2/2 020 UNCLASSIFIED PROCESSING DATE--090CT70 CIRC ACCESSION NO-APO109172 ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. AN EXPERIENCE IN 100 RETROSTERNAL PREFASCIAL ESOPHAGOPLASTIES WITH THE SMALL INTESTINE, PERFORMED IN PATIENTS AGED FROM 7 TO 60 YEARS WITH CICATRICIAL NARROHING OF THE ESOPHAGUS, IS PRESENTED. THREE PRINCIPAL STAGES OF SURGERY ARE DIFFERENTIATED, AND DETAILED CHARACTERISTICS OF EACH IS GIVEN, BASING ON THE ANALYSIS OF CLINICAL DATA. COMPLICATIONS AND CAUSES OF UNFINISHED ESUPHAGOPLASTIES (IN 4 PATIENTS), AS WELL AS CAUSES OF MURTALITY (5 CASES) ARE DESCRIBED. IT IS CONSIDERED THAT RETROSTERNAL PREFASCIAL ESOPHAGOPLASTY WITH THE SMALL INTESTINE COULD BE A METHOD OF CHOICE IN RECONSTRUCTIVE SURGERY ON THE ESOPHAGUS. FACILITY: GUSPITAL"NOY KHIRURGICHESKOY KLINIKI TOMSKOGO ORDENA TRUDOVOGO KRASNOGO ZNAMENI MEDITSINSKOGO INSTITUTA.

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202630008-8"

USSR '

UDC [537.226+537.311.33]:[537+535]

BAZAKUTSA, V. A., VOINOVA, L. G., ROGACHEVA, VE. I., and DEMPOVSKIY, S. A.

"Electrophysical Properties and Structures of Some Indium and Thallium Tellurides in Thin Layers"

V sb. Tonkiye plenki soyedineniy tellura s metallami podgruop tsinka i galliya (Thir Films of Tellurium Compounds With Metals of Zinc and Gallium Subgroups -- Collection of Works), Vil'nyus, 1970, p lll (from RZn-Fizika, No 10, Oct 71, Abstract No 10YE760 by authors)

Translation: Thin layers of TISeTe₂ were obtained by thermal evaporation in vacuum. Amorphous layers of condensate were obtained by deposition on cold substrates. Heat treatment of amorphous films of TISbTe₂ in vacuum at T=350° K resulted in their crystallization. The authors studied the following basic electrophysical parameters of amorphous and polycrystalline layers of TISbTe₂: specific conductivity, Seebeck coefficient, concentration and sign of current carriers, thermal activation energy. Transmission and reflection of amorphous and polycrystalline layers of TISbTe₂ in the spectral range from 0.7-lated according to IR reflection spectra. In Te₃ films were obtained by cathode sputtering of the initial semiconductor in an Ar atmosphere. The

USSR

BAZAKUTSA, V. A., et al., Tonkiye plenki soyedineniy tellura s metallami podgrupp tsinka i galliya, 1970, p 111

structure and following basic electrophysical parameters of films were studied: specific conductivity, Seebeck coefficient, concentration and sign of current carriers, energy gap.

2/2

- 64 -

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202630008-8"

AA0051770

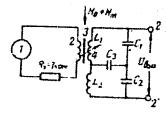
KOBACHEVSKIY B.M.

Soviet Inventions Illustrated, Section II Electrical, Derwent, 1/70

237022 MAGNETOMODULATION SENSOR, of increased sensitivity, the circuit for which is shown in the diagram; it consists of a generator (1) connected to the exciter (2), the core (3) being of moldly-magnetic material, with the measuring coil (4) having a measuring inductance $L_1,\ \mbox{and also}$ including the reactive components $L_2,\ C_1,\ C_2$ and C_3 which form, together with L1, a bridge arrangement. When excited by current from (1) the winding (2) generates a sinusoidal magnetic field of frequency 'cmega' and amplitude H_m which periodically changes the magnetic condition of the core (3). When a measured magnetic field Ho is present in the measuring coil, an e.m.f. at the 4th harmonic of the excitation frequency is set up as well as a combinational frequency. This e.m.f. increases due to parametric amplification effects and is divided between the

4

1/2


19820121

AA0051770

Institut Avtