CIRC ACCESSION NO--APO121682

UNCLASSIFIED PROCESSING DATE--300CT76

ABSTRACT/EXTRACT--(U) GP-O-ABSTRACT. THE FORMATION OF SOLID SOLNS. OF FE SUB2 TIO SUB4 AND MN SUB2 TIO SUB4 AND THE PHASE EQUIL. PROCESSES OCCURING DURING THE REDN. OF SOLID SOLNS. WERE STUDIED. SYNTHETIC FE SUB2 TIO SUB4 AND MN SUB2 TIU SUB4 WERE PRESSED INTO TABLETS AND HEATED FOR TO HR AT 1100DEGREES UNDER AN ATM. OF 88 VOL.PERCENT CO AND 12 VOL.PERCENT CO SUB2. THE SAMPLES THEN WERE TEMPERED IN WATER AND ANALYZED BY USING AN X KAY METHOD. FE SUB2 TIO SUB4 AND MN SUB2 TIO SUB4 ARE PERFECTLY MISCIBLE. FORMING A CONTINUOUS SERIES OF SOLID SOLNS. HAVING A CRYSTAL LATTICE OF SPINEL STRUCTURE. THE PERIOD OF THE LATTICE INCREASES WITH INCREASING CONCN. OF MN SUBZ TIO SUB4 IN THE SOLID SOLN. AND RANGES WITHIN THOSE OF PURE FE SUB2 TIO SUB4 AND MN SUB2 TIO SUB4 (8.535-8.679 ANGSTROM). THE STUDY OF THE EQUIL. COMPN. OF THE SAMPLES AS A FUNCTION OF THE ANT. OF D PRESENT WAS PERFORMED BY HEATING THE SAMPLES AT 1000DEGREES UNDER AN ATM. OF H AND H SUB2 Q. THE AMT. OF O PRESENT IN THE SAMPLE (EXPRESSED IN PERCENT OF THE TOTAL AMT. OF O PRESENT) WAS CONTROLLED BY CHANGING THE PARTIAL PRESSURE OF H IN THE REDUCING ATM. ON REMOVAL OF 0-25PERCENT D. SPINEL, RHOMBOHEDRAL, AND METALLIC FE PHASES ARE IN EQUIL. THE SPINEL PHASE CONSISTS OF A SOLID SOLN. OF MN SUB2 TIO SUB4 AND FE SUB2 TIO SUB4. THE RHOMBOHEDRAL PHASE CONSISTS OF SOLID SOLN. OF ILMENITE AND PYROPHANITE. ON INCREASING OF THE AMT. OF O REMOVED, THE CONCN. OF FE SUB2 TIO SUB4 IN THE SPINEL PHASE DECREASES AND THE CONCN. DF PYROPHANITE IN THE RHOMBOHEDRAL PHASE INCREASES. AT 25-35PERCENT O REMOVAL, A RHOMBOHEDRAL PHASE EXISTS IN EQUIL. WITH A TIO SUB2 PHASE AND A METALLIC FE PHASE.

UNCLASSIFIED

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202910017-7"

J/3 017
CIRC ACCESSION NO--APO121682
ABSTRACT/EXTRACT--AS THE AMT. OF O REMOVED IS INCREASED. THE AMT. OF
ILMENITE PRESENT IN THE RHOMBOHEDRAL PHASE INCREASES.

UNCLASSIFIED

14

Acc. Nr:0049439 Abstracting Service: Ref. Code:

CHEMICAL ABST. 5/70 UR0370

104620e Thermodynamic analysis of the reduction of solid solutions of iron orthotitanate with magnetite. Shchepetkin A.A.; Antonov, V. K.; Dvinin, V. I.; Men, A. N.; Chularov, O.T. (USSR). Izv. Akad. Nauk SSS, Medal. 1970; (1), 51-5

(Russ). The coeffs of the equation for the analysis.

A. A. Altonov, V. K.; Dyinin, V. I.; Men, A. Peri Chularov, Ort. (USSR). Inv. Akad. Nauk SSSR, Melal. 1970. (1), 51-5 (Russ). The coeffs. of the equation for the equil. Of pressure (Po, given in atm.) vs. c were calcd. for spinel solid solns. (Fe,O₄)_c(Fe₂TiO₄)_{1-c} in equil. with FeO₁ + s at 1000° : In Po = 5.11c - 34.11 (for $0.10 \le c \le 0.55$), ln Po = 9c - 36.25 (for $0.55 \le c \le 0.70$), and ln Po = 0.43c - 30.25 (for $0.70 \le c \le 1.0$). The expressions for activities (a) of the components of the system were derived for 2 cases: (1) for the equil. of FeO₁₋₁₃ with spinel solid soln. of compn. close to that of magnetite: $d(\ln a_1) - 2.21 d(\ln a_1) - 1.17 d(\ln a_2) = 0.305 d(\ln Po)$; (2) for the equil. of FeO₁₋₀₃₄ with a spinel solid soln. of compn. close to that of Fe₂TiO₄: $d(\ln a_4) - 2.678 d(\ln a_1) - 0.484 d(\ln a_2) = 0.419 d(\ln Po)$, where $a_1 = a_{FeO}$, $a_2 = a_{FeO/3}$, $a_1 = a_{Fe/10_4}$, and $a_4 = a_{Fe/10_4}$. The defect state of FeO₁₋₂₃ was expressed in terms of its extreme states FeO and Fe₂₀. The activities of the components were then calcd. with the use of the expressions (1) or (2) and the Gibbs-Duhem equations for the spinel solid solns. and FeO₁₋₃. Activities exhibit pos. deviations with respect to ideal soln. The activities were calcd. also by a statistical thermodynamic method. The compn. of the solid soln. was expressed as Fe²⁺ $_{\lambda}$ Fe³⁺ $_{1-\lambda}$ [Fe³⁺ $_{2-c-1}$ $_{\lambda}$ Fe³⁺ $_{2-c-1}$ $_{\lambda}$ Ti¹⁺ $_{1-c}$ [O₄, the ions given in brackets being assumed in octahedral positions.

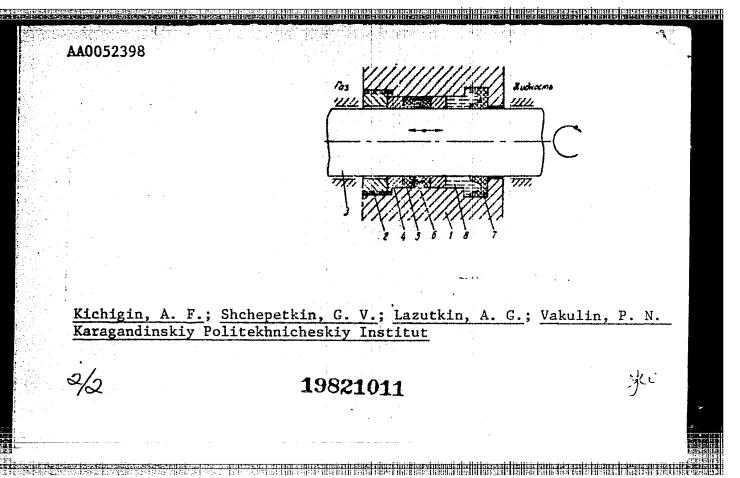
REEL/FRAME 19801277

54 CHEPETKIN G.V.

AA0052398

UR 0482

Soviet Inventions Illustrated, Section III Mechanical and General, Derwent, 1-70


241850 SEAL for a rod which has reciprocating and rotating motion improves reliability of the seal separating the gas from the liquid. The rod 3 is fitted in the body 1 with a nut 2. The bronze 4, leather 5 and rubber 6 rings and a cup 7 provide a sealing space. The liquid fills the space 8 between them and provides a hydraulic seal. During the operation, when the liquid pressure exceeds the gas pressure the cup 7 will allow the liquid to pass into the space 8. This compresses the rings and prevents the gas escape into the liquid during the stroke. When the rod is stationary, gas is sealed by the rings which are held by the pressure of fluid in the space 8 maintained by the cup 7. . 25.1.68 as 1211700/25-8.A.F.KICHIGIN et alia. KARAG & TECHNICAL INST. (29.8.69) Bul 14/18.4.69. Class 47f. Int.Cl.F 16j.

1/2-

19821010

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202910017-7"

erenasiase se escas en comprese de prometer de en entre de la fina de la composition de la lorge de la composition della composition della

TITLE—ADVANTAGES OF FREEZE DRYING IN HISTOCHEMICAL STUDIES—U—

AUTHOR—(03)—SHCHEPETKIN, V.A., LEVAKOVSKAYA, A.I., TEREKHINA, L.YA.

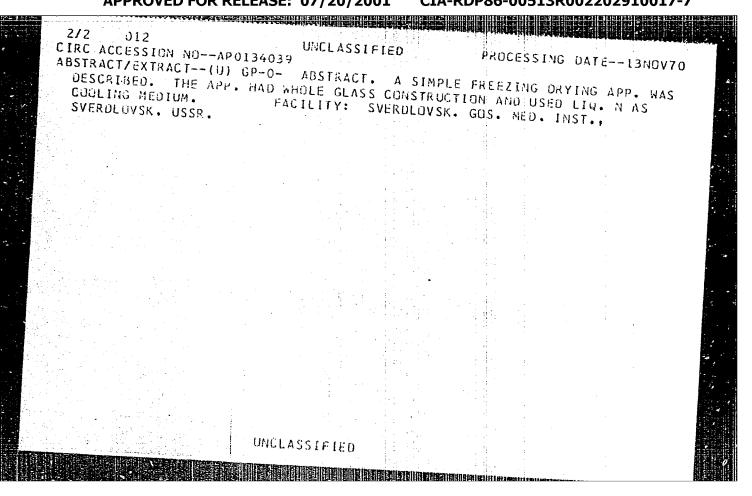
COUNTRY OF IMFO—USSR

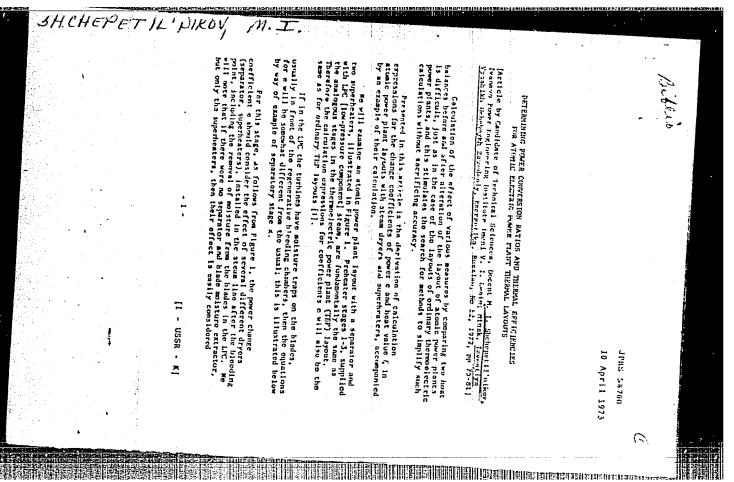
SOURCE—ARKH. ANAT., GISTOL. EMBRIOL. 1970, 58(2), 39-91

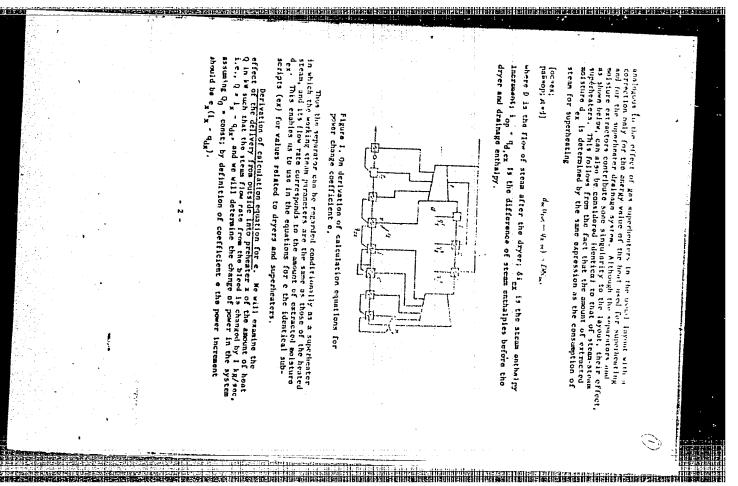
DATE PUBLISHED————70

SUBJECT AREAS—BIOLOGICAL AND MEDICAL SCIENCES

TOPIC TAGS—FREEZE DRYING, HISTOCHEMISTRY


CONTROL MARKING—HD RESTRICTIONS


DOCUMENT CLASS—UNCLASSIFIED


PROXY REEL/FRAME—3006/0234

STEP NO—UR/9076/70/058/002/0049/0091

UNCLASSIFIED

USSR

UDC 576.852.211.095.1(571.1/.5):/616-002.5:19:636.5

SHCHEPILOV. N. S., Professor, KISLENKO, V. N., and L'VOVA, G. F., Novosibirsk Agricultural Institute

"Survival of Mycobacterium tuberculosis in a Thick Permanent Litter Inhabited by Tuberculous Birds"

Mcscow, Problemy Tuberkuleza, No 8, 1971, pp 78-81

Abstract: Thick sawdust litters (similar to those used on Siberian farms) inhabited by tuberculous ducks in unheated facilities were investigated over a period of 6 years. In winter, the litter was frozen 100 cm deep, and in summer its internal temperature was about 23°C and humidity up to 40%. The sawdust contained large amounts of nitrogen, phosphorus, potassium, and digested proteins and up to 0.26% sodium chloride. Bacteriological tests were performed on samples taken from the surface of the litter and from layers 10, 20, 40, and 80 cm deep. One gram of dry sawdust contained up to 14 million various microbes, including Mycobacterium tuberculosis, which remained viable and pathogenic for chickens, rabbits, and guinea pigs throughout the investigation. It is concluded that this type of litter does not meet current sanitary standards.

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202910017-7"

USSR

UDC 62-525:621.375

DVORETSKIY, V. M., MOLCHANOV, G. G., POPOV, A. I., SHCHEPIN, E. K.

