

the process is determined by the complexion, and the role of the &-oxyiso-butyrate reduces to creating the necessary buffering os the solutions. In an &-oxyisobutyrate environment, europium is washed out between californium and curium, but in the presence of nitrolotriacetic acid it follows with

curium which indicates the closeness of the complex-formation constants. In accordance with the stability constant yttrium should wash out together with or close to europium, but in practice it precedes europoim. This is explained by the fact that the yttrium exchange constant between the resonance solution is less than that of europium.

The following values of the stability constants of the complexes are used to explain the results of the ion exchange separations:

Eu
$$-1g\beta_1 = 11.51$$
, $1g \beta_2 = 20.76$;
Cra $-1g\beta_1 = 11.6$ $1g \beta_2 = 20176$;
Am $-1g \beta_1 = 11.5$, $1g \beta_2 = 20.65$;
Pm $-1g \beta_1 = 11.4$, $1g \beta_2 = 20.42$.

2/2

. 7# 4

USSR

UDO 621.314.58

ZAYTSEV, A.I., KUVSHINOV, A.A.

"To A Computation Of The Electromagnetic Processes In A Six-Phase Compensation Converter With Equalizer Reactor"

Izv. Tomek. politekhn. in-ta (Bulletin Of Tomak Polytechnical Institute), 1970, 211, pp 3-9 (from RZh--Elektronika i yeye primeneniye, No 1, January 1971, Abstract No 18441)

Translation: In the circuit under consideration, a compensating reactor is connected between the terminals of an equalizer reactor across two anti-parallel controllable rectifiers [Behtmand]. For analysis, the method of piecewise linear approximation is used, during which the volt-ampere characteristic of the rectifiers is replaced by forward segments. In the computation there is not taken into account: magnetizing current and effective resistance of the magnetic into account: magnetizing current and effective resistance of the magnetic elements, and reduction of voltage in the rectifiers in the forward direction. An analysis is conducted and the dependences are obtained for currents and voltage at the capacitor for the following two regimes, during which the compensation constructed and expensively without disruption: with two simultaneously switched-on power verter can operate without disruption: with two simultaneously switched-on power rectifiers, and with one switched-on power rectifier (when loading of the commutating capacitor by d-c takes place). Farther, for simplification of the solution,

USSR

ZAYTSEV, A. F., KUVSHINOV, A. A., Izv. Tomsk. politekhn. in-ta, 1970, 211, pp 3-9 (from RZh--Elektronika i yeye primeneniye, No 1, Jan 1971, Abstract No 18441)

during investigation of electromagnetic processes in the circuit of the capacitor the assumption is accepted that the phase electromotive forces of the transformer in the intervals of operation of the unit for artificial commutation remain constant. Test computations on a digital computer showed that with such an assumption the precision of computation is found within the limits of 15%.

2/2

- 37 -

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203730003-1"

USSR

UDC 621.791:621.315.46:62 - 462

ZAYTSEV, A. L., Engineer, RUD', S. V., Engineer (Zhdanov Ketallic Construction Plant), Shlvkarev, B. M. Candidate of Technical Sciences (Minmontazhspetsstroy

"Manufacturing Welder Radio Antenna Masts of Tubular Profiles"

Moscow, Svarochnoye Proizvodstvo, No 3, Mar 70, pp 17-19

Abstract: A study was made of a welding method using 2.1-2.2-min FP-ANA iron powder wire with supplementary carbon dioxide are protection for the production of radio antenna maste of rectangular or tubular cross section. The presence of slag-forming components in the core, in combination with the carbon dioxide protection, makes it possible to effectively deoxidize the molten bath, and to reduce its gas content (0.010% nitrogen, 0.040% oxygen). The impact ductility of such welds on low-carbon and particularly on low-alloy construction stools (S 35-S 40), remains high at temperatures of -60°C and lower. Wolding with PP-AN4 wire with carbon dioxido protection is recommended for structures made from lowcarbon and low-alloy steels. Photographs and descriptions of various production setups and welding rigs are included. Orig. art. has: 4 figures and 2 tables. 1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203730003-1"

USSR

UDC 621.396.677:523.164

ZAYTSEV, A. P., ZOTOV, V. V., and SEVRYUKOV, B. N.

"One Extremal Problem of Radiotelescope Control"

Tr. Mosk. energ. in-ta (Works of the Moscow Power Engineering Institute), 1972, vyp.116, pp 148-154 (from RZh-Radiotekhnika, No 11, Nov 72, Abstract No 11 B21)

Translation: The authors study the particularities of systems for the control of radio telescopes. Problems are also studied which are related to the development of radio telescopes in conjunction with large antennas with a single, fixed emitter where the antennas form a single-beam radiation pattern. An algorithm is set up for optimizing the system of control. Original article: three illustrations and seven bibliographic entries. N.S.

1/1

1/2 017

UNCLASSIFIED

PROCESSING DATE--020CT70 TITLE--ENERGETICS OF THE FERROUS METALLURGY, 1970 YEAR -U-

AUTHOR-1021-YEGORICHEV, A.P., ZAYTSEV, A.P.

COUNTRY OF INFO--USSR

SOURCE--MOSCOW, PROMYSHLENNAYA ENERGETIKA, NO 2, FEB 70, PP 5-7

DATE PUBLISHED --- FEB70

SUBJECT AREAS--MECH., IND., CIVIL AND MARINE ENGR. MATERIALS

TOPIC TAGS-FERROUS METAL, BLAST FURNACE, AIR POLLUTION, INDUSTRIAL AUTOMATIC CONTROL, DXYGEN, STEEL INDUSTRY, ELECTRIC INDUSTRY, INDUSTRIAL WATER

CONTROL MARKING-NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1990/1654

STEP NO--UR/0094/70/000/002/0005/0007

CIRC ACCESSION NO--APO109652

UNCLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203730003-1"