"A Fluidics Element"

USSR Author's Certificate No 295910, Filed 21/11/69, Published 9/04/71, (Translated from Referativnyy Zhurnal Avtomatika, Telemekhanika i Vychislitel'naya Tekhnika, No 11, 1971, Abstract No 11 Al31 P).

Translation: A fluidics element is suggested, containing two counter connected supply nozzles, a drain chamber, and an output chamber with a non-moving dividing barrier between them. In order to increase the accuracy, a control chamber with a membrane, on which is fastened a moving barrier which intersects the power stream, is connected to the output chamber of the element.

1/1

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202910017-7"

UDC: 621.643.002.2 + 411.4

ZERNOV, A. V., ZAV'YALOV, V. E., INDYUKOV, A. F.,
IVANTSOV. V. YA., Ural NITI, Chelyabinsk; and
SHCHEPKIN, E. V., MITROSHIN, S. S., Nefteprovodmontazh
Trust, Ufa.

"Possibility of Automatic Double Welds of the Elbow Joints in
Large Diameter Pipelines"

Moscow, Stroitel'stvo Truboprovodov, No 8, Aug 71, pp 15-17

Abstract: The Ural Pipe Industry Research Institute developed a
method for producing automatic double-V welds under flux with an
overhanging welding head in plates of 6-12 mm thickness with
2-2.5 mm gap.

USSR

ZERNOV, A. V., et al., Stroitel'stvo Truboprovodov, No 8, Aug 71, pp 15-17

With this method the welding arc is stabilized by a magnetic field created by a solenoid concentric with the electrode. The solenoid winding is in series with the welding circuit. The magnetic field is controlled by varying the distance of the solenoid from the weld.

This method makes it possible to make the initial root weld either from inside or from outside in the elbow joint of a pipe.

Analysis of weld sections showed that the quality of the welds is adequate. The subject solenoids can be installed on existing welding heads. This will result in increased productivity and quality.

1/2

- 94 -

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202910017-7"

JISSR

UDG: 621.643.002.2 + 411.4

activities and the second of t

ZERNOV, A. V., ZAV'YALOV, V. E., INDYUKOV, A. F., IVANTSOV, V. Th., Ural NITI, Chelyabinsk; and SHCHEPKIN, E. V., MITROSHIN, S. S., Nefteprovodmontazh

"Possibility of Automatic Double Welds of the Elbow Joints in Large Diameter Pipelines"

Moscow, Stroitel'stvo Truboprovodov, No 8, Aug 71, pp 15-17

Abstract: The Ural Pipe Industry Research Institute developed a method for producing automatic double-V welds under flux with an overhanging welding head in plates of 6-12 mm thickness with

1/1

USSR

ZERUCZ, A. Y., et al., Stroitel'stvo Truboprovedov, No 8, Aug 71, pp 15-17

With this method the welding arc is stabilized by a magnetic field created by a solenoid concentric with the electrode. The solenoid winding is in series with the welding circuit. The magnetic field is controlled by varying the distance of the solenoid from the weld.

This method makes it possible to make the initial root weld either from inside or from outside in the elbow joint of a pipe.

Analysis of weld sections showed that the quality of the welds is adequate. The subject solenoids can be installed on existing welding heads. This will result in increased productivity and

1/2

- 94 -

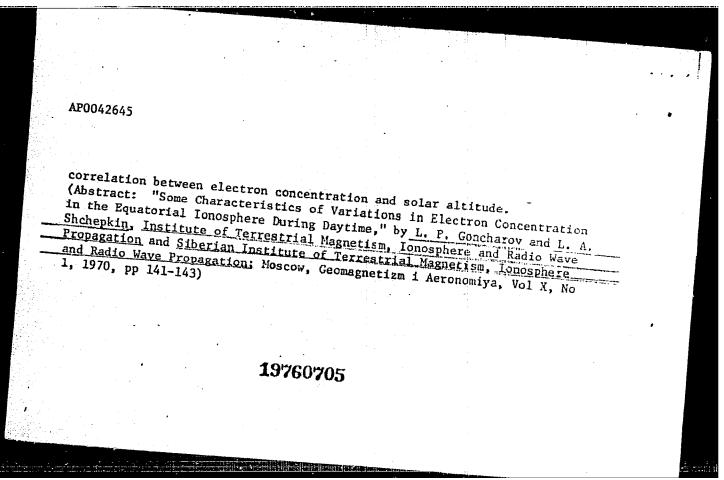
APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202910017-7"

Acc. Nr.: APO042645

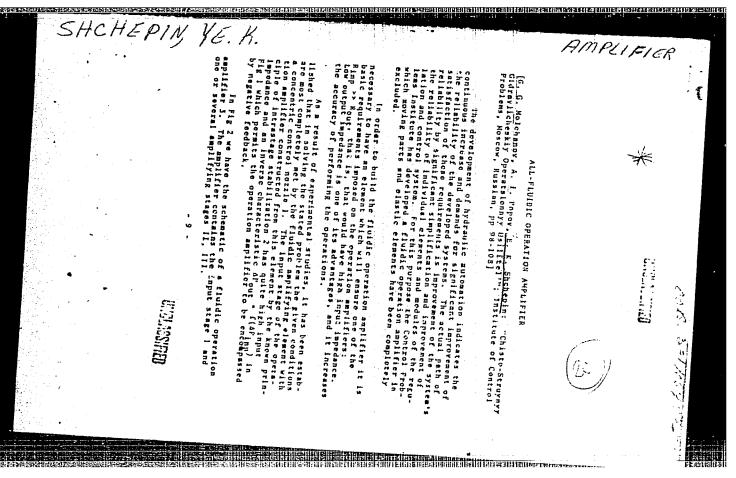
Ref. Code: UR020

Daytime Variations in Electron Concentration in Equatorial Ionosphere

Diurnal variations in the critical frequencies of the F2 layer (S_f) in the equatorial region have a clearly expressed minimum during the midday hours in the region of the magnetic equator. In the range of latitudes +10° there is a characteristic "two-hump" shape of the Sf curve. Between 10 and 20° in the northern and southern hemispheres a Sf curve with one afternoon maximum is typical in both the northern and southern hemispheres. This paper examines some characteristics of the diurnal change in electron concentration at fixed levels Nh below the maximum of the F2 layer on the basis of N(h) profiles of the ionosphere obtained using observational data obtained on the schooner "Zarya" during December 1962, January 1963 and November 1960 near the equator. During the illuminated hours the curves of diurnal variation $N_h\left(S_N\right)$ change singularly both with latitude and with altitude. The diurnal changes in Nh are clearest and have the least scatter at the magnetic equator; here the principal characteristics of change in $S_{\rm N}$ with altitude are manifested most clearly. The daytime minimum near the maximum of the F2 layer has the greatest depth here and falls at the midday hours. The SN curves are symmetrical both with respect to the temporal position of the maxima relative to the center of the minimum and with re-


Reel/Frame

12.


AP0042645

spect to the small difference in Nh values at the maxima. The S_N curves at geomagnetic latitude 10°S for 8 November 1960 and 3 January 1963, for example, show a clearly expressed peak in S_N . Near the maximum of the F2 layer a "two-hump" shape of SN occurs not only in those cases when the Sf curve has a similar shape, but also when the latter is characterized by a single maximum. The shape of SN changes with altitude and the changes are most sharply expressed for the region near the maximum of the F2 layer. Below the 150-170 km level it is most common to observe a "regular" shape of SN, symmetrical relative to the maximum at midday. A significant minimum begins to appear at great altitudes, attaining a maximum value at an altitude of 250 km and above. The shape of Sf changes rapidly with latitude in the equatorial zone. A similar picture is observed for SN at levels near the maximum of the F2 layer. For latitudes where there is a predominance of the afternoon peak in the region of the maximum of the F2 layer, in the lower part of the F region (180-240 km) the Sy curves have a pre-midday maximum. With an increase in altitude an afternoon maximum appears in S_N . At altitudes below 150-200 km the daytime changes in N are evidently determined for the most part by photochemical processes, indicating a good

19760704

"APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202910017-7

USSR

UDC: 534.222.2

MUNIN, A. G., SHCHEPOCHKIN, M. A., Moscow

"Spectrum of Acoustic Power of a Subsonic Jet"

Moscow, Akusticheskiy Zhurnal, Vol 18, No 2, Apr-Jun 72, pp 292-298

Abstract: The problem of spectral distribution of the power of acoustic radiation of an axisymmetric submerged jet is considered. Expressions are derived for determining the noise spectrum from the initial and main sections of the jet. The solution is extended to the case of an arbitrary results can be used for calculating the emission spectrum of noise from any section of a jet between two fixed cross sections.

1/1

1/2 027

PROCESSING DATE--30UCT70

TITLE—SOME INDICES OF BLOOD COMPOSITION AND IRON METABOLISM IN HEALTHY AUTHOR-(02)-PETROV, V.N., SHCHERBA. M.M.

CGUNTRY OF INFO--USSR

SCURCE-TERAPEVTICHESKIY ARKHIV, 1970, VOL 42, NR. 6, PP 47-55 DATE PUBLISHED 70

SUBJECT AREAS—BIOLOGICAL AND MEDICAL SCIENCES

TOPIC TAGS-IRON, METABOLISM, HEMOGLOBIN, BLOOD SERUM, ERYTHROCYTE,

CONTROL MARKING-NO RESTRICTIONS

DOCUMENT CLASS-UNCLASSIFIED PROXY REEL/FRAME--3002/1893

STEP NO--UR/0504/70/042/006/0047/0055

CIRC ACCESSION NO--APO129247

UNCLASSIFIED

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202910017-7"

2/2 027 CIRC ACCESSION NO--APO129247 UNCLASSIFIED PRUCESSING DATE--300CT70 ABSTRACT/EXTRACT-- (U) GP-0-ABSTRACT. THE INDICES WERE STUDIED OF THE BLOOD COMPOSITION, HEMOGLOBIN CONCENTRATION IN THE BLOOD AND ERYTHROCYTE, PERCENTAGE OF HEMOTOCRYTE IN 577, AND IRON METABOLISM, IRON LEVEL AND UNSATURATED IRON BOUND CAPACITY OF THE BLOOD SERUM IN 210 PRACTICALLY HEALTHY WOMEN. INCIDENCE OF HYPOFERRIC ANEMIA CONSTITUTED 11PERCENT, LATENT HYPOFERRIA, IRON DEFICIENCY OF THE ORGANISM WITHOUT THE DEVELOPMENT OF ANEMIA, 22PERCENT. IT WAS SHOWN THAT ADDITIONAL LOSS OF IRON FROM THE ORGANISM DUE TO MENSTRUATION, PREGNANCY, DELIVERY, ABORTIONS AND NURSING MAY SERVE AS A CAUSE OF IRON DEFICIENCY. ABSORPTION OF RADIOACTIVE IRON (FE PRIMES9) IN THE GASTROINTESTINAL TRACT OF WOMEN (55 PERSONS) IS HIGHER THAN IN MEN (10 PERSONS) CONSTITUTES CORRESPUNDINGLY 10.2 AND 8.9PERCENT. COMBINATION OF A DECREASED LEVEL OF HEMOBLOBIN AND IRON WITH A RISE IN UNSATURATED IRON BOUND CAPACITY IN THE BLOOD SERUM AND PERCENTAGE OF IRON ABSORPTION IN SOME WOMEN TESTIFY TO GENUINE IRON DEFICIENCY OF THE ORGANISM.. UNADEQUATE IRON ABSORPTION IN THE ORGANISM ASSOCIATED, APPARENTLY, WITH INSUFFICIENT SUPPLY OF IRON WITH FUOD OR ITS SUPPLY IN A FORM POORLY ASSIMILATED IS A CAUSE OF STEADY IRON DEFICIENCY. KAFEDRA PROPEDEVTIKI VNUTRENNIKH BOLEZNEY I LENINGRADSKOGO MEDITSINSKOGO

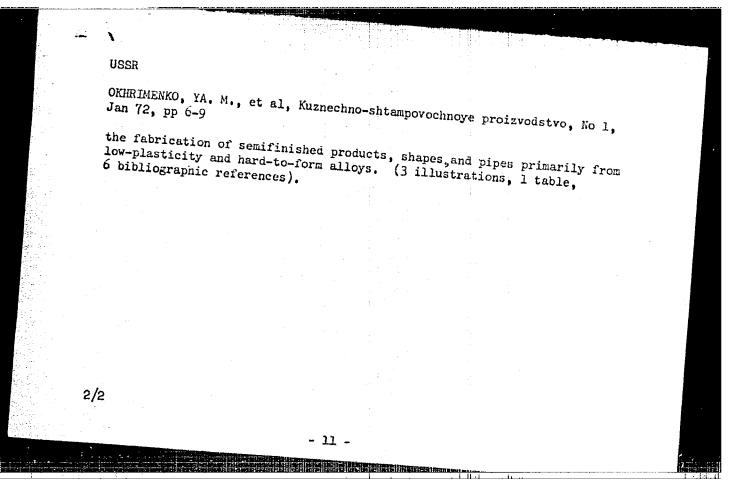
UNCLASSIFIED

USSR

UDC: 621.777.01

OKHRIMENKO, YA. M., BEREZHNOY, V. L., SHCHERBA, V. N. and SHARIKOV, G. S.

"A New Process of Rapid Extrusion of Low-Plasticity Alloys"


Moscow, Kuznechno-shtampovochnoye proizvodstvo, No 1, Jan 72, pp 6-9

Abstract: Detailed is a new process of high-speed forming of semifinished products, shapes, and pipes without lubricants using the principle of deformation friction between the container and the metal, with the friction oriented in the direction of the outflow of the extrudable metal. The study was conducted on cast AV, V96Ts, AMg6, AD31, D16, A00, LS59-1 and granulated 01435, S97 alloys under both laboratory and plant conditions. Analysis of the process indicates its potentialities in metalworking. The use of highspeed extrusion (as an alternative to direct extrusion) to produce from D16 alloy under semicontinuous conditions without lubricants increases the labor productivity 2.5 times as a result of the higher rate of outflow and yield of extrudable product as well as the elimination of some of intermediate operations specified in the current technology for separating the discard. The test results of high-speed extrusion under production conditions support the expediency of its further development and promotion for

1/2

CIA-RDP86-00513R002202910017-7"

APPROVED FOR RELEASE: 07/20/2001

USSR

KLISTORIN, I. F., SHCHERBACHENKO, A. M., Siberian Department of the Institute of Automation and Electrometry, Academy of Sciences of the USSR

"A Converter for Changing Low and Very Low Frequencies to Digital Code"

Moscow, Otkrytiya, Izobreteniya, Promyshlennyye Obraztsy, Tovarnyye Znaki, No 24, 1970, Soviet Patent No 277415, Class 42, Filed 22 April 1969, p 134

Abstract: This Author's Certificate introduces a converter which changes low and very low frequencies to digital code. The converter contains pulse-potential diodes connected to an OR logic circuit, and a unit for isolating the period of the frequency to be converted. This unit is connected through a key the input of which is connected to the standard frequency oscillator, with the input of the first counter and the "unit" input of the time conversion flip-flop. The output of the conversion time flip-flop is connected to a second key through which the cadence pulse oscillator is connected to the second counter. The converter also contains a third counter in which the output for the most significant digit is connected to the reset terminal of the conversion time flip-flop. As a distinguishing feature of the patent, the conversion range is extended and the device is simplified by connecting

- 49 -

USSR

KLISTORIN, I. F., SHCHERBACHENKO, A. M., Otkrytiya, Izobreteniya, Promyshlennyye Obraztsy, Tovarnyye Znaki, No 24, 1970, Soviet Patent No 277415, Class

the input of the third counter directly to the input of the OR logic circuit, and by connecting the output for each i-th digital place (where $i=1,\ldots,n$) of this diode being connected to the output of the i-th diode, the pulse input of the second counter.

2/2

USSR

UDC 621.317.76.029.4

KLISTORIN, I. F., SHCHERBACHERKO, A. M. of Novosibirsk

"A Fast Acting Digital Frequency Meter for Low and Sub-low Frequencies"

Novosibirsk, Avtometriya, No 2, 1970 pp 75-78

Abstract: Instruments of this type produce a frequency readout by measuring the duration of the input signal over one cycle and converting this to a frequency. There are various conversion techniques, but the simplest is repetitive subtraction of the high order bits of the duration value from an arbitrary value which is adjusted during the course of the calculation.

This article describes a frequency code converter on the banks of a digital integrator with sequential carry, applicable also to rapid action frequency meters for low and super low frequencies. This circuit consists essentially of a frequency divider and a digital register, holding the value of the function to be integrated, connected by a group of impulse potential gates, and a counter connected with the outputs of the gates through the logical or circuit. The circuit illustrated has three major components: a cycle length detection circuit which produces two signals, one lasting for one cycle of the input signal and the other occurring at the termination of this cycle; a duration counting circuit, containing an impulse potential switch, a standard frequency generator, and an impulse counter; a computational

USSR

KLISTORIN, I. F., et al, Novosibirsk, Avtometriya, No 2, 1970 pp 73-78

circuit, containing a cyclic frequency generator, an impulse potential switch, a counter which holds an initial standard value, and a logical or circuit. The operation of these elements is described in some detail.

It is also pointed out that the time for calculating frequency can be reduced significantly, not only by increasing the cyclic frequency, but also by taking account of boundaries on the permissible frequency range. This is demonstrated mathematically, showing that if the ratio between maximum and minimum permissible frequencies is 10 to 1, the calculation time can be reduced by 10%.

The instrument error is essentially the error of cycle duration determination, since the error in conversion can be reduced to the desirable level by increasing the number of positions in the counters.

The example given is a binary-decimal frequency -- code converter, operating in a frequency band where the maximum is 9999 times the minimum, with a conversion error of G.LE. This instrument requires four positions in the initial digital register and frequency converter registers, and three positions in the counter for a standard number of impulses. At a cyclic 2/3

USSR

KLISTORIN, I. F., et al, Novosibirsk, Avtometriya, No 2, 1970, pp 73-73

frequency of 1 megahertz, the maximum computation time does not exceed 10 milli-

3/3

UDC 612.822.1.015.31:546.18]-06:[612.57+612.223.11

Market Professional Co.

BAYEV, V. I., and Stone Military Medical Academy iment S. M. Kirov, Leningrad

"Metabolism of Somo Phosphorus Compounds in the Brain During the First Minutes Following Hyperthermia and Hypercapnia"

Roscow, Patologichoskaya Fiziologiya i Eksperimental'naya Terapiya, Vol 14, No 5, Sep/Oct 70, pp 20-24

Abstract: Shifts in the brain tissues of rats exposed to elevated temperature and other variations in the environment were studied. It was found that a pronounced discuption of the redox balance and blood respiratory function led to contidurable shalts in the phosphorus metabolism of brain tissues. The content of adenosine triphosphite, creatine phosphate, and adenosine monophosphate in brain tissues was monitored by paper chromatography. Inorganic phosphorus content and total acid-colubbo phosphorus levels were also monitored. The shift in rostal temperature was also measured. The external shifts to which the rats were exposed included a temperature rise from 35 to 38°C, as well as anesthetic (16-20%) and toxic (25-28%) W2 concentrations in the atmosphere, with both normal and reduced oxygen content.

™ ₽ð ---

CIA-RDP86-00513R002202910017-7" APPROVED FOR RELEASE: 07/20/2001

PROCESSING DATE--230CT70 UNCLASSIFIED TITLE--THERMOSTABILITY OF WHITE MICE IN AN AMBIENT MEDIUM WITH DIFFERENT RATES OF TEMPERATURE VARIATIONS -U-AUTHOR--SHCHERBACHEV, I.P. COUNTRY OF INFO--USSR SOURCE--KOSMICHESKAIA BIOLOGIIA I MEDITSINA, VOL. 4, JAN.-FEB. 1970, P. DATE PUBLISHED----70 SUBJECT AREAS--BIOLOGICAL AND MEDICAL SCIENCES TOPIC TAGS--THERMAL STRESS, MOUSE, BODY TEMPERATURE CONTROL MARKING--NO RESTRICTIONS DOCUMENT CLASS--UNCLASSIFIED STEP NO--UR/0453/70/004/000/0018/0022 PROXY REEL/FRAME--1998/0290 CIRC ACCESSION NO--APOL20979 UNCLASSIFIED

UNCLASSIFIED PROCESSING DATE--230CT70

CIRC ACCESSION NO--APOL20979

ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. STUDY OF SURVIVAL RATES IN A GROUP

GF 309 WHITE MICE EXPOSED TO UPWARD AND DOWNMARD TEMPERATURE VARIATIONS

FROM ROOM TEMPERATURE AT RATES FROM 0.01 TO 3 DEG-MIN AT 40-70PERCENT

HUMIDITY. THE DEPEMBENCE OF THE RECTAL TEMPERATURE ON AMBIENT

TEMPERATURE VARIATIONS IS ALSO INVESTIGATED IN THESE MICE. STATISTICAL

ANALYSIS OF THE OBSERVATIONS INDICATES THAT THE MICE DIE IN A SHORTER

TIME AT HIGHER (OR LOWER) BEDY AND AMBIENT TEMPERATURES WHEN THE RATES

OF THE TEMPERATURE INCREASE (OR DECREASE) ARE HIGHER.

UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

ONCLASSIFIED

UNCLASSIFIED

ONCLASSIFIED

UNCLASSIFIED

ONCLASSIFIED

USSR

UDC: 539.385

TERENT'YEV, V.F., MAKHUTOV, N.A., POYDA, V.G. and SHCHERBAK A.M., Institute of Metallurgy imeni A.A. Baykov, Academy of Sciences USSR

"Influence of Surface Layers and Aging on Bauschinger Effect During Low-Cycle Loading"

Moscow, Sb. "Ustalost' metallov i splavov". "Nauka" Press, 1971, pp 41-48

Translation: This study concerns the influence of removing a grain-size thick surface layer (following the first half-cycle of loading) as well as intermediate aging at 270°C for 2 hours on the Bauschinger effect in low-carbon St.3 steel. It is shown that the Baushinger effect in low-carbon steel is largely due to the presence of a much stronger grain-size thick surface layer as well as surface residual stresses. Removal of the surface layer after the first half-cycle of loading (in the stretch region) or aging after the first half cycle minimizes the Bauschinger effect. In both cases the decrease in Baushinger effect is, most likely, related to the marked decrease in surface residual stresses. (6 illus-trations, 18 bibliographic references; summary).

UNCLASSIFIED PROCESSING DATE---13NCV70

1/2 026
TITLE--RESISTANCE TO LOW CYCLIC LOADING OF A STEEL AFTER ARTIFICIAL AGING

AUTHOR-(02)-MAKHUTOV, N.A., SHCHERBAK, A.M.

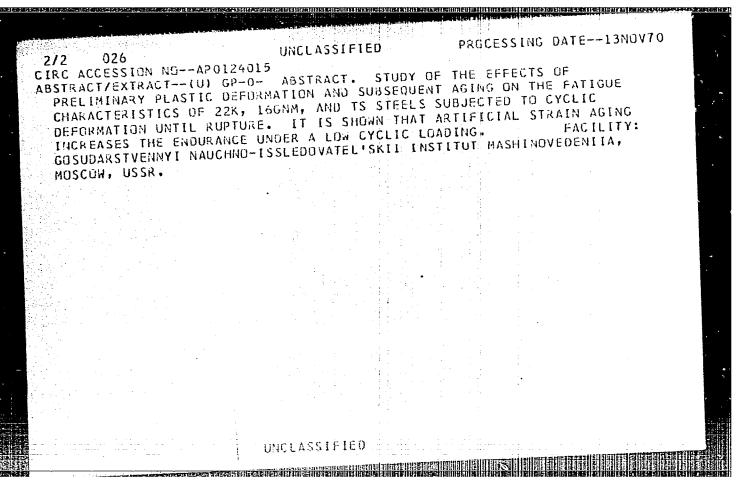
COUNTRY OF INFO--USSR

SOURCE--PROBLEMY PROCHNOSTI, VOL. 2, APR. 1970, P. 23-29

DATE PUBLISHED ---- APR 70

SUBJECT AREAS -- MATERIALS

TOPIC TAGS--CYCLIC FATIGUE LIFE, STEEL PROPERTY, PLASTIC DEFORMATION, METAL AGING/(U)22K STEEL, (U)16GNM STEEL, (U)TS STEEL


CONTROL MARKING--NO RESTRICTIONS

PROXY REEL/FRAME--2000/0253

STEP NO--UR/3663/70/002/000/0023/0029

CIRC ACCESSION NO--APOL24015

UNCENSSIFIED ---

UNCLASSIFIED PROCESSING DATE--11SEP70.
TITLE--EFFECT OF AGING AND COLD WORKING ON THE RESISTANCE OF STRUCTURAL
STEELS TO PLASTIC DEFORMATION DURING LOW CYCLE LOAD -UAUTHOR--MAKHUTOV, N.A., SHCHERBAK, A.M., POYDA, V.G., TERENTYEV, V.F.

COUNTRY OF INFO--USSR

SOURCE--PROBL. PROCH. 1970, (1), 42-5

DATE PUBLISHED----70

SUBJECT AREAS--MATERIALS, MECH., IND., CIVIL AND MARINE ENGR

TOPIC TAGS--METAL AGING, COLD WORKING, LOW ALLOY STEEL, STRUCTURAL STEEL, METAL DEFORMATION/(U)22K LOW ALLOY STEEL

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1984/1408

STEP NO--UR/3663/70/000/001/0042/0045

CIRC ACCESSION NO--ATO100068

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202910017-7"

2/2 025 UNCLASSIFIED PROCESSING DATE--115EP70 CIRC ACCESSION NO--AT0100068 ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. WITH MOST METALS THE BAUSCHINGER EFFECT IS SHOWN IN A RADICALLY DECREASING PLASTICITY IN THE IST CYCLE UPON REVERSAL FROM TENSION TO COMPRESSION. THE KNOWN REDN. OF THIS EFFECT BY DEFORMATION AND AGING WAS REEXPLORED WITH BOILER STEEL 22K (C 0,.3, SI 0.26, MN 0.80, NI 0.20, CR 0.12, CU 0.0ESPERCENT) AND LOW C STEEL DEFORMED AT 0.5-10.0PERCENT THEN AGED FOR 2 HR-270DEGREES. APPLIED FORCE, SIGMA SUBA LARGER THAN SIGMA SUBT, THE ELASTIC LIMIT, IN THE RELATION FOR THE MEAN YIELD STRENGTH, BAR SIGNA, HAD THE USUAL SHARP LINEAR DROP TO ZERO TENSION ELASTICITY. FOLLOWED DURING THE COMPRESSION BY A PARABOLIC DECLINE TO A LOWER ELASTICITY VALUE THAN INITIALLY, IN ITS SIGMA SUBT PRIME CURVE. INITIALLY THE METAL HAD A SIGMA SUBT PRIME VALUE OF 30.8 KG-MM PRIME2, BUT AFTER DEFORMATION BY 0.5, 2.0, 5.0, AND 10.0PERCENT AND AGING 31.8, 37.2, 46.0, AND 52.0 KG-MM PRIME2. WITH BAR SIGMA EQUALS 1.17, 1.32, 1.46, 1.61, AND 1.71, SIGMA SUBT PRIME RANGED DOWN 7.1-3.55, 26.0-3.55, 26.9-7.8, AND 28.3-21., KG-MM PRIMEZ, RESP., FOR EACH DEFORMED TYPE. THE PHENOMENAL WAS ATTRIBUTED TO THE EASE OF BLOCKING OF DISLOCATIONS: AND AS WITH 22K STEEL SIGNA SUBT PRIME BECAME STABILIZED AFTER 5-7 TOTAL CYCLES OR LESS FOR BAR SIGMA EQUALS 1.61. SIMILARLY, THE REMOVAL OF DISLOCATIONS (AND PLASTICITY) AFTER AGING AT 400 DEGREES CAUSED REMOVAL OF THE BAUSCHINGER EFFECT; OR SOME REDN. IF AFTER DEFORMATION, A SURFACE LAYER WAS REMOVED ELECTROLYTICALLY.