2/2 CIRC ACCESSION NO--APO109652 UNCLASSIFIED ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. PRUCESSING DATE-- 020CT70 HISTORICAL SUMMARY OF THE DEVELOPMENT AND ACHIEVEMENTS OF THE POWER THIS ARTICLE PRESENTS A CONCISE INDUSTRY FOR FERROUS METALLURGY IN SSSR SINCE THE REVOLUTION. PRESENTS DATA ON THE EARLY DEVELOPMENT STAGES AND THE CHARACTERISTICS OF ELECTRIC POWER INSTALLATIONS AND SHOWS THE SUCCESSIVE STEPS TAKEN FOR THEIR DEVELOPMENT IN VIEW OF THE PLANNED GROWTH OF FERROUS METALLURGY. IT EMPHASIZES THE EFFORTS TOWARD THE CONTINUOUS DEVELOPMENT AND IMPROVEMENT OF ELECTRIC POWER INSTALLATIONS AND EQUIPMENT FOR STEEL DATA ARE PRESENTED ON THE POWER CHARACTERISTICS OF VARIOUS CONTEMPORARY EQUIPMENT, SUCH AS DXYGEN CONVERTERS, HIGH POHER AIR COMPRESSORS FOR BLAST FURNACES, BOILERS, COOLING SYSTEMS ETC. IT PRESENTS AN INSIGHT ON THE CURRENT RESEARCH ON THE REDUCTION OF FUEL CONSUMPTION. ON BETTER UTILIZATION OF WATER RESOURCES FOR COOLING SYSTEMS, ON WATER AND ABSTRACT: AIR POLLUTION, ON AUTOMATION, ON AUTOMATIC CONTROL OF INDUSTRIAL PROCESSES ETC. THE SIGNIFICANCE OF GOOD ORGANIZATION OF THE OVERHAUL AND MAINTENANCE SERVICES FOR RELIABLE AND ECONOMICAL OPERATION OF INSTALLATIONS IS EMPHASIZED. TAKEN FOR SHOOTH OPERATIONS OF SERVICES ARE DESCRIBED. EFFORTS ARE DESCRIBED FOR THE TRAINING OF SCIENTIFIC, TECHNICAL AND STEPS ALREADY SKILLED PERSONNEL, AS WELL AS THE ORGANIZATION OF SPECIAL INSTITUTES FOR THE PURPOSE OF CONDUCTING RESEARCH IN DIFFERENT FIELDS RELATED TO FURTHER DEVELOPMENT OF THE POWER INDUSTRY IN VIEW OF THE CONTINUOUS

UNCLASSIFIED

PROCESSING DATE--020CT70

TITLE--ENERGETICS OF THE FERROUS METALLURGY, 1970 YEAR -U-AUTHOR-(02)-YEGORICHEV, A.P., ZAYTSEV, A.P.

COUNTRY OF INFO-USSR

SOURCE--MOSCOW, PROMYSHLENNAYA ENERGETIKA, NO 2, FEB 70, PP 5-7

DATE PUBLISHED --- FEB70

SUBJECT AREAS--MECH., IND., CIVIL AND MARINE ENGR, MATERIALS

TOPIC TAGS--FERROUS METAL, BLAST FURNACE, AIR POLLUTION, INDUSTRIAL AUTOMATIC CONTROL, DXYGEN, STEEL INDUSTRY, ELECTRIC INDUSTRY, INDUSTRIAL

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRANE--1990/1654

STEP NO--UR/0094/70/300/002/0005/0007

CIRC ACCESSION NO--APO109652

UNCLASSIFIED

2/2 017 UNCLASSIFIED PROCESSING DATE--020CT70 CIRC ACCESSION NO--APO109652 ABSTRACT/EXTRACT--(U) GP-0-ABSTRACT. THIS ARTICLE PRESENTS A CONCISE HISTORICAL SUMMARY OF THE DEVELOPMENT AND ACHIEVEMENTS OF THE POWER INDUSTRY FOR FERROUS METALLURGY IN SSSR SINCE THE REVOLUTION. PRESENTS DATA ON THE EARLY DEVELOPMENT STAGES AND THE CHARACTERISTICS OF ELECTRIC POWER INSTALLATIONS AND SHOWS THE SUCCESSIVE STEPS TAKEN FOR THEIR DEVELOPMENT IN VIEW OF THE PLANNED GROWTH OF FERROUS METALLURGY. IT EMPHASIZES THE EFFORTS TOWARD THE CONTINUOUS DEVELOPMENT AND IMPROVEMENT OF ELECTRIC POWER INSTALLATIONS AND EQUIPMENT FOR STEEL DATA ARE PRESENTED ON THE POWER CHARACTERISTICS OF VARIOUS CONTEMPORARY EQUIPMENT, SUCH AS OXYGEN CONVERTERS, HIGH POWER AIR COMPRESSORS FOR BLAST FURNACES, BOILERS, COOLING SYSTEMS ETC. PRESENTS AN INSIGHT ON THE CURRENT RESEARCH ON THE REDUCTION OF FUEL CONSUMPTION, ON BETTER UTILIZATION OF WATER RESOURCES FOR COOLING SYSTEMS, ON WATER AND ABSTRACT: AIR POLLUTION, ON AUTOMATION, ON AUTOMATIC CONTROL OF INDUSTRIAL PROCESSES ETC. THE SIGNIFICANCE OF GOOD URGANIZATION OF THE OVERHAUL AND MAINTENANCE SERVICES FOR RELIABLE AND ECONOMICAL OPERATION OF INSTALLATIONS IS EMPHASIZED. TAKEN FOR SMOOTH OPERATIONS OF SERVICES ARE DESCRIBED. STEPS ALREADY EFFORTS ARE DESCRIBED FOR THE TRAINING OF SCIENTIFIC. TECHNICAL AND IN PARTICULAR, SKILLED PERSONNEL. AS WELL AS THE ORGANIZATION OF SPECIAL INSTITUTES FOR THE PURPOSE OF CONDUCTING RESEARCH IN DIFFERENT FIELDS RELATED TO FURTHER DEVELOPMENT OF THE POWER INDUSTRY IN VIEW OF THE CONTINUOUS GROWTH OF THE FERROUS INDUSTRY.