UNCLASSIFIED.

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202910017-7"

UDC 577.153.9.014.05

ROZENGART, V. I., CHINGISOVA, R. A., SHMELEVA, V. G., and SHCHERBAK, I. G., Chair of Biochemistry, First Leningrad Medical Institute imeni I. P. Pavlov

"Breakdown of an Organophosphorus Cholinesterase Inhibitor in Animal Tissues"

Moscow, Voprosy Meditsinskoy Khimii, No 3, 1971, pp 266-270

Abstract: The purpose of the work was to study the ability of rat tissues (liver, kidneys, brain) and blood to detoxify IG-63 (0-ethyl-S-hexyl methyl-thiophosphonate), an organophosphorus cholinesterase inhibitor. A mixture of tissue and IG-63 was incubated at 37°C for up to 6 hours, after which the amount of free inhibitor was determined by an enzymatic method based on chromatographic separation of the inhibitor and its subsequent detection from its ability to inhibit esterase. Regardless of the original concentration of the inhibitor, the various tissues could not decompose more than 50 to 60% in 6 hours; blood decomposed only 25 to 30% of the substance in the same period of time. From practical point of view, therefore, IG-63 cannot be effectively detoxified because the symptoms of poisoning develop very rapidly and the inhibition of cholinesterase by the tissues ends completely within one hour.

1/1

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202910017-7"

Pharmacology and Toxicology

USSR

UDC 577.153

FREEDRESS HELDE STREET AND A LINE OF THE PROSECULATION OF THE PROSECULATION OF THE CONTROL OF THE PROSECULATION OF

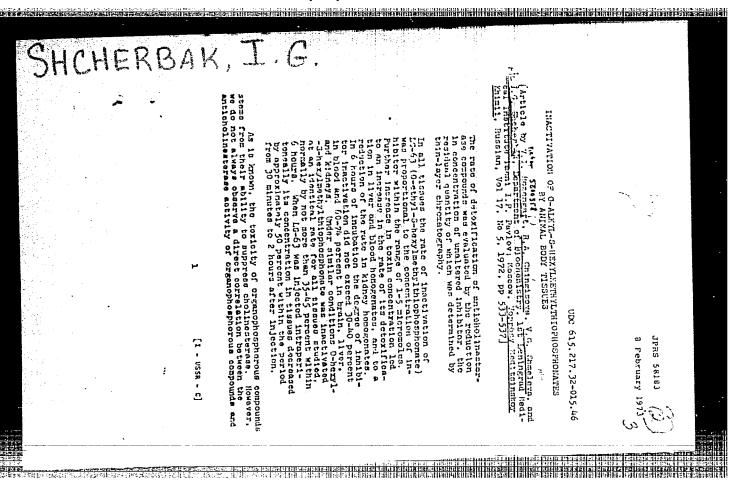
NOVGORODSKAYA, A. M., ROZENGART, V. I., and SHCHERBAK, I. G., Chair of Biochemistry, First Medical Institute imeni Akad. I. P. Favlov, Leningrad

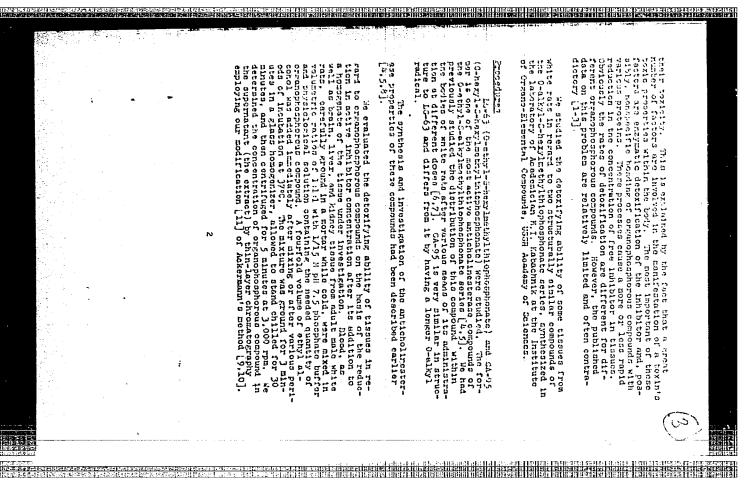
"In vivo Inhibition of Cholinesterase Activity by the Organophosphorus Compound IG-63"

Moscow, Biokhimiya, No 1, 1971, pp 72-80

Abstract: The inhibitory effect of IG-63 (0-ethyl-S-hexy methylthiophose phonate) on cholinesterase activity was studied in various tissues (small intestine, myocardium, skeletal muscle, brain, blood hemolysate, gastric wall, lung, kidney, liver) of rats injected intraperitoneally or intramuscularly with different doses of the compound. A sublethal dose (5 mg/kg) markedly with different doses of the tissues studied except the kidneys regardless inhibited the enzyme in all the tissues studied except the kidneys regardless of the mode of administration. A much smaller dose (0.25 mg/kg), on the other hand, altered the distribution of IG-63 considerably and the more of administration was a major factor. For example, cholinesterase activity in the liver and gastric wall was inhibited more by intraperitoneal injection of IG-63 than by intramuscular injection. The highest concentrations of IG-63 were invariably found in the liver, whereas no significant amounts could be detected in the kidneys. The latter phenomenon suggests that either the

USSR


NOVGORODSKAYA, A. H., et al., Biokhimiya, No 1, 1971, pp 72-80


kidneys take no part in the elimination of unchanged LG-63 nolecules from the body or the inhibitor bypasses the site of cholinesterase localization in the organ. No relationship was observed between the distribution of LG-63 and the original level of chloinesterase activity or tissue sensitivity to the substance.

2/2

60 =

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202910017-7"

USSR

UDC 621.791.001.5:669.14:62-408.3:669.295

SHCHERBAK, M. A. (Engineer), ARISTOV, V. S. (Cand. of Techn. Sciences), SHEYKO, V. I. (Engineer) and PROKHOROV, P. A. (Cand. of Techn. Sciences)

"Problems of Welding Titanium_Clad Steel"

Moscow, Svarochnoye proizvodstvo, No 2, Feb 72, pp 19-20

Abstract: Automatic welding is finding expanding application in the fabrication of structures from clad steel. Of some interest therefore is the use of automatic welding of structures from titanium-clad steel. The experimental material in this study was St.) steel clad with 3-4 mm VT1 titanium, the combined thickness being 10-20 mm. The experimental welding was performed under linear energies of 2300-8500 cal/cm. It is shown that the boundary layer of titanium-clad steel may be heated up to 700°C without affecting the mechanical properties. Heating the steel above that temperature causes a reduction of resistance to direct pull and shear. Discussed also is the need of lap-welded strap-reinforced facings to eliminate faulty fusions in the cladding layer. Tensile tests on both manual and automatic welded specimens showed 40.0-47.5 kg/mm². Static bend tests at a 160-degree angle performed on specimens of butt joints with longitudinal welds both manual and automatic failed to separate the cladding layer in the weld area. (2 illustr., 1 table, 5 biblio. references)

1/1

- 70 --

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202910017-7"

PRUCESSING DATE--ZUNUVIC TITLE--APPARATUS FOR STUDYING THE THERMAL AND MECHANICAL PROPERTIES OF AUTHUR-(C4)-BORISOV, D.G., GBUKHOVICH, V.A., FADEYEVA, A.V., SHCHERBAK, granding of a substitute of a single CLURTRY OF INFC--USSR SOURCE-ZAVOD. LAB. 1970, 36(5), 615-17 DATE PUSL ISHEU ---- 70 SUBJECT AREAS -- MATERIALS, METHODS AND EQUIPMENT TOPIC TAGS--PLASTIC FILM, MATERIAL TESTING EQUIPMENT, POLYTETRAFLUORUETHYLENE, THERMAL EFFECT, ANNEALING, PLASTIC MECHANICAL PROPERTY/ (U) FTOROPLAST 4M FLUORINE PLASTIC CENTREL MARKING-NG RESTRICTIONS STEP NU--UR/0032/70/036/005/0615/0617 OCCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3004/1970 CIRC ACCESSION NG--APOL32231 UNCLASS IF IED

THE REPORT OF THE PERSON OF TH PROCESSING DATE--20NOV70 UNCLASSIFIED 029 2/2 CIRC ACCESSION NO--APO132231 ABSTRACT. THE SAMPLE FILMS WERE HELD HURIZONTALLY BY A FORCE JUST ADEQUATE TO PREVENT SAGGING DUE TO GRAVITY. ABSTRACT/EXTRACT--(U) GP-0-DURING HEATING THE HURIZUNTAL POSITION WAS MAINTAINED BY THE DISPLACEMENT OF THE FOLDING CLAMPS. THE TEMP. VS. DEFORMATION (EPSILON) CURVES HERE OBTAINED FOR POLY (TETRAFLUORDETHYLENE) (FTOROPLAST 4M) FILMS ANNEALED AT VARIOUS TEMPS. THE FILMS ANNEALED AT 2550EGREES OR 280DEGREES HAD POS. EPSILON, AS WELL AS NEG. EPSILON (SHRINKAGE). THE FILMS ARNEALED AT 265DEGREES HAD ONLY POS EPSILON. NAUCH.-ISSLED. PROEKT. INST. POLIM. PLASTMASS, LENINGRAD, USSR. UHACLASSIFIED

1/2 014 UNCLASSIFIED PROCESSING DATE--18SEP70
TITLE--EFFECT OF ORIENTATION ON THE ELECTRICAL STRENGTH OF POLYMER FILMS

AUTHOR-(05)-ROMANOVSKAYA, O.S., SHCHERBAK, P.N., VOROBYEV, V.P., YARTSEVA, E.E., SHPAKOVSKAYA, G.B.

COUNTRY OF INFO--USSR

SOURCE--VYSOKOMOL. SOEDIN. SER. B 1970, 12(1), 27-31

DATE PUBLISHED ----- 70

SUBJECT AREAS -- MATERIALS, PHYSICS

TOPIC TAGS--POLYSTYRENE RESIN, COPOLYMER, PLASTIC FILM, ELECTRIC PROPERTY

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1984/0927

STEP NO--UR/0460/70/012/001/0027/0031

CIRC ACCESSION NO--APO055625

UNCLASSIFIED

2/2 - 014

UNCLASSIFIED

PROCESSING DATE--18SEP70

CIRC ACCESSION NO--APO055625

ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. THE INCREASE OF POLYSIYRENE (I) OR STYRENE-ALPHA-METHYLSTYRENE COPPLYMER (II) FILM ORIENTATION, AS STYRENE-ALPHA-METHYLSTYRENE COPPLYMER (II) FILM ORIENTATION, AS STYRENE-ALPHA-METHYLSTYRENE COPPLYMER STATE FIRM OR EQUAL TO INDICATED BY THE INCREASE IN THE BREFRINGENCE SMALLER THAN OR EQUAL TO INDICATED BY THE INCREASE THE ELEC. BREAKDOWN VOLTAGE 5 TIMES 10 PRIME NEGATIVES, ALSO INCREASES THE ELEC. BREAKDOWN VOLTAGE (E) 30-SOPERCENT. A FURTHER INCREASE IN THE ORIENTATION HAS NO EFFECT ON THE E OF II AND DECREASES THE E OF I.

UNCLASSIFIED

UNCLASSIFIED

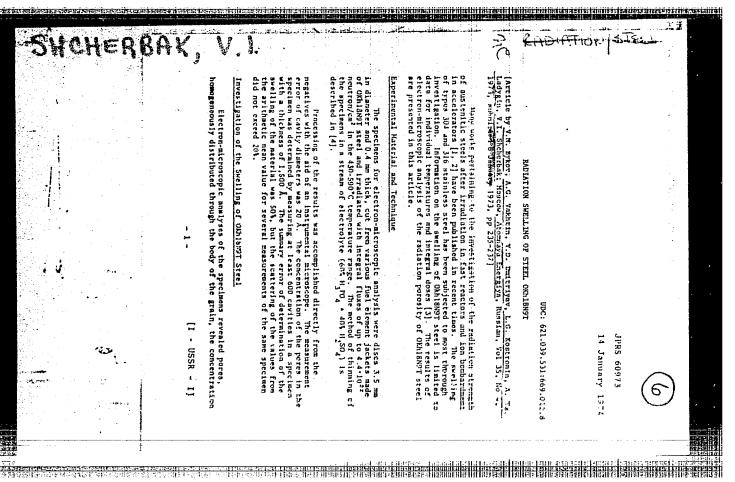
UNCLASSIFIED

USSR

UDO 621.373.029.7

NEKRASHEVICH, V.B., SHTEYNEHLEYGER, V.B., SHCHERBAK, V.F., EL'KIMD, S.A.