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203730003-1"

UNCLASSIFIED

USSR

UDC 669.1:658.26

YEGORICHEV, A. P., ZANTER P. (Engineers) (Ministry of Perrous Metallurgy USSR)

"Energetics of the Ferrous Metallurgy, 1970 Year"

Moscow, Promyshlennaya Energetika, No 2, Feb 70, pp 5-7

Abstract: This article presents a concise historical summary of the development and achievements of the power industry for ferrous metallurgy in SSSR since the revolution. It presents data on the early development stages and the characteristics of electric power installations and shows the successive steps taken for their development in view of the planned growth of ferrous metallurgy. It emphasizes the efforts toward the continuous development and improvement of electric power installations and equipment for steel industry. Data are presented on the power characteristics of various contemporary equipment, such as boilers, cooling systems etc. It presents an insight on the current research on the reduction of fuel consumption, on better utilization of water rescurces for cooling systems, on water and

USSR

YEGORICHEV, A. P., et al, Promyshlennaya Energetika, No 2, Feb 70, pp 5-7

Abstract: air pollution, on automation, on automatic control of industrial processes etc. The significance of good organization of the overhaul and maintenance services for reliable and economical operation of installations is emphasized. Steps already taken for smooth operations of services are described. In particular, efforts are described for the training of scientific, technical and skilled personnel, as well as the organization of special institutes for the purpose of conducting research in different fields related to further development of the power industry in view of the continuous growth of the ferrous industry.

2/2

- 157 -

USSR

ZAYTSEV, A. N.

"Effect of Paramagnetic Resonance on the Electrical Conductivity of Semiconductors in Strong Electric Fields"

Leningrad, Fizika Tverdogo Tela, vol 15, No 3, 1973, pp 733-739

Abstract: The present paper is the continuation of an earlier article by the author named above (2, 1969, p 485) in which the phenosemicon of the resonance change in conductivity of hot electrons in semiconductors under the effects of electron paramagnetic resonance of small impurities was investigated. Following this theoretical investigation, the phenomenon was experimentally observed. The present paper is designed to explain why the experimental measurement turned out to be much greater than that given by the theory phorus. The mechanism which, in the presence of strong electric the analysis of this paper is justified. It is asserted that jected electrons rather than electrons produced by thermal ionizathanks A. K. Zvezdin for his comments.

UNCLASSIFIED PROCESSING DATE--230C170
USE IN THE FOOD INDUSTRY -UAUTHOR-(03)-ZAYTSEV, A.N., RAKHMANINA, N.L., DYUBYUK, N.YE.

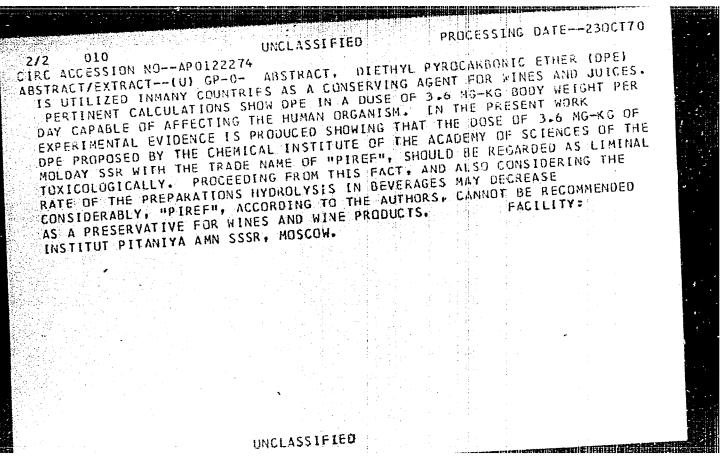
COUNTRY OF INFO--USSR

SOURCE--VOPROSY PITANIYA, 1970, NR 3, PP 14-17

DATE PUBLISHED----70

SUBJECT AREAS--BIOLOGICAL AND MEDICAL SCIENCES
TOPIC TAGS--FOOD PRESERVATION, ALIPHATIC ETHER

CONTROL MARKING--NO RESTRICTIONS


DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1998/2045

STEP NO---UR/0244/70/000/003/0014/0017

CIRC ACCESSION NO--APO122274

UNCLASSIFIED

THE RESIDENCE OF THE PARTY OF T

UNCLASSIFIED PROCESSING DATE-20 NO 970
TITLE-YECHANISM OF FORMATION OF NEGATIVE RESISTANCE IN SEMICOMOUCTORS
DURING IMPURITY BREAKOUND -U-

AUTHUR-1031-ZAYISEV, A.N., ZVEZDIN, A.K., OSIPOV, U.U.

CCUNTRY OF INFO-USSR

SOURCE-PIS'MA ZH. EKSP. TEOR. FIZ. 1970, 11(5), 257-60

DATE PUBLISHED ---- 70

SUBJECT AREAS -- PHYSICS

TOPIC TAGS-ELECTRON TEMPERATURE, ELECTRON DENSITY, SEMICONDUCTOR CONCUCTIVITY, PHONON EQUILIBRIUM, ELECTRON RECOMBINATION, SEMICONDUCTOR IMPURITY

CONTROL MARKING-NO RESTRICTIONS

PROXY REEL/FRAME--1994/0996

STEP NO--UR/0386/T0/011/005/0257/0260

CIRC ACCESSION NO--APOILSCLT

UNCLASSIF160

2/2 028 UNCLASSIFIED PROCESSING DATE--20NOV70 CIRC ACCESSION NU-APOLISO17 ABSTRACT/EXTRACT-- (U) GP-0- ABSTRACT. SOME OF THE MECHANISMS ARE CONSIDERED WHICH RESULT IN THE LACK OF A ONE VALUED DEPENDENCE OF THE TEMP. OF THE HOT ELECTRONS OR OF THEIR CONON. ON THE ELEC. FIELD AND, THEREBY. IN THE EXISTENCE OF NEG. RESISTANCE. THE FOLLOWING MECHANISMS WERE CONSIDERED: THE NEG. DIFFERENTIAL RESISTANCE IS DUE TO A LACK OF EQUIL. FOR THE PHONONS, IT IS DUE TO THE RELAXATION OF THE ENERGY IN THE IONIZATION AND RECUMBINATION PROCESSES, IT IS DUE TO THE SCREENING OF THE IMPURITY PUTENTIAL BY THE NONEQUIL. ELECTRONS. FACILITY: MOSK. INST. RADIOTEKH. ELEKTRON AVTOMAT., MOSCOW USSR. UNCLASSIFIED

UNCLASSIFIED

1/3 010 TETLE--S SURD VARIATION OF THENAGNETIC FIELD IN HIGH LATITUDES AT DIFFERENT INTENSITY OF THE MAGNETIC DISTURBANCES -U-

AUTHOR-1021-ZAYTSEV, A.N., FELDSHTEYN, YA.I.

COUNTRY OF INFO--USSR

SOURCE-RAZDEL IV. POLYARNYYE SIYANIYA, 1970, NR 19, PP 51-60

DATE PUBLISHED ---- 70

SUBJECT AREAS--EARTH SCIENCES AND OCEANOGRAPHY

TOPIC TAGS--POLAR AREA, GEOMAGNETIC FIELD, GEOMAGNETIC DISTURBANCE,

GEOGRAPHIC LATITUDE

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1997/0245

STEP NO--UR/3307/70/000/019/0051/0060

CIRC ACCESSION NO--APO119241

UNCLASSIFIED

UNCLASSIFIED PROCESSING DATE--160CT70 CIRC ACCESSION NO--APO119241 ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. THE PAPER ELABORATES THE CONCEPTION THAT THE S SUBD VARIATION, WHICH DESCRIBES THE FIELD OF POLAR DISTURBANCES, CONSISTS OF THREE PARTS: S SUBD EQUALS S SUBD PRIMEW PLUS S SUBD PRIMEE PLUS S SUBD PRIMEP, WHERE S SUBD PRIMEW AND S SUBD PRIMEE ARE POLAR ELECTROJETS, AND S SUBD PRIMEP IS THE CURRENT VURTEX IN THE POLAR CAP. THE ANALYSIS HAS BEEN CONDUCTED ON THE BASIS OF THE STUDY OF THE EQUIVALENT CURRENT SYSTEMS COMPILED ACCORDING TO THE IGY MATERIALS. IT HAS BEEN FOUND THAT: 1. S SUBD PRIMEW ELECTROJET, WHICH CAUSES INTENSIVE NEGATIVE BAYS OF ALWAYS RUNS IN THE WESTERN DIRECTION FORMING THE DENSITY OF THE S SUBD PRIMEW ELECTROJET IS NOT REGULAR ALONG THE DVAL AND HAS THE MAXIMAL VALUE ON THE MORNING SIDE ON PHI IS SIMILAR TO 67DEGREES AND THE MINIMAL VALUE ON THE DAY SIDE ON PHI IS SIMILAR TO 75DEGREES. PART OF THE S SUBD PRIMEW CURRENTS IS CLOSED THROUGH THE POLAR CAP, AND A PART THROUGH THE MIDDLE AND LOW LATTITUDES. WITH THE INCREASE OF K SUBP FROM 0-1 TO 5 THE INTENSITY OF THE ELECTROJET INCREASES FROM 20,000-30,000 TD 270,000-280,000A. SUBD PRIMEE ELECTROJET, WHICH CAUSES POSITIVE BAYS ON THE EVENING SIDE DPASUBPOSITIVE ON PHI IS SIMILAR TO 650 EGREES, ALWAYS RUNS IN THE EASTERN DIRECTION AND IS CLOSED MAINLY THROUGH THE MIDDLE AND LOW LATITUDES. WITH THE INCREASE OF K SUBP FROM 0-1 TO 5 THE S SUBD PRIMEE INTENSITY INCREASES FROM 10,000 TO 110,000-120,000 A.

UNCLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203730003-1"

	i i descritture degramas chare protesta de descrita de descrita de la	INCHEST RESIDENCE
	UNCLASSIFIED PROCESSING DATE160CT70	
THE MAGNETIC FIELD WISHON	IMEP CURRENT VORTEX, WHICH IS RESPONSIBLE FOR BANCES IN THE POLAR CAP DPC, IS LUCATED ON THE DDAY MERIDIANS AND HAS THE CONCENTRATION OF THE	
MERIDIAN, AND IS CLOSED TO CURRENTS IS COUNTER CLOCK 5 THE INTENSITY OF S SUBD	THROUGH THE POLAR CAP. THE DIRECTION OF THE CHROUGH THE POLAR CAP. THE DIRECTION OF THE CHROM OF THE CHROM OF THE CHROM OF THE CHROM AND STATE OF THE CHROM AND STATE OF THE CHROM OF THE CAP. T	
	INCONSIDERABLY CHANGE WITH SEASON. INCONSIDERABLY CHANGE WITH SEASON. LUSIVELY IN SUMMER: IN WINTER ITS INFLUENCE ON LUSIVELY IN SUMMER: IN WINTER ITS INFLUENCE ON NT S SUBD CURRENT SYSTEM IS INFINITELY SMALL.	
		,

USSR

UDC 621.396.677

ZAYTSEV, A. S., SEREGINA, A. R., and KHODATAYEV, YU. V.

"Experimental Study of the Near Field of Wire Antennas"

Tr. Mosk. energ. in-ta (Works of the Moscow Power Engineering Institute), 1972, vyp.119, pp 128-135 (from RZh-Radiotekhnika, No 11, Nov 72, Abstract No 11 B5)

Translation: The authors study the near field of vibration type and gamma type, folded dipole antennas. The method of direct field measurement and the method of modulated remission were used. The measurement equipment is described. An analysis of the obtained results shows that from the point of view of breakdown, the dangerous region is the one adjoining to the face of the vibrator. Original article: five illustrations and three bibliographic entries. N.S.

1/1

USSR UDC: 621.382.3

KAKOVKIN, V. V., ZAYISEV, B. D., and SHVEDOV, Ye. Ye.

"Measuring Infrared Noise of MOS Transistors by the Frequency Transformation Method"

Kiev, Izvestiya VUZ--Radioelektronika, Vol 14, No 1, 1971, pp 67-71

Abstract: An important characteristic of MOS transistor amplifiers is the inherent noise which limits the sensitivity of the device and, most typical of the noise in the infrared spectrum, causes drift of the zero point. Discussing the various methods of measuring the noise spectral density, the authors conclude that the most promising is the frequency transformation method, which involves the use of a tape recorder. According to this method, the noise voltages are recorded at low speed and are played back at a speed providing the required change in time scale for investigating the noise spectral density with ordinary equipment. This article gives the results of experiments performed in the measurement of infrared noise in the 0.005-1 Hz range, using the MAG-1 and MAG-2 recorders. The recordings were made at speeds of 0.14, 0.07, and 0.035 mm/s, and the playbacks at 381 and 762 mm/s. The distortions in the spectra, computed theoretically for this process, were experimentally checked. For their experimental specimens, the authors used MOS transistors with induced p-channel and an insulating 8102 film 0.17 whick. Curves are plotted for the noise factor as a function of the frequency.