"8-mm Wave Band Maser With Microcooler Creating A 35° K Temperature"


Radiotekhnika i elektronika, Vol XVII, No 7, July 1972, pp 1544-1545

Abstract: The paper describes work conducted on a 8-mm wave band maser operating at a ruby temperature on the order of 30-40° K. It was possible to obtain such a temperature from comparatively simple small-sized closed-cycle refrigerating machines (microcoolers). The resonator unit contains signal waveguides, pump waveguides, active resonators, passive resonators, coupling for connection with the microcoder, and the ruby. The amplifier contains a MO-8 microcooler, a vacuum chamber, the resonator unit described above, a magnet, a circulator, and a pumping bridge-divider. The authors thenk M.P. Stolpyanskiy who participated in working out the design of the amplifier. 2 fig. 5 ref. Received by editors,

1/1

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202910017-7"

isis en regingen griffig fri fri skisk 193 kildings mann 1934 i 1945. All 1945. All 2013 kilding mann mann sa An sagaran kildsan kalangan manning mannang manning manning manning kilding a kilding kilding mannang mannang

wa 595.754.616-091.81632.937.14

USSR

ROMASHEVA, L. F., SHCHERBAK, V. P. and VIDONSKIY, E. V., Institute of Biology, Academy of Sciences Kirgiz SSR

"The Action of the Bacterial Preparations Entomobacterin-3 and Dendrobacillin and of the Boverine Fungus on Bedbugs"

Frunze, Izvestiya Akademii Nauk Kirgizskoy SSR, No 3, May-Jun 72, pp 63-67

Abstract: The toxicity of the standard tacterial preparations entomobacterin-3 and dendrobacillin to bedbugs was studied. The bedbugs were sprayed under laboratory conditions with aqueous suspensions of the preparations at concentrations of 0.5-2.0%, whereupon the length of time within which 90% of the insects perished was determined. The effect produced increased with increasing concentrations of the suspensions; it was generally the same for a 1.5% as a 2.0% suspension. The effect varied with the season, it was least pronounced in August, when the bedbugs were well-fed on blood, and more pronounced in March, when the bedbugs were underfed, and September, when their vitality was lower than in the summer. The action of the two bacterial preparations was similar, because both belonged to the same group of sporiferous and crystal-forming microorganisms, i.e., Bac. thuringiensis. The effective concentrations of boverine were in the 1-2% range and the optimum 1/2 <u> 74 -</u>

CIA-RDP86-00513R002202910017-7" APPROVED FOR RELEASE: 07/20/2001

USSR

ROMASHEVA, L. F., et al., Izvestiya Akademii Nauk Kirgizskoy SSR, No 3, May-Jun 72, pp 63-67

months for its application Jan and Sep, in which the humidity is highest and the physiological activity of the bedbugs is at the lowest level. A higtological study was carried out on bedbugs that had been treated with 1-2% suspensions of dendrobacillin. Within 21-24 hrs after the treatment, sporiferous and crystal-forming bacteria were present in the insect bodies. Their greatest accumulation was in the outer fatty tissue, in the region of tracheae, between the malpighian bodies, and within and around the intestine. Gradually necrosis of the tissues in which the bacteria concentrated and destruction of the organs took place. The death of the insects after penetration of the crystal-forming bacteria into their body was apparently due to the action of bacterial toxins. On application of low doses of the bacterial preparations, septicemia predomoniated, while after application of high doses septicemia almost did not have time to develop. Entomobacterin-3 was obtained from the Agricultural Technology/Administration/ of the Kirgiz SSR, dendrobacillin from the Problem Laboratory of Irkutsk State University (Prof. Ye. V. Talalayev), and boverine from the Biological Hethod Laboratory at Minsk (T. T. Bezdenko, I. T. Korol), where it was prepared.

2/2

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202910017-7"

USSR

POLYAKOV, V. S. and SHCHERBAK, V. T.

"The Problem of Processing of the Results of a Study"

K Voprosu Obrabotki Rezul'tatov Issledovaniya [English Version Above], Leningrad Polytechnical Institute, Leningrad, 1972, 16 pages (Translated from Referativnyy Zhurnal Kibernetika, No 9, 1973, Abstract No 9V761 DEP).

Translation: An algorithm and program are presented, written in ALGOL and designed for the TA-IM translator, for determination of the analytic form of the solution of mechanics problems in the form of number files. The analytic dependence, approximately describing the number file in question, is sought in the form of an exponential polynomial with minimal (within the limits of the permissible error of approximation) number of terms. The possibility is studied of processing number files of both one and several independent variables. As an example, a file of values of the load factor of a split bearing is processed.

Authors' view

1/1

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202910017-7"

UDC 621.791:533.9

edusta apendeet naseustuunnin koi eli kiessuut longa enana enapusetuutuus eli veituseta eskeliteeta kastuutaka Ikukksisinteen kantasuutaanna kalii ikksain lahtii kestiksistootaa katuutiteeta kastuutaa kastuutaksi.

and GRIGOR'YEV, A. A., VOROPAY, N. M., Cand. Tech. Sci., SHCHERBAK, V. V. Engrs.

"Pulse Microplasma Welding of Thin Aluminum Gaskets"

Moscow, Khimicheskoye i Neftyanoye Mashinostroyeniye, No 11, Nov 71, p 19

Abstract: Gaskets consisting of an Al shell with a wall thickness of 0.2-0.3 mm filled with asbestos and having a diameter = 600 mm are used in chemical and petroleum conversion equipment. Difficulties have been encountered in the butt welding of the thin Al sheets because of the formation of burn holes and the failure of the sheets to join. A satisfactory method of pulse microplasma butt welding of the Al sheets has been developed by the Institute of Electric Welding imeni Ye. O. Paton jointly with the VNIIPT of Chemical and Petroleum Conversion Equipment. In the procedure, Ar is used as the plasma-forming gas and He as a protective gas which compresses the arc radially. Melting of the metal takes place during the positive potential pulse and dispersion of the oxides that have formed on the surface during the negative potential pulse. The pulse of the current of direct polarity has a higher amplitude than that of the current of reverse polarity. Equipment for manual and mechanized (automatic) welding by this method has been 1/2

CIA-RDP86-00513R002202910017-7"

APPROVED FOR RELEASE: 07/20/2001

VOROPAY, N. M., et al., Khimicheskoye i Neftyanoye Mashinostroyeniye, No 11, Nov 71, p 19

developed. Use of a thin welding wire is preferable to welding without a wire, because the Al foil then does not have to be cut as precisely. The diameter of the nozzle for the plasma-forming Ar is 0.8-1.9 mm. In mechanized welding of Al sheets 0.3 mm thick, the current is 12-15 A, the rate of welding 30-40 m/hr, the flow of Ar 0.6-0.8 1./hr, the flow of He 2-3 1./hr. The burners are water-cooled. W electrodes with a diameter of 1.0-1.5 mm and a conically pointed tip are applied. Besides its application in the production of Al gasket shells, the procedure can be used quite generally for the welding of Al, Mg, and Al and Mg alloys to produce flat gaskets and parts and articles of other shapes with a wall thickness of 0.2-1.5 mm.

2/2

CIA-RDP86-00513R002202910017-7" APPROVED FOR RELEASE: 07/20/2001

USSR

UDC 621.372.822:621.385.63

SHCHERBAK, V. V.

"Diffraction Radiation of a Two-Dimensional Electron Flux on a Strip Diagram in a Rectangular Wave Guide"

Radiotekhnika. Resp. mezhved. nauchno-tekhn. sb. (Radio Engineering. Republic Interdepartmental Scientific and Technical Collection), 1970, vyp. 14, pp 3-12 (from RZh-Radiotekhnika, No 4, Apr 71, Abstract No 4B127)

Translation: The problem of transient and diffraction emission of a two-dimensional modulated electron flux is investigated in the approximation of a given current. There are 2 illustrations and a 5-entry bibliography.

1/1

-144-

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202910017-7"

USSR

UDC 616.981.42-07:616.15-097.5-074

AND THE REPORT OF THE CONTROL OF THE PROPERTY OF THE PROPERTY

CHERNYSHEVA, M. I., KNYAZEVA, E. N., DIFYSENOV, K. D., and SHCHERBAK, Yu. F., Institute of Epidemiology and Microbiology imeni Gamaleya and Central Institute for the Advanced Training of Physicians

"Use of the Cysteine Test to Detect 7S(IgG) Antibodies in Acute, Chronic, and Residual Brucellosis Patients"

Moscow, Zhurnal Mikrobiologii, Epidemiologii i Immunobiologii, No 10, 1971, pp 102-105

Abstract: The indirect hemagglutination test revealed the presence of the microglobulin 7S(IgG) in the cysteine-treated serums of all 35 patients with acute or subscute brucellosis and in 64 of 160 patients (40%) with chronic brucellosis (especially during exacerbation of the disease). The antibody was not found in those with residual brucellosis. The presence of this antibody is thus an indicator of the activity and severity of the course of the infection.

1/1

37 -

Immunology

USSR

UDC 616.981.42-036.12-078.7

CHERNYSHEVA, M. I., KNYAZEVA, E. N., and SHCHERBAK Vu F., Institute of Epidemiology and Microbiology imeni N. F. Gamaleya, Academy of Medical Sciences USSR, Brucellosis Laboratory Institute of Epidemiology and Microbiology imeni N. F. Gamaleya, Scientific Research Group, Academy of Medical Sciences USSR

"A Comparative Study of the Diagnostic Usefulness of Serological Reactions in Chronic and Residual Brucellosis"

Moscow, Sovetskaya Meditsina, No 12, 1971, pp 82-86

Abstract: The common medical tests for chronic or residual brucellosis, the agglutination reaction, the Huddleson test, and the allergic skin test of Burnet were considered not sensitive enough to defect brucellosis antibodies in blood serum. Three new serological tests have been developed recently (the indirect hemagglutination reaction, immunofluorescence reaction, and Coombs test), and their diagnostic effectiveness has been clinically evaluated. The experimental group consisted of 164 hospitalized brucellosis patients — men, women, young, and old, chronic cases, mild, moderate, and severe forms, and residual cases. Brucellosis was diagnosed in these patients by means of clinical observation, epidemiological anamnesis, and 1/2

TEN BEGENERALISA KANDELINI BUTUK MUMUNUN TENKBURUN TURUN TURUN TENKBURUN TENKBURUN TENBENGAN PERMENDAN PER

USSR

CHERNYSHEVA, M. I., et al., Sovetskaya Meditsina, No 12, 1971, pp 82-86

positive results from laboratory tests. The allergic skin test of Burnet gave a positive reaction with 59% of these subjects. Positive serological reactions were obtained in 84% of all patients, chronic and residual, when the Coombs test was tried. The immunofluorescence method identified 61%, with indirect hemogglutination next in effectiveness at 53%. The agglutination reaction was the least sensitive (35%). When analyzed according to the various states of brucellosis, chronic mild, chronic moderate and severe, and residual, the Ccombs test was most sensitive in detecting incomplete antibodies. The immunofluorescence reaction and the indirect hemagglutination reaction were also effective in detecting brucellosis. The agglutination reaction usually gave less than 50% positive reactions. All tests had the least number of positives in residual brucellosis. The Coombs test and immunofluorescence were able to detect brucellosis antibodies no matter how the antigen entered the patient (vaccine therapy, preventive inoculation, original infection, or repeat infection). Actually, serological reactivity even increased after vaccine therapy.

2/2

UDC 616.932-08:616-092

NIKIFOROV, V. N., Professor, SHCHERBAK, Yu. F., Cardidate of Medical Sciences, LEVITOV, T. A., Docent, and MARCHUK, L. M.

"Modern Fundamentals of Pathogenotic Therapy of Cholera"

Moscow, Sovetskaya Meditsina, Vol 33, No 7, Jul 70, pp 10-17

Abstract: Patients with algid cholera suffer from acute intoxication, acidosis, loss of body fluids and salts, and disrufted intermediary metatolism, and therefore require immediate treatment. A study was undertaken in which oc cholera patients were divided into several groups and treated with bacteriophages (administered enterally or intramuscularly), with or without intramuscular tetracycline. For each group, an appropriate control subgroup was treated with a placebo. Blood tests and stool analyses were performed on each patient before and during the treatment. The bacteriophages were found to be no more effective than the placebo. Tetracycline definitely improves the condition of the patient, however. The basic treatment is still intravenous administration of salt solutions (rehydration), accompanied by enterally administered tetracycline. Immediate intravenous infusion of 5-4-1 salt solution (5 g NaCl, 4 g NanCO3, and 1 g KCl per liter of double distilled water) is recommended. The total dose shall be about 10 percent of the patient's body weight or, more precisely: 4x103 x (specific 1/2

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202910017-7"

USSR

NIKIFOROV. V. N. et al, Sovetskaya Meditsina, Vol 33, No 7, Jul 70, pp 10-17

gravity of patient's plasma - 1.025) x patient's weight in kilograms = milliliters of salt solution to be administered. The solution should be infused as follows: first liter over a period of 10 min, second liter, 20 min, and the remainder, 30-60 min. The solution is subsequently infused in volumes equal to the total loss of body fluids (feces, urine, and vomitus). If EKG disturbances develop, the 5-4-1 solution should be temporarily replaced with 6-4 solution (o g NaCl and necessary. Initial, drastic recovery is observed 20-25 minutes after treatment is begun; 8-12 hours later, patients are able to sit up in bed and eat. Tetracycline comma.

2/2

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202910017-7"

UDC: 534.232

USSR

SHIBAYEVA, A. V., POPKO, G. I., SHCHERBAK, Yu. M., Belorussian "Order of the Red Banner of Labor" State University imeni V. I. Lenin

"A Method of Making Thin-Film Ultrasonic Transducers"

Moscow, Otkrytiya, Izobreteniya, Promyshlennyye Obraztsy, Tovarnyye Znaki, No 7, Mar 72, Author's Certificate No 329653, Division H, filed 11 Apr 70, published 9 Feb 72, p 221

Translation: This Author's Certificate introduces a method of making thin-film ultrasonic transducers. The procedure is based on vacuum vaporization of material. As a distinguishing feature of the patent, the reliability of the transducers is improved and their resistance to mechanical effects is increased while simplifying the manufacturing technique at the same time by using selenium as the initial material.

1/1

- 147 -

1/6 030 UNCLASSIFIED PROCESSING DATE--11SEP70
TITLE--PERSONAL CONFLICTS CAN DISRUPT SCIENTIFIC WORK -U-

AUTHOR--SHCHERBAKOV, A.