USSR

UDC: 621.382.3

DUDNIKOV, V. P., ZAYTSEV, R. D., PEREL'MAN, A. A., and SHVEDOV, Ye. Ye.

"Drift Time of MOS Transistors"

Kiev, Izvestiya VUZ--Radioelektronika, Vol 13, No 11, 1970, pp 1358-1361

Abstract: it is asserted that data regarding the drift time of MOS (metal oxide semiconductor) transistors is rather exiguous although such data is important since the stability requirements of linear circuits involving such components are much stricter than present-day integrated digital circuits. This paper gives the results of measurements made of 40 MOS transistors, with induced p-channel, of either SiO2 or Si3N4 films. Both these films were 0.17 M thick. The parameter chosen for the drift time criterion was the increase in voltage applied to the gate corresponding to the ratio of the measured increment in the drain current to the transconductance of the transistor under measurement for a given drain current. A block diagram of the measuring equipment is shown. It was found, in the course of the measurements, that the drift time of the MOS with SiO2 is fully reproduced even after the gate is deprived of its voltage. The results of an experiment performed on the basis of that fact indicated that the drift of the MOS transistor is basically caused by the migration of ions and the charge of the surface states. 1/1

USSR

San Barrella Control of the Control

UDC 534.322.3.083

ZAYTSEV, B. D., STEPANENKO, I. P., SHVEDOV, YE. YE.

"Methods of Measuring Low-Frequency Noise"

Moscow, Izmeritel naya Tekhnika, No 6, Jun 1970, pp 43-46

Abstract: This article contains a review of the existing methods and means of measuring low-frequency noise in electronic instruments (the herta and subhertz ranges). The review is based on an analysis of Soviet and foreign literature. Low-frequency noise and null drift, methods of measuring low-frequency noise, low-frequency noise generators, low-frequency band filters, and low-frequency voltmeters are considered. It is concluded that measuring noise in semiconductor devices in the infrasonic frequency range is of great scientific and practical interest. Various methods and equipment have been developed at this time for measuring the characteristics of noise at frequencies up to 5-10" hertz. Measuring low-frequency noise by the method of frequency spectrum conversion (the magnetophonic technique) has not at this time been sufficiently tested. The comparative measurement techniques using analog RC-filters and an indicating voltmeter are most prospective. These methods can be used to measure noise in the frequency range from a few hertz to frequencies on the order of 10+5 hertz. Descriptive diagrams, graphs and mathematical descriptions are used to illustrate and explain the various techniques and equipment. 1/1

USSR

AND DESCRIPTION OF THE PARTY OF

UDC 681.2:621.391.822.029.33

ZAYTSEV, B. D., SHVEDOV, YE. YE.

"A Device for Measuring Very Low Frequency Noises"

Moscow, Izmeritel naya Tekhnika, No 8. Aug 70, pp 74-76

Abstract: The authors describe an instrument which they have developed for measuring the spectral density of noises in the 0.1-100 Hz frequency range by comparing the noises with those from a standard low frequency noise source. The standard industrial U4-1 wide-band amplifier was used with variable gain from 0 to 5 x 10⁴. An 15-M oscillograph was used as the recording instrument. The circuitry of the master low frequency noise generator, narrow-band tunable filter and computer voltmeter used in the instrument is described. The infilter and computer voltmeter used in the instrument is described. The infilter and computer voltmeter used in the instrument over a range of 10-P-channel. The effective passband of the filter varies over a range of 10-100 percent of the resonance frequency. The sensitivity of the installation was determined by the sensitivity of the wide-band amplifier which was used, and in these experiments was 0.1 $\mu \rm V^2/Hz$. The measurement error determined by the error of each of the modules in the device is no more than 15 percent.

1/1

1+7

USSR

WC 541.621547.8191543.422.4.6

ZAYTSEV, B. YE., SHEBAN, G. V., DYUMAYEV, K. M., and SHIRMOV, L. D., Scientific Research Institute of Organic Intermediates and Dyes. Moscow

"The Structure of 2-Methoxy-3-hydroxy-6-phenylazopyridine"

Riga, Khimiya Geterotsiklicheskikh Soyedineniy, No 2, Feb 73, pp 224-229

Abstract: On the basis of IR and electron spectroscopy it was established that 2-methoxy-3-hydroxy-6-phenylazopyridine exists in azo and hydrazo forms. Switching from aprotic solvents to the protonated ones results in a shift in the equilibrium of tautomers toward the hydrazone form. The relationship of the tautomeric forms in different solvents was studied. The stability of both form was established by the MO method, the azo form appearing to be more stable.

1/1

- 67 -

USSR

UDC 669.187.2.083

GOTIN, V. N., ZAYTSEY, B. YE., SHCHERBAKOY, A. I., ZHITKOV, N. K., OKOROKCY, G. N., BOYARASHINOV, V. A., VOYNOVSKIY, YE. B., TOPILLY, V. V., SHALIMOV, AL. G., GSIPOVA, L. M., CHERNOV, YU. V., ROZANOVA, T. S., and LAKTIONOV, V. S.

"Influence of Wall Thickness of Crystallizer and Consumption of Cooling Water on Conditions of Formation of Ingot During Vacuum Arc Remelting"

Proizvodstvo Chernykh Metallov [Production of Ferrous Metals--Collection of Works], No 75, Metallurgiya Press, 1970, pp 178-180

Translation: In a vacuum arc furnace in a crystallizer (C) 160 mm in diameter with a current of 2.0-3.7 ka, the influence of wall thickness of C and temperature of cooling water on conditions of formation of ingot of complexly alloyed ture of cooling water on conditions of formation of ingot of complexly alloyed nickel-based alloys is studied. C with wall thicknesses of 30 and 18 mm were studied, the temperature on the outer surface of the C reaching 75°C in the first case, 105°C in the second. The temperature of the internal surface of the C was identical, 140-150°C. Neither a change in C thickness nor a change in water identical, 140-150°C. Neither a change in C thickness nor a change in water consumption from 11 to 22 m³/hr influenced the depth of the liquid metal bath, i.e., both repeated rolling of the C and reduced water consumption were permissible. 2 figures.