COUNTRY OF INFO--USSR

SOURCE-MOSCOW LITERARY GAZETTE NO 19, 6 MAY 70 P 12 1

DATE PUBLISHED--06MAY70

SUBJECT AREAS -- BEHAVIORAL AND SOCIAL SCIENCES

TOPIC TAGS--R AND D MANPOWER, PERSONNEL SELECTION, PERSONNEL MANAGEMENT, SCIENTIFIC PERSONNEL RELATION, RESEARCH FACILITY, GROUP PSYCHOLOGY

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1985/0009

STEP NO--UR/9036/70/000/019/0012/0012

CIRC ACCESSION NO--AV0100604

U4- [485] + 189

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202910017-7"

2/6 UNCLASSIFIED PROCESSING DATE--11SEP70 CIRC ACCESSION NO--ANOIO0604 ABSTRACT/EXTRACT-- (U) GP-O- ABSTRACT. OFTEN, AND NOT WITHOUT GROUNDS, IT IS SAID THAT WITH A TALENTED LEADER IN THE COLLECTIVE NO SITUATIONS OF CONFLICT ARISE. BUT THE DIFFICULT TASK IN TO SELECT FROM THE MASS OF ASPIRANTS TO WORK IN INSTITUTES NOT ONLY TALENTED BUT ALSO PSYCHOLOGICALLY COMPATIBLE PEOPLE, TO BE ABLE TO UNITE THEM TO FULFILL ONE IDEA, AND TO CORRECTLY ORGANIZE THEIR LABOR. ALTHOUGH IT WOULD SEEM THAT EVERYBODY IS STRIVING FOR THIS, IN SOME COLLECTIVES A PURELY IMAGINARY CALM EXISTS, AND FROM TIME TO TIME REAL MASYCHOLOGICAL EXPLOSIONS" TAKE PLACE THERE. A SITUATION OF CONFLICT IN WHICH A SCIENTIFIC WORKER CONSIDERS HIMSELF UNDESERVEDLY OFFENDED AND INSULTED UNSETTLES HIM FOR A LONG TIME. MOREOVER, SCIENTIFIC LABOR, AS IS WELL KNOWN, IS THE LEAST REGULATED IN COMPARISON WITH OTHER TYPES OF ACTIVITY. HERE A PERVERSE SENTIMENT EXERTS A FAR MORE POWERFUL INFLUENCE ON WORK RESULTS. THEREFORE A STUDY OF THE REASONS FOR CONFLICTS IS A SERIOUS TASK IN ORGANIZING SCIENTISTS! LABOR. QUESTIONING THE NOVOSIBIRSK SCIENTIFIC RESEARCH INSTITUTE'S WORKERS INDICATE IN THIS RESPECT? WHAT ARE THE REASONS FOR CONFLICTS? RESULTS OF THE INVESTIGATION PROVIDE AN INSUFFICIENTLY COMPLETE ANSWER TO THIS QUESTION. IN THE FIRST PLACE THERE ARE PURELY SUBJECTIVE REASONS DEPENDING ON THE WORKERS THEMSELVES, THE DISINCLINATION OR INABILITY TO BEHAVE PROPERLY IN THE COLLECTIVE, THE INABILITY TO LEAD SCIENTIFIC WORKERS, PRECISELY TO "LEAD" AND NOT TO "COMMAND". LIKE TO DWELL IN DETAIL ON THIS SECOND GROUP OF REASONS.

'MTI 155 IF IF I

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202910017-7"

3/6 CIRC ACCESSION NO--ANOIO0604 UNCLASSIFIED ABSTRACT/EXTRACT-AS A RESULT OF THE INVESTIGATION IT HAS BEEN ESTABLISHED PROCESSING DATE--LISEPID THAT 13 PERCENT OF THE SITUATIONS OF CONFLICT AROSE BECAUSE OF INABILITY ON THE PART OF LEADERS TO ORGANIZE THE WORK OF THEIR SUBORDINATES. SCIENTIFIC COLLECTIVES THE AUTHORITY OF THE LEADER IS BASED ABOVE ALL ON KNOWLEDGE AND TALENT, ON SCIENTIFIC, ORGANIZATIONAL ABILITY AND, AS IT TURNED OUT, PERSONAL CHARM PLAYS FAR FROM A SUBSIDIARY ROLE. CONSIDERABLE PROPORTION OF CONFLICTS IS CAUSED BY THE ORGANIZATIONAL AN INCORRECT OR INACCURATE REPRESENTATION OF THE DUTIES AND RIGHTS, BOTH ONE'S OWN, AND THOSE OF OTHERS (10.5 PERCENT), AN IMPRECISE DEMARCATION OF EACH PERSON'S SHARE IN CARRYING OUT JOINT RESEARCH (THE SAME NUMBER), NEGLIGENCE OR ERRORS IN WORK (8.8 PERCENT), AND SO FORTH. WE ARRIVED AT THE CONVICTION THAT THE LEADER'S ORGANIZATIONAL TALENT PLAYS A DECISIVE ROLE IN CREATING A NORMAL "PSYCHOLOGICAL CLIMATE". ONLY HIGHLY EDUCATED, CULTURED LEADERS WHO ARE ABLE TO RESPECT A SUBORDINATE, PEOPLE WHO ARE TACTFUL, AND AT THE SAME TIME DETERMINED CAN HEAD A SCIENTIFIC ESTABLISHMENT. BUT PEOPLE POSSESSING VICES SUCH AS OMNISCIENT AIRS, LACK OF HUMILITY, ANY CALLOUS PEOPLE WILL THEMSELVES CAUSE SITUATIONS OF CONFLICT. THE SCIENTIFIC AND TECHNICAL REVOLUTION HAS PLACED ON THE AGENDA THE NEED FOR A NEW TYPE OF LEADER, A SCIENTIST AND ORGANIZES, IN WHOM TALENT AND KNOWLEDGE ARE COMMINED WITH THE ABILITY TO LEAD A SCIENTIFIC COLLECTIVE.

UNCLASS

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202910017-7"

adfillia.

4/6 030 CIRC ACCESSION NO--ANOLOGOO4 UNCLASSIFIED PROCESSING DATE--LISEPTO ABSTRACT/EXTRACT--BUT IN THE MEANTIME THESE PEOPLE ARE SELF TAUGHT, FOR NORODY HAS EVER TRAINED THEM IN ECONOMICS, ADMINISTRATIVE AND LEGAL QUESTIONS, ORGANIZATION, PSYCHOLOGY, PHYSIOLOGY, AND SOCIOLOGY OF SCIENTIFIC LABOR, AND ALSO PRINCIPLES OF MANAGING A COLLECTIVE. HOWEVER, CAN ONE ALTOGETHER AVOID CONFLICTS IN SCIENTIFIC ESTABLISHMENTS? THE OPINIONS OF THE INVESTIGATION PARTICIPANTS WERE THE MAJORITY, 59.4 PERCENT, THOUGHT THAT THEY NECESSARILY ACCOMPANIED THE LIFE OF SCIENTIFIC ESTABLISHMENTS. THE REST WERE SURE THAT THE MAJORITY OF IMMINENT CONFLICTS CAN BE AVOIDED IF THE CAUSES ARE IS IT POSSIBLE TO IMAGINE A SITUATION WHERE INTERESTS, VIEWS, AND THE MOTIVES OF PEOPLE'S BEHAVIOR COINCIDE THE CLASH OF IDEAS AND JUDGEMENTS IS QUITE NATURAL. ARE NO MORE THAN ONE MANIFESTATION OF THE DIALECTIC METHOD OF RECOGNIZING THE ESSENCE OF THINGS AND PHENDMENA. IT IS PEGPLE'S NATURE TO MAKE MISTAKES, BUT CLASHES OF OPINIONS AND IDEAS CAN BECOME MANIFEST IN SUCH A FORM WHERE THEY WILL NOT GIVE RISE TO SITUATIONS OF CONFLICT, CAUSE PEOPLE SPIRITUAL PAIN, CLOUD THE JOY OF LABOR AND CREATION. THERE WILL ALWAYS BE QUARRELS, BUT THEY MUST BE RESOLVED BEFORE THEY BLOSSOM IT IS DIFFICULT TO SPEAK ABOUT WAYS AND MEANS OF PREVENTING SITUATIONS OF CONFLICT. MOST DELICATE AND COMPLEX FIELD AS HUMAN NATURE, AND THE SCIENTIST'S INDEED WE ARE DEALING WITH SUCH A

UNCLASSIFIED

PROCESSING DATE--11SEP70 UNCLASSIFIED 030 5/6 CIRC ACCESSION NO--AV0100604 ABSTRACT/EXTRACT-BUT IF ONE MAY SPEAK ABOUT CERTAIN GENERAL RECOMMENDATIONS, THEY IT IS PROBABLY MOST DANGEROUS TO SWEEP CONFLICTS UNDER THE CARPET, AND IN FACT MOST USEFUL, THE DATA FROM THE QUESTIONNAIRE ALSO INDICATE THIS TO DISCUSS WIDELY SPECIFIC CAUSES AND LET US TAKE FOR EXAMPLE. A WORKER'S LEAVING CONSEQUENCES OF CONFLICT. THE ESTABLISHMENT. SHOULD NOT SUCH A FACT UPSET THE WHOLE SCIENTIFIC COLLECTIVE, AND NOT JUST THE ADMINISTRATION? IN EXACTLY THE SAME WAY IT IS FAR FROM USELESS TO SUBMIT FOR OTHER WORKERS! APPROVAL INCLUSION OF A SPECIALIST ON THE STAFF. IN SHORT, MEMBBERS OF THE COLLECTIVE MUST BE SURE THAT THEIR OPINION IS OF INTEREST TO THE LEADERS, AND THAT SO FAR AS POSSIBLE IT WILL ALWAYS BE TAKEN INTO CONSIDERATION BY THEM. AT THE HOMENT, FOR EXAMPLE, THE COLLECTIVE IS NOT INFORMED OF THE DECISION OF THE COMPETITION COMMISSIONS (WHEN IT IS A QUESTION OF ACCEPTANCE FOR BUT AT THE SAME TIME, IT WOULD BE EXTREMELY USEFUL TO EXAMINE THE RECOMMENDATIONS OF THESE COMMISSIONS AT GENERAL MEETINGS OF LABORATORIES, SECTIONS, AND THE LIKE. SUCH A DISCUSSION WOULD PLACE RESPONSIBILITY ON THE WHOLE COLLECTIVE, AND THE NEW WORKER WOLLD BE SHOWN THAT HIS FUTURE COLLEAGUES ARE NOT INDIFFERENT TO HIS ARRIVAL. ALL THIS WOULD GUARANTEE CORRECT SELECTION OF CADRES IN SCIENTIFIC ESTABLISHMENTS AND NOMINATION OF LEADERS FROM AMONG CAPABLE AND TALENTED MARKERS. AT THE SAME TIME, THIS WOULD FACILITATE AN INCREASE IN THE COHESION OF SCIENTIFIC COLLECTIVES AND STRENGTHEN THEIR RELATIONS OF HOW WERE INSTANCES OF CONFLICT FRIENDSHIP AND CREATIVE COOPERATION. RESOLVED ACCORDING TO THE DATA OF THE INVESTIGATION MATERIALS?

UNCLASSIFIED

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202910017-7"

030 UNCLASSIFIED PROCESSING DATE--115EP70 CIRC ACCESSION NO--ANOIO0604 ABSTRACT/EXTRACT--ONE QUARTER OF THEM WAS ELIMINATED WITHOUT ANY OFFICIAL EXAMINATION, THAT IS, THROUGH COMPROMISES, MUTUAL APOLOGIES, AND SO JUST: AS MANY CONFLICTS REQUIRED INTERVENTION BY THE ADMINISTRATION, WHICH HAD TO RECONCILE THE DISPUTANTS, PROCLAIM PUNISHMENT, AND EVEN DISMISS. IN PUBLIC ORGANIZATIONS 16.1 PERCENT OF ALL CONFLICTS WERE EXAMINED. ALMOST 17PERCENT RESULTED IN TERMINATION OF EMPLOYMENT, IN THE MAJORITY OF CASES, "OF ONE'S OWN ACCORD". FIGURES ARE ASVIVID INDICATION OF HOW LITTLE USE IS STILL BEING MADE OF SCIENTIFIC PUBLIC FORCES TO ELIMINATE INSTANCES OF CONFLICT. THE IDEAS SET OUT HERE, OF COURSE, DO NOT EXHAUST THE DIVERSITY AND COMPLEXITY OF THE PROBLEM, BUT ONE THING IS CLEAR: THE CAUSES OF CONFLICT MUST BE STUDIED, AND CONSTANT, PERSISTENT WORK MUST BE CARRIED OUT TO ELIMINATE THEN COMPLETELY. THE FATE OF THE "PSYCHOLOGICAL CLIMATE" IN THE SCIENTIFIC COLLECTIVE IS ULTIMATELY IN THE HANDS OF THE COLLECTIVE ITSELF.

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202910017-7"

ANO 025931

S

UR9007

AUTHOR __

SHCHERBAKOV, A.

TITLE --

OUR FIRST JET-PROPELLED AIRPLANE

NEWSPAPER__

KOMSOMOL, SKAYA PRAVDA, FEBRUARY 25, 1970, NR 46,

ABSTRACT-- THE PRINCIPLES OF A ROCKET-PROPELLED FLIGHT WERE EXPRESSED BY S. P. KOROLEV IN HIS BOOK "ROCKET-PROPELLED FLIGHT IN THE EXPRESSED PHERE" PUBLISHED IN THE EARLY 30,S.

THE DECISION TO INSTALL A ROCKET ENGINE ON A GLIDER DESIGNED BY B. I. CHERANOVSKIY WAS TAKEN BY KOROLEV AND HIS COLLEAGUES FROM GIRD. HOWEVER, AFTER IT HAD BEEN FOUND THAT THE CHERANOVSKIY MODEL WAS TOO OLD AND WORN OUT, KOROLEV DECIDED TO MAKE USE OF A GLIDER "SK-9"

19660851

4

AN0025931

/SERGEY KOROLEV-9/ AND THE ORM-65 ROCKET ENGINE DESIGNED AT THE RNII

BETWEEN 1937 AND 38 THIS ENGINE MOUNTED ON THE "SK-9" GLIDER WENT THROUGH SCORES OF STATIC TESTS THAT SHOWED ITS POOR RELIABILITY, AS A RESULT, A MODIFIED VERSION OF THE ORM-65, RDA-1-150, WAS DEVELOPED BY ENGINEERS L. S. DUSHKIN AND A. V. PALLO, ET AL. A GLIDER POWERED BY THE RDA-150 WAS NAMED "RP-318". THE "RP-318" WAS FLIGHT TESTED BY V. P. FEDOROV ON FEBRUARY 28, 1940.

THE AUTHOR OF THE ARTICLE, A. SHCHERBAKOV, REFERS TO HIMSELF IN IT AS

42

19660852

UDC: 621.396.62

SHCHERBAKOV, A. F.