1/1

- 16 -

UDC:669.187.5

USSR

ZAYTSEV, B. Ye., GOTIN, V. N., SHCHERBAKOV, A. I., SERGYEV, A. B., ZHITKOV, N. K., OKOROKOV, G. N., BOYARSHINOV, V. A., TULIN, N. A., VOYNOVSKIY, Ye. V., TOPILIN, V. V., POZDEYEV, N. P., SHALIMOV, Al. G., OSIPOVA, L. A., CHERNOV, Yu. V., and RAZANOV, T. S.

"Specifics of Vacuum Arc Remelting of Nickel-Based Alloys and Stainless Steels With Reverse Arc Polarity"

Proizvodstvo Chernykh Metallov [Production of Ferrous Metals--Collection of Works], No 75, Metallurgiya Press, 1970, pp 181-183

Translation: Results are presented from a study of vacuum arc remelting of nickel alloys in a crystallizer 380-480 mm in diameter with thermocouples calked in length and height. The rate of melting with reverse polarity is 20% higher with identical bath depth of liquid metal. This is a result of more intensive heat transfer from the walls of the crystallizer during melting with reverse polarity. The macrostructure, chemical composition N, O, H and mechanical properties of the metal produced by melting with forward and reverse polarity are identical. The ingot produced with reverse polarity had no corona. figures; 1 table; 1 biblio. ref. 1/1 15

PROCESSING DATE--04DEC70 UNCLASSIFIED 1/3 TITLE-PERRHENATES (F ANTIPYRINE AND ITS DERIVATIVES. GRAVIMETRIC AND TITRIMETRIC DETERMINATION OF RHENIUM BY MEANS OF AUTHOR-(05)-AKIMOV, V.K., BUSEV, A.I., ZAYTSEV, B.YEL, YEMELYANOVA, I.A., GELFER, S.M. COUNTRY OF INFO--USSR SOURCE-ZH. ANAL. KHIM. 1970, 25(3), 518-25 DATE PUBLISHED ---- 70 SUBJECT AREAS--CHEMISTRY, EARTH SCIENCES AND OCEANDGRAPHY TOPIC TAGS--RHENIUM, MINERAL, METAL CHEMICAL ANALYSIS CONTROL MARKING--NO RESTRICTIONS DOCUMENT CLASS--UNCLASSIFIED STEP NO++UR/0075/70/025/003/0518/0525 PROXY REEL/FRAME--3005/0161 CIRC ACCESSION NO--ATO132442 UNCLASSIFIED

A SECTION OF THE PROPERTY OF T PROCESSING DATE--04DEC70 UNCLASSIFIED 2/3 CIRC ACCESSION NO--ATO132442 PERRHENATES OF ANTIPYRINE (I). ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. DIANTIPYRYLMETHANE (II), DIANTIPYRYLMETHYLMETHANE (III), DIANTIPYRYLPROPYLMETHANE (IV), AND DIANTIPYRYLPHENYEMETHANE (V) WERE OBTAINED BY ADDN. OF 2PERCENT 1:1 PYRYLMETHANES, ACOH TO AN ACID (0.1-0.5N H SUB2 SO SUB4) SOLN. OF KRED SUB4. ALL THE PERRHENATES ARE DIFFICULTLY SOL. IN H SUB2 O WITH THE EXCEPTION OF THAT WITH I. COMPN. AND STRUCTURE WERE STUDIED. THE PERRHENATE OF I IS A WHITE POWDER SOL. IN H SUB2 O AND IN MOST OF THE DRG. SOLVENTS AND DECOMPS. ON MELTING. THE PERRHENATE OF II DISSOLVES IN MINERAL ACIDS AND ORG. SOLVENTS, DECOMPS. ON MELTING AT 190DEGREES: THE PERRHENATE OF III BEHAVES ANALOGOUSLY TO THAT OF II, M. 116DEGREES; THE PERRHENATE OF IV MELTS AT 198 DEGREES AND THAT OF V AT 202 DEGREES. PERRHENATES BEHAVE IN NONAQ. MEDIA AS MONOBASIC ACIDS AND CAN BE TITRATED BY ALKALIS. TITRN. CURVE HAS I JUMP, REPRESENTING THE NEUTRALIZATION OF THE CATION. THE PERRHENATE OF I IS THE MOST ACID, THOSE OF IV AND V THE WEAKEST THE SOLY. OF THE PERRHENATES DECREASES IN THE ORDER I GREATER THAN II GREATER THAN III GREATER THAN IV GREATER THAN V. THE BEST PRECIPITANT HOWEVER IS IV. THE SOLY. OF THE PERRHENATE OF IV INCREASES SOMEWHAT AFTER INCREASING THE ACIDITY OF SOLNS. A GRAVIMETRIC AND A TITRIMETRIC METHOD WAS DEVELOPED FOR RE DETN. BY USING IV AS PRECIPITANT. ALKALI AND ALK. EARTH METALS. ZN(II), AL(III), CD(II), FE(II), CU(II), CL PRIME NEGATIVE AND SO SUB4 PRIME NEGATIVE NEGATIVE DO NOT INTERFERE: MO(VI), W(VI), NO SUB3 PRIME NEGATIVE DO. UNCLASSIFIED

AS (C SUB26 H SUB30 0.52PERCENT RELATIVE OF IV FROM THE GRAVI AND TITRATED POTENTI SUB6 H SUB6 DOUBLE B	GRAVIMETRIC METHOD PERMIT N SUB4 O SUB2 .H)REO SUB4 . IN THE TITRN. METHOD. METRIC METHOD IS DISSOLVE OMETRICALLY WITH O.IN NAC OND MEOH MIXT. BY USING A OD ALLOWS THE DETN. OF 24 OR.	D IN 50-60 ML ME SUB2 CO DH OR ET SUB4 NOH IN A 3:1 C A GLASS AND A CALOMEL -25 MG RE WITH A PLUS OR
	UNCLASSIFIED	

1/2 022

UNCLASSIFIED

PROCESSING DATE--020CT70

TITLE--PHENCE GERMANATES -U-

AUTHUR-(C4)-AKIMUV, V.K., BUSEV, A.I., DZUTSENIDZE, N.YE., ZAYTSEV, B.YE.

COUNTRY OF INFO--USSR

STURE E-- ZH. OBSHCH. KHIM. 1970, 40121, 329-35

DATE PUBLISHED ---- 70

SUBJECT AREAS--CHEMISTRY

TOPIC TAGS—PHENOL, ORGANGGERMANIUM COMPOUND, PYROCATECHOL, DYE, COMPLEX COMPOUND, IR SPECTRUM, ORGANIC ARSENIC COMPOUND, HYDROXYL RADICAL; DUINOLINE, CRYSTAL

CUNTROL MARKING-NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1992/1567

STEP NO+-UR/0079/70/040/002/0329/0335

CIRC ACCESSION NO--APOll2561

UNCLASSIFIED

PROCESSING DATE--020CT70 UNCLASSIFIED 022 2/2 CIRC ACCESSION NO-APOLIZED ABSTRACT/EXTRACT-- (U) GP-0- ABSTRACT. TREATING AQ. SOLNS. OF ESTERS OF GERMANIC ACID (WITH PYROCATECHOL, PYROGALLOL, GALLIC AND PYREGALLELCARBOXYLIC ACIDS) WITH DRG. BASES (DIANTIFYRYLMETHANE, DIANTIPYRYLMETHYLMETHANE, DIPHENYLGUANIDINE, PH SUB4 ASCL, 3. PHENANTHROLINE, 8, HYDROXYQUINDLINE, BRILLIANT GREEN, METHYLENE BLUE, METHYL VIGLET AND CRYSTAL VIOLET) GAVE THE FOLLOWING COMPLEXES, WHICH WERE ANALYZED AND CHARACTERIZED BY IR SPECTRA COURVES AND TABLES OF DATA KIPHENYLGUANIDINE. SHOWN): TRICATECHYLGERMANATES OF: O.PHENANTHROLINE, 8. HYDRUXYQUINGLINE, TETRAPHENYLARSONIUM; SAME FOR TRIPYROGALLYL GERMANATE, SAME FOR TRIS(5, CARBOXYPYROGALLYL) GERMANATE ALONG WITH ANALOGS: DIANTIPYRYLMETHANE, DIANTIPYRYLMETHYLMETHANE, BRILLIANT GREEN. CRYSTAL VIOLET, METHYLENE BLUE, METHYLENE VIOLET; SAME FOR TRISTA. CARBOXYPYROGALLYLY GERMANATE. ALL WERE COLDRED CRYST. SOLIDS SPARINGLY SOL. IN H SUB2 O AND READILY SOL. IN AQ. ACIDS AND ME SUB2-NCHO. UNCLASSIFIED

1/2 030 UNCLASSIFIED PROCESSING DATE--230CT70
TITLE--SODIUM AND POTASSIUM HYDROXYYTTRATES -U-

AUTHOR-(04)-IVANOVEMIN, B.N., BORZOVA, L.D., MALYUGINA, S.G., ZAYTSEV,

COUNTRY OF INFO--USSR

SOURCE--ZH. NEORG. KHIM. 1970, 15(3), 666-9

DATE PUBLISHED ---- 70

SUBJECT AREAS--CHEMISTRY

TOPIC TAGS--CHEMICAL SYNTHESIS, THERMAL DECOMPOSITION, IR SPECTRUM, SPECTROSCOPIC ANALYSIS, SODIUM COMPOUND, POTASSIUM COMPOUND, YTTRIUM COMPOUND, HYDROXIDE

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1994/1882

STEP NO-+UR/0038/70/D15/003/0666/0669

CIRC ACCESSION NO--APOLIS701

UNCLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203730003-1"