Nonlinear Distortions in a Traveling Wave Tube Amplifier for the Case of Simultaneous Transmission of Multichannel Telephone and Television Signals"

Tr. Mosk. elektrotekhn. in-ta svyazi (Works of the Moscow Electrical Engineering Institute of Communications), 1970, vyp., pp 37-42 (from RZh-Radio-tekhnika, No 11, Nov 70, Abstract No 11D10)

Translation: The author describes one modification of simultaneous transmission of multichannel telephone and TV signals, and also a means of suppressing nonlinear distortions in a traveling wave tube amplifier, where the distortions are due to transformation of parasitic amplitude and frequency linear distortions. Bibliography of four titles. P. U.

1/1

- 17 -

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202910017-7"

ШС 669.187.2.083

GOTIN, V. N., ZAYTSEV, B. YE., SHCHERBAKOV, A. I., ZHITKOV, N. K., OKOROKOV, G. N., BOYARASHINOV, V. A., VCYNOVSKIY, YE. B., TOPILIN, V. V., SHALIMOV. AL. G., OSIPOVA, L. M., CHERNOV, YU. V., ROZANOVA, T. S., and LAKTIONOV, V. S.

"Influence of Wall Thickness of Crystallizer and Consumption of Cooling Water on Conditions of Formation of Ingot During Vacuum Arc Remelting"

Proizvodstvo Chernykh Metallov [Production of Ferrous Metals--Collection of Works], No 75, Metallurgiya Press, 1970, pp 178-180

Translation: In a vacuum arc furnace in a crystallizer (C) 160 mm in diameter with a current of 2.0-3.7 ka, the influence of wall thickness of C and temperature of cooling water on conditions of formation of ingot of complexly alloyed nickel-based alloys is studied. C with wall thicknesses of 30 and 18 mm were studied, the temperature on the outer surface of the C reaching 75°C in the first case, 105°C in the second. The temperature of the internal surface of the C was identical, 140-150°C. Neither a change in C thickness nor a change in water consumption from 11 to 22 m3/hr influenced the depth of the liquid metal bath, i.e., both repeated rolling of the C and reduced water consumption were permis-

1/1

- 16 -

UDC:669.187.5

ZAYTSEV, B. Ye., GOTIN, V. N., SHCHERBAKOV, A. I., SERGYEV, A. B., ZHITKOV, N. K., OKOROKOV, G. N., BOYARSHINOV, V. A., TULIN, N. A., VOYNOVSKIY, Ye. V., TOPILIN, V. V., POZDEYEV, N. P., SHALIMOV, AI. G., OSIPOVA, L. A., CHERNOV, Yu. V., and RAZANOV, T. S.

"Specifics of Vacuum Arc Remelting of Nickel-Based Alloys and Stainless Steels With Reverse Arc Polarity"

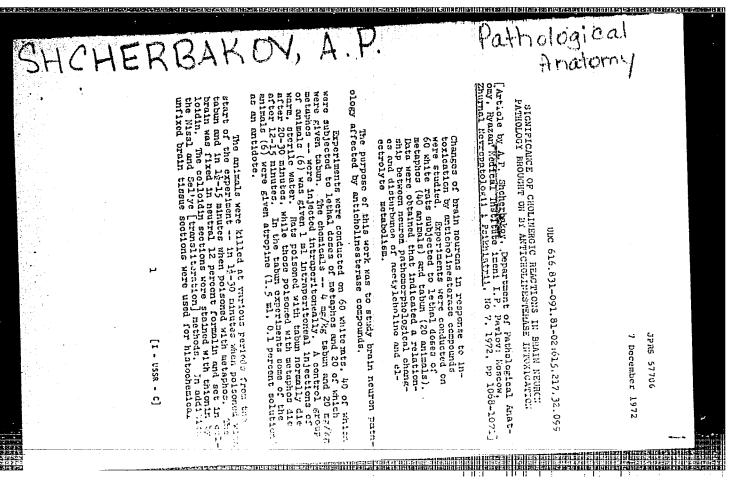
Proizvodstvo Chernykh Metallov [Production of Ferrous Metals--Collection of Works], No 75, Metallurgiya Press, 1970, pp 181-183

Translation: Results are presented from a study of vacuum arc remelting of nickel alloys in a crystallizer 380-480 mm in diameter with thermocouples calked in length and height. The rate of melting with reverse polarity is 20% higher with identical bath depth of liquid metal. This is a result of more intensive heat transfer from the walls of the crystallizer during melting with reverse polarity. The macrostructure, chemical composition N, O, H and mechanical properties of the metal produced by melting with forward and reverse polarity are identical. The ingot produced with reverse polarity had no corona. i/1

- 15 -

USSR

UDC: 621.391.822


BANKET, V. L., SERYKH, V. I., SHCHERBAKOV, A. I.

"On the Probability Distribution of Noise at the Output of a Receiver of FM Signals"

V sb. Metody pomekhoustoychivogo priyema ChM i FM (Methods of Interference--Free FM and FM Reception--collection of works), Moscow, "Bov. radio", 1970, pp 71-79 (from RZh-Radiotekhnika, No 12, Dec 70, Abstract No 12A67)

Translation: S. O. Rice's model for noise in FM receivers is used as the basis for finding the probability distribution of noise at the output of the low-frequency filter in a standard demodulator in the case of an unmodulated carrier. It is shown that in the case of operation in the threshold vicinity and below, the noise probability density differs appreciably from normal. The limits of applicability of the resultant expressions for probability density are determined. Resume.

1/1

ussi

mog 616.8-003.8-02:<u>/</u>€18.017:197.281

SHOURTHAMOV, A. P. Chair of Pathological Anatomy. Typesa listical institute imeni Paviov

"Degenerative Changes in the Central and Peripheral Marvess System Following Acute Poisoning with Organophosphorus, Compounds"

Moseow, Thurnal Nevropatologii i Paikhiatrii imeni S.S. Korsakov, No 1, 1970, pp 60-64

Abstract: White rats injected intraperiton sally with a nonletical dose (0.5 og/loo g) of metaphos (methyl parathica minters of parathica and) exhibited the clinical picture of mild organishosphorus poisoning (symptoms disappeared within two bours of mimistration of the poison). The animals were sacrificed after/2 hours. 1, 11, and 30 days. Histological emamination revealed distinct signs of widespread degeneration of elements of the central and peripheral nervous systems: frequentation of myelin fibers, loss of Buscaido bodies, dehydration, vacuolization, and lysis of nerve cells. These changes may be related to the development of neroimmus and autoallergic degenerative processes in the form of myelopathy, encephalopathy, and degeneration of nerves and roots.

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202910017-7"

Acc. Nr AP0029115

Ref. Code: UR 0246

PRIMARY SOURCE:

Zhurnal Nevropatologii i Psikhiatrii, 1970, Vol 70, Nr 1, pp 150-64

DYSTROPHIC PROCESS IN THE CENTRAL AND PERIPHERAL NERVOUS SYSTEM IN CONNECTION WITH ACUTE INTOXICATION BY PHOSPHORUSORGANIC SUBSTANCES

A. P. Shcherbakov

Investigations have shown that phosphorusorganic substances (POS) even in small doses may become the reason of dystrophic processes in the nervous system developing in the post-intoxicational period. Experiments accomplished on 24 white rats, who received intramesente-rically metaphos 0,4 mg/100 g of weight, exhibited clinical pictures of a light intoxication. In the central and peripheral nervous system there were symptoms of dystrophy of the mycline structures and nervous cells. The morphological changes in the nervous elements remained expressed even up till the 30th day after the intoxication by POS. The author thinks it possible to correlate these changes with the development of autoimmune processes in the organism sible to correlate these changes with the development of autoimmune processes in the organism of the animals and evaluate them in the remote period after intoxication as an autoallergical

REEL/FRAME

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202910017-7"

USSR

LYAKHOVICH, L. S., VOROSHNIN, L. G., SHCHERBAKOV E D., and PANICH, G. G.

"Siliconizing of metals and Alloys"

Silitsirovaniye metallov i splavov (English version above), Minsk, Nauka i Tekhnika Press, 1972, 280 pp

Translation of Foreword: With the broad application of high temperatures and pressures, corrosive media, vacuum, etc. in modern machines, parts and units must frequently meet a combination of demands which cannot or should not be met from the economic standpoint by volumetric alloying of steels or creation of new alloys. In this case, the solution to the problem is frequently the creation of various protective coatings on the surfaces of products.

Diffusion coatings play a leading role in this respect. Chemical and heat treatment radically changes the physical and chemical properties of surface layers, i.e., of those layers in which breakdown processes are

This book analyzes the methods and technological principles of siliconizing of ironcarbon alloys, and the regularities of formation, structure, and properties of diffusion layers. Silicide coatings on steels and alloys allow significant increases in corrosion resistance, high-temperature oxidation resistance, and hardness and wear resistance, and sometimes allow these pro-

LYAKHOVICH, L. S., et al., Silitsirovaniye metallov i splavov, Minsk, Nauka 1 Tekhnika Press, 1972, 280 pp

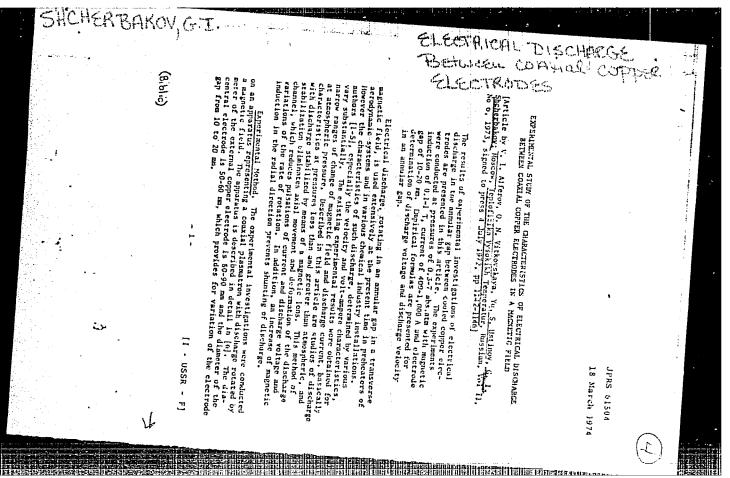
perties to be produced in favorable combinations.

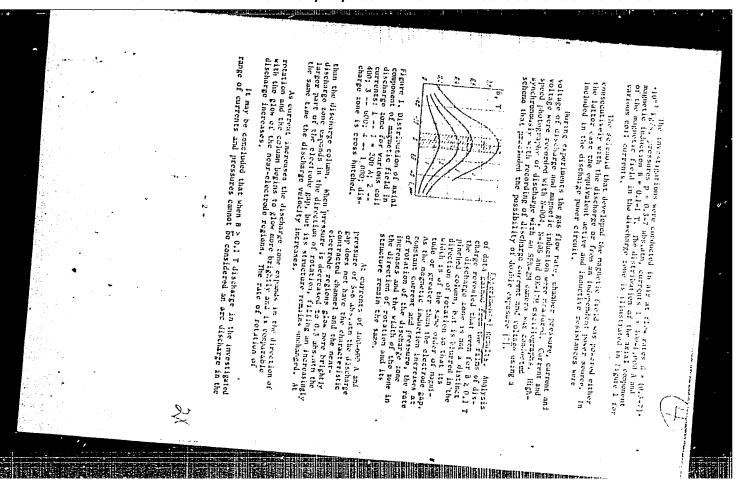
Siliconizing is presently used very little in industry. Probably the main reason for this is the lack of suitable technological methods for applying diffusion coatings, as well as the limited information available on the properties of these coatings. Therefore, the authors have turned their attention to the development and description of new methods of saturation and compositions of saturating mixtures and to the study and systematization of the properties of silicon-containing diffusion coatings on metals and alloys.

Due to the limited volume of this monograph, the authors were not able to describe fully the problems of siliconizing of nonferrous and refractory metals, so important from the practical point of view. However, the general principles of formation of diffusion coatings and compositions of saturating mixtures presented in the work can be used for the treatment of nonferrous

This book also discusses certain little-studied problems of the thermodynamics and mechanism of formation of diffusion coatings by electrolytic and liquid saturation of metals and alloys from melts of salts and oxides. The authors hope that these materials will be useful in the development and study of processes of diffusion saturation with other elements.