2/2 030 UNCLASSIFIED PROCESSING DATE230CT70 CIRC ACCESSION NOAPO115701 ABSTRACT/EXTRACT(U) GP-O- ABSTRACT. M SUB3 (Y(OH) SUB6) (M EQUALS NA ABSTRACT/EXTRACT(U) GP-O- ABSTRACT. M SUB3 (Y(OH) SUB6) (M EQUALS NA ABSTRACT/EXTRACT(U) GP-O- ABSTRACT. M SUB3 (Y(OH) SUB6) PROCEEDED VIA 2 ENDOTHERMAL EFFECTS, CORRESPONDING TO A CONVERSION OF (Y(OH) SUB6) PRIME3 NEGATIVE TO (Y(OH) SUB4) PRIME NEGATIVE AND TO A SUBSEQUENT DEHYDRATION AND FORMATION OF YO SUB2 PRIME NEGATIVE. THE IR SPECTRUM OF NA SUB3 (Y(OH) SUB6) IS GIVEN. FACILITY: UNIV. DRUZHBY NAR. IM. LUMUMBY, MOSCOW, USSR.				The state of the s
CIRC ACCESSION NOAPO115701 ABSTRACT-EXTRACT(U) GP-O- ABSTRACT. M SUB3 (Y(GH) SUB6) (M EQUALS NA ABSTRACT/EXTRACT(U) GP-O- ABSTRACT. M SUB3 (Y(GH) SUB6)) OR K) WERE SYNTHESIZED IN MEGH SOUNS. THERMAL DECOMPN. OF M SUB3(Y(GH) SUB6) PROCEEDED VIA 2 ENDOTHERMAL EFFECTS, CORRESPONDING TO A CONVERSION SUB6) PRIMES NEGATIVE TO (Y(GH) SUB4) PRIME NEGATIVE AND TO A SUBSEQUENT DEHYDRATION AND FORMATION OF YO SUB2 PRIME NEGATIVE. THE IR SPECTRUM OF NA SUB3 (Y(GH) SUB6) IS GIVEN. FACILITY: UNIV. DRUZHBY NAR. IM. LUMUMBY, MOSCOW, USSR.			PROCESSING DATE-	-230CT70
ABSTRACT/EXTRACT—(U) GP-O- ABSTRACT. M SUBSTRACT. M SUBST				
OR K) WERE SYNTHESIZED IN MECH SUISS. SUB6) PROCEEDED VIA 2 ENDOTHERMAL EFFECTS, CORRESPONDING TO A CONVERSION SUB6) PRIME 3 NEGATIVE TO (Y(OH) SUB4) PRIME NEGATIVE AND TO A OF (Y(OH) SUB6) PRIME 3 NEGATIVE. THE IR SPECTRUM OF NA SUB3 (Y(OH) SUB6) IS GIVEN. DRUZHBY NAR. IM. LUMUMBY, MOSCOW, USSR.		ADETRAL MESURA	(Y(OH) SUB6) (M EQU	ALS NA
SUB6) PROCEEDED VIA 2 ENDOTHERMAL EFFECTS, CUMAN REGATIVE AND TO A OF (Y(OH) SUB6) PRIMES NEGATIVE TO (Y(OH) SUB2) PRIME NEGATIVE AND TO A SUBSEQUENT DEHYDRATION AND FORMATION OF YO SUB2 PRIME NEGATIVE. THE IR SPECTRUM OF NA SUB3 (Y(OH) SUB6) IS GIVEN. FACILITY: UNIV. DRUZHBY NAR. IM. LUMUMBY, MOSCOW, USSR.				
OF (Y(OH) SUB6) PRIMES NEGATIVE TO SUB2 PRIME NEGATIVE. THE IR SUBSEQUENT DEHYDRATION AND FORMATION OF YO SUB2 PRIME NEGATIVE. THE IR SUBSEQUENT DEHYDRATION AND FORMATION OF YO SUB2 PRIME NEGATIVE. THE IR SUBSEQUENT DEHYDRATION AND FORMATION OF YO SUB2 PRIME NEGATIVE. THE IR SUBSEQUENT DEHYDRATION AND FORMATION OF YO SUB2 PRIME NEGATIVE. THE IR SUBSEQUENT DEHYDRATION OF YO SUB2 PRIME NEGATIVE. THE IR SUBSEQUENT DEHYDRATION OF YO SUB2 PRIME NEGATIVE. THE IR SUBSEQUENT DEHYDRATION OF YO SUB2.				
SPECTRUM OF NA SUB3 (Y(GH; SUB6) IS GIVEN. DRUZHBY NAR. IM. LUMUMBY, MOSCOW, USSR.	OF (Y(OH) SUB6) PRIMES NEG	ALIVE TO TRUBE VO SH	B2 PRIME NEGATIVE.	THE IR
DRUZHBY NAR. IM. LUMUMBY, MUSCOW, USAN	SUBSEQUENT DENTURALION AND	SUB61 IS GIVEN.	FACILITY: UN	[V•
	DRUTHBY NAR. IM. LUMUMBY,	MOSCOW, USSR.		· · · · · · · · · · · · · · · · · · ·
UNCLASSIFIED				
UNCLASSIF1ED				
UNCLASSTF1#D				
UNCLASSIF1ED				:
UNCLASSIF1ED				· .
UNCLASSTF1ED				-
UNCLASSIF1ED				
UNCLASSIF1ED		•		
UNCLASSIFIED				
UNCLASSIFIED				
UNCLASSIFIED UNCLASSIFIED				
THE STATE OF THE S	UA	ICLASSIF1ED		

1/2 034 UNCLASSIFIED PRUCESSING DATE--230CT70
TITLE--COMPLEXES OF SCANDIUM OXALATE WITH O PHENANTHROLINE -U-

AUTHOR-(05)-IVANOVEMIN, B.N., GRIDASOVA, R.K., ZAYTSEV, B.YE., VALKARSEL, G., EZHOV, A.I.

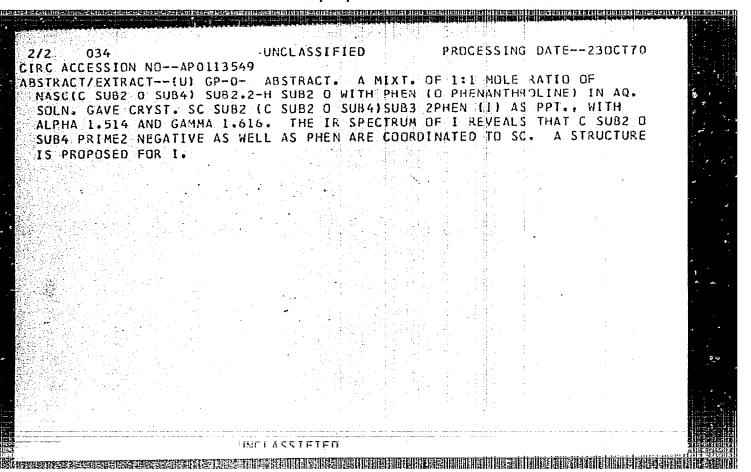
COUNTRY OF INFO--USSR

SOURCE--ZH. NEORG. KHIM. 1970, 15(3), 674-7

DATE PUBLISHED----70

SUBJECT AREAS--CHEMISTRY

TOPIC TAGS--METAL COMPLEX COMPOUND, CRYSTAL STRUCTURE, ORGANOMETALLIC COMPOUND, ORGANIC COMPLEX COMPOUND, IR SPECTRUM, BENZENE DERIVATIVE, OXALATE, SCANDIUM COMPOUND


CONTROL MARKING--ND RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1993/0678

STEP NO--UR/0078/70/015/003/0674/0677

CIRC ACCESSION NO--APOL13549

UNCLASSIFIED

UNCLASSIFIED PROCESSING DATE--090CT70 TITLE-A MIGHTY ACCELERATOR OF THE SCIENTIFIC TECHNICAL PROGRESS -U-AUTHOR-(05)-ANDRUNAKIYEVICH, V., GONTSA, M., ZAYTSEV, G., GAMETSKIY, A., CHEBOTARU, A. COUNTRY OF INFO-USSR SOURCE-SOVETSKAYA MULDAVIYA, JULY 2, 1970, P DATE PUBLISHED--02JUL70 SUBJECT AREAS--ELECTRONICS AND ELECTRICAL ENGR. TOPIC TAGS-COMPUTER R AND D. COMPUTER CENTER, ELECTRONIC COMPUTER/(U)BESM 4 DIGITAL COMPUTER, (U) M20 COMPUTER, (U) M220 COMPUTER, (U) BESM 3M COMPUTER CONTROL MARKING-NO RESTRICTIONS DOCUMENT CLASS--UNCLASSIFIED STEP NO--UR/9021/70/000/000/0002/0002 PRUXY REEL/FRAME--1992/0812 CIRC ACCESSION NO--ANOLI1995

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203730003-1"

UNCEASSIFIED --