- 5 -


APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202910017-7"


USSR			
LYAKHOVICH, L. S., VOROSHNI Silitsirovaniye metallov i 280 pp	IN, L. G., SHCHERBAKO splavov, Minsk, Nauk	DV, E. D., and PANI a i Tekhnika Press	СН, G. G.,
Table of Contents		11009	1 1974,
Foreward			
			3
Chapter 1			
Interaction of Silicon with t 1. Silicon	the Transition March		
		,	
2. Transition Metal Silicide	es .		5
3. The Iron-Silicon System			9
4. Refractory Metal-Silicon	Systems		19
Chapter 2			43
Chemical and Uses m			
Chemical and Heat Treatment in 1. Structure of Salt and Oxid	n Oxide and Salt Mel de Melts	ts	
. Structure of bread care			52
Saturation Saturation	ism of Processes of I	lectrolytic	55
. Contemporary Status of Pro Saturation	cesses of Non-electi	olytic (Liquid)	63
3/6			76
4.0			

Inde		
USSR		
LYAKHOVICH I S WORDS		
LYAKHOVICH, L. S., VOROSHNIN, L. G., SHCHERI Silitsirovaniye metallov i splavov, Minak, N 280 pp Chapter 3	BZKOV. E. D. and D.	A November
280 pp Hinak, 1	lauke i Tekhnika Pro	ANICH, G. G.,
	176	1972,
Technology of Siliconizing of Steel 1. Electrolytic Siliconizing of Steel		
1. Electrolytic Siliconizing 2. Ontimal Communication		
		_
2. Optimal Compositions of Baths and Technol Non-electrolytic (Liquid) Siliconizing 3. Siliconizing in Powder Minter	ogical Parameters o	93 of
3. Siliconizing in Powder Mixtures 4. Gas Siliconizing		
4. Gas Siliconizing		101 113
hapter 4		123
nfluence of Carles		145
nfluence of Carbon and Alloying Elements on S The Significance and Causes of the Influen	iliconiai a	
The Significance and Causes of the Influent Siliconizing Rate	ce of Carbon -	21
. Influence of Alloying Elements	or outpout ou	
		139
Papter 5		150
ructure of Siliconized Layers on Steel Mechanism and Kinetica Control		
Mechanism and Kinetics of Diffusion During Layer Peculiarities of the Cree		
Peculianis:	rormation of Silico	nized
Peculiarities of the Structure of Siliconiz	ا لم	164
6	eu Layers	175
- 6-		- / 4
	421678117anatanware	

•		
USSR		
LYAKHOVICH, L. S., VO Silitsirovaniye metal 3. Texture of Diffusi 4. Porosity in Silico	ROSHNIN, L. G., SHCHEHBAKOV, E. I lov i splavov, Minsk i Tekhnika i on Layers	D., and PANICH, G. G., Press, 1972, 280 pp
Chane		185
Chapter 6		188
Properties of Siliconi 1. Mechanical Propert 2. High-temperature Ox 3. Corrosion Resistance	Les	
3. Corrosion Resistance	Idation Resistance	194
		196
Chapter 7		202
Siliconizing of Certain 1. Siliconizing of Cas: 2. Siliconizing of Iron 3. Siliconizing of Refr	- TIGH	
3. Siliconizing of Iron	Metal Ceramic Cactory Metals and Titanium Ler, Cobalt Nickel	210
Siliconizing of Co	actory Metals and Titanium er, Cobalt, Nickel, and Their All	220
the of copp	er, Cobalt, Nickel and Those	228
	Their All	oys 252
/6		
, -		
entra de la companya		
		•
· ·		-
	The West Company	A de la composition della com
		

	USSR			• .				
	Industrial Applicati	1 Application of any						
	2. Siliconizing of	Refractory Metal	S		255			
	Bibliography				261			
					263			
elle i Mist								
				·				
			÷ .					
			÷					
	•		* .					
6	/6							

USSR

UDC: 621.315.3

SHCHERBAKOV, C., P., TROSHKOVA, I. I., TOLMACHEVA, A. Ye., NEKRASOV, V. A.,

"The Drop Method of Removing the Glass Insulation From Microwires and its Possibilities"

Elektron. tekhnika. Nauchno-tekhn. sb. Radiokomponenty (Electronic Technology. Scientific and Technical Collection. Radio Components), 1970, vyp. 1, pp 153-158 (from RZh-Radiotekhnika, No 5, May 71, Abstract No 5V421)

Translation: The authors evaluate the possibilities of using the drop method of removing glass insulation to produce a contact joint in making filament resistors and voltage dividers, and in adjusting resistors to their rated value. It is experimentally shown that organic insulation of the Teflon type can be applied to the wire. Some characteristics of the molten drop are given (rate of glass destruction, etc.), together with the strength parameters of the wire. Resume.

1/1

USSR

UDC: 621:315.3

SHCHERBAKOV, G. P., NEKRASOV, V. A., PERLOVA, A. I.

"On the Problem of Heat Treating Grades MLS60N and MLS72N Microwires"

Elektron. tekhnika. Nauchno-tekhn. sb. Radiokomponenty (Electronic Technology. Scientific and Technical Collection. Radio Components), 1970, vyp. 1, pp 83-89 (from RZh-Radiotekhnika, No 5, May 71, Abstract No 5V418)

Translation: A method is proposed for heat treating microwire in glass insulation by moving a microfurnace along the wire. A peculiarity of the method is the brevity of wire heating (tenths of a second). A study is made of the effect which repeated heating-cooling cycles, tension, temperature and time of heating have on the resistance, temperature coefficient of resistance and mechanical characteristics of specimens. Resume.

1/1

UDC: 535.373.2

OSIKO, V. V., PROKHOROV, A. M., and SHCHERBAKOV, I. A.

"Transmission of Excitation Energy Among Three-Valent Tons of Rare Earth Elements in Ion Crystals"

Moscow, Izvestiya Akademii Nauk SSSR--Seriya Fizicheskaya, No 4, 1973, pp 768-771

Abstract: Results are given of an investigation into the interaction effectiveness of Nd3⁺ ions as a function of the temperature. While there are various ideas in the literature regarding the temperature effect on energy transmissions among TR3⁺ ions in crystals and glasses, the authors of the present paper have chosen as the subjects of their investigation CaF₂ with the paired M-centers of Nd3⁺-Nd3⁺, YAlO₃-Nd3⁺, and LaF₃-Nd3⁺. In the investigation of the first pair, involving a single ion system, the migration process of donor the second crystal, the dependence of the interaction was directly observed. For ture is determined by the increase in probability of multiphonon transitions with acoustical excitation and by the difference in probability of electron-mine third crystal is treated in somewhat the same way as the CaF₂. It is

- 32 -

USSR

OSIKO, V. V., et al., Izvestiya Akademii Nauk SSSR--Seriya Fizicheskaya, No 4,

concluded that the dependence of the cross relaxation on temperature is the result of the population in the basic and excitation Stark component levels, the inclusion of new interacting transitions, and the thermal stimulation of electron-phonon transitions.

2/2

Lasers & Masers

USSR

535.343+535.371

VORON'KO, Yu. K., OSIKO, V. V., PROKHOROV, A. M., SHCHERBAKOV, I. A.

"Some Questions of Spectroscopy of Laser Crystals With Ionic Structure"

Moscow, Trudy Ordena Lenina Fizicheskogo Instituta imeni P. N. Lebedev Akademii Nauk SSSR. Spektroskopiya Lazernykh Kristallov s Ionnoy Struk-

Abstract: The paper analyzes the basic spectroscopic characteristics of ionic laser crystals (structure of absorption and luminescence spectra, quantum yield, kinetics of intracenter relaxation, processes of excitation energy transfer) which have a direct influence on emission parameters. The authors discuss the effect which the distribution of impurity ions of rare-earth elements with respect to centers of different structure has on these characteristics. Methods are outlined for analyzing the complex Stark structure of the absorption and luminescence spectra of trivalent rare-earth ions.

1/1

VORON'KO, Yu. K., OSIKO, V. V., PROKHOROV, A. M., and SHCHERBAKOV, I. A., Physics Institute imeni P. N. Lebedev, Academy of Sciences USSR

"Study of the Mechanism of an Elementary Act of Excitation Energy Transfer Between Rare Earth Ions in Crystals"

Moscow, Zhurnal Eksperimental'noy i Teoreticheskoy Fiziki, Vol 60, No 3, Mar 71, pp 943-954

Abstract: The micromechanism of the interaction of impurity ions in crystals with one another and with the crystal lattice matrix is investigated. The variation with temperature of the probability of excitation energy transfer between rare earth ions was studied using doubly activated fluorite to exclude the effect of energy migration along donor ions. It is shown that the transfer process varies directly with temperature, even in the case of the absence of spectral resonance of electron transitions of the donor and acceptor. It is concluded that the results indicate that the probability of captor spectra is determined by the density of phonon states in the frequency region corresponding to the Stokes resonance detuning. The mechanism of temperature activation is associated with the population of the phonon state

VORON'KO, Yu. K., et al, Zhurnal Eksperimental'noy i Teoreticheskoy Fiziki, Vol 60, No 3, Mar 71, pp 943-954

corresponding to the acoustical branch of the dispersion diagram. It is noted that these effects also appear in the infrared absorption spectra as a function of temperature, both of crystals of the fluorite type and of crystals of alkali-halide and other compounds.

2/2

- 33 --

UDC: 533.95

FINAT'YEV, Yu. P., SHCHERBAKOV, L. A., FILIN, V. T.

"Investigation of the Gasdynamic Structure and Electron Distribution in a High-Temperature Supersonic Jet With Solid Phase"

V sb. Teplo- i massoperenos (Heat- and Mass-Transfer--collection of works), T. 1, Minsk, 1972, pp 227-231 (from RZh-Mekhanika, No 7, Jul 72, Abstract

Translation: The article presents the results of investigations of the position of the central shock wave (Mach disc) in the first "barrel" of a jet which is produced when condensed systems with an admixture of aluminum powders are ignited in the prechamber of a vacuum installation. Data are also given on the concentration of electrons in the zones of the nozzle tip and the Mach disc. The experiments included motion picture photography of the inherent luminescence of the jet as well as determining the schlieren pattern of the jet; electron concentration was determined by radioscopy of the jet. The results of experiments on determining $x = x_c/d_a$ (x_c is the distance from the nozzle tip to the Mach disc, d_a is the nozzle diameter at the tip) lead to the expression $x \approx (2+3) M_a^2 n^{0.6} / (M_a^2+1) = (n = P_a/P_c)$ 1/2

USSR

FINAT'YEV, Yu. P. et al., Teplo- i massoperenos, T. 1, Minsk, 1972, pp

is the degree of deviation of the conditions of escape from the nozzle from the calculated conditions). The experimental results did not reveal any influence of the solid phase on \overline{x} or on k — the adiabatic exponent—nor on the electron concentration.

The calculations and experiments showed that frozen-flow conditions are realized beginning with M=1.5-2. Bibliography of ten titles. V. L. Azarov.

2/2

- 26 -

APPROVED FOR RELEASE: 07/20/2001 CIA-RDP86-00513R002202910017-7"

ÜESR

UDC 536.244:533.5

NOVIKOV, P. A., SHCHERBAKOV,

"Study of Process of Heat Exchange and Hydraulic Resistance During Flow of

Inzhenerno-fizicheskiy Zhurnal, Vol 22, No 3, 1972, pp 450-455.

Abstract: Results are presented from experimental studies of heat exchange during forced movement of air through narrow channels of rectangular cross section with a distance between plates h = 1.5, 3, 5 and 8 mm.

The studies were performed with cooling of the air in the range of Reynolds numbers 360-32,000 and pressures of $(0.133-10)\cdot 10^4$ n/m².

Analysis of the experimental data produced and comparison of these data with the data of a number of other authors indicate that inertial forces are more strongly manifested in narrow channels than in channels with larger characteristic dimensions. In the criterial dependences produced, the exponent with the Reynolds Criterion, according to our experimental data, is higher, particularly in the area of laminar flow than is the case for

Based on these experimental data on heat exchange, it is established that the loss of stability of laminar flow at Reynolds numbers of over 1,800

UDC 535.244:533.5

NOVIKOV, P. A., SHCHERBAKOV, L. A., Inzhenerno-fizicheskiy Zhurnal, Vol 22, No 3, 1972, pp 450-455.

increases at some distance from the input cross section of the channels. For very short channels (1/h < 50) in the area of Reynolds numbers from 1,800 to 5,600, the experimental data on heat exchange can be described by equations characteristic for the laminar flow area.

The work also studies the influence of free convection on heat exchange with air flow in the area of Grasshoff numbers from 0.25 to 2,300.

The experimental data on heat exchange are presented in criterial dependences.

The experimental data on hydraulic resistance agrees satisfactorily with the well-known data of other investigators. 1 Table; 2 Figures; 6 Biblio.

5/5

- 36 -

HANGER BETTER FOR THE STATE OF THE STATE OF

USSR

1/1

UDC 536.244:533.5

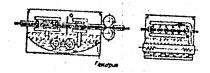
NOVIKOV, P. A., SHCHERBAKOV, L. A.

"Study of Hear Transfer in a Flow of Rarefied Gas in Narrow

Minsk, Inzhenerno-Fizicheskiy Zhurnal, Vol. 20, No. 5, May, 1971, pp 879-883

Abstract: Heat transfer at forced air flow in narrow channels with diameters of 1.5, 3, 4, and 8 mm in a wide range of velocities and pressures is studied experimentally. The experiments were carried out in heat exchangers of copper tubes. To determine the behavior of average heat transfer coefficient within the starting length of channels the experiments have been carried out with various relative channel lengths. It was established that the change in average heat transfer coefficients takes place within the centre coefficient remains constant and the experimental data may that at Reynolds numbers 1700 through 2250 heat transfer coefficient increases sharply.

USSR


UDC: 621.3.049.75

MARKIN, N. I., SHCHERBAKOV, L. U., SOLOV'YEV, V. I., SADOVNIKOV, I. T.

"A Method of Coating Two-Sided Printed-Circuit Boards with Solder"

Moscow, Otkrytiya, izobreteniya, promyshlennyye obraztsy, tovarnyye znaki, No 10, Apr 71, Author's Certificate No 298089, Division H, filed 29 Jun 68, published 11 Mar 71, p 198

Translation: This Author's Certificate introduces a method of coating two-sided printed-circuit boards with solder in an inert gas atmosphere. As a distinguishing feature of the patent, the process is mechanized and the quality of the coating is improved by jet-spraying both sides of the board with low-melting solder as it moves continuously in the tank, followed by jet-spray rinsing of the excess solder in glycerin.

1/1

- RIL .

USSR '

KABALKINA, S. S., SHCHERBAKOV, M. O., VERESHCHAGIN, L. F., Academician, Institute of High Pressure Physics of the Academy of Sciences USSR

"On the Question of Polymorphous Transformation in AgCl at High Pressure"

Moscow, Doklady Akademii Nauk SSSR, Vol. 193, No. 5, 11 Aug 70, pp 1015-1018

Abstract: X-ray studies of the effect of high pressure on the crystalline structure of AgCl showed that the crystalline structure of the high-pressure phase of AgCl II is most likely a distorted version of a rhombic structure of the HgO type. The diffraction picture obtained in the experiment shows that the rhombic structure is closer to the experiment than the B9 structure. There was not a complete enalogy in this case, however: the diffraction pictures differ in that strong reflections on HgO (210), (201), and (221) were either very weak or entirely unobserved in AgCl II pictures; analysis of interatomic distances shows that the position of atoms in both structures cannot be the same. The distances between neighboring atoms of Ag and Cl in AgCl II would be 2.25 Å in a chain and 2.7 and 3.4 Å in different chains. The corresponding values between atoms of Hig and O in HgO were equal to 2.03, 2.86, and 2.86 Å. With complete structural similarity one would expect one distance 2.3 Å and two different distances 3.1-3.3 Å in AgCl II. The authors note that it is still impossible to determine the true nature of the distortion, due to the limited amount of rcentgeno-

> - 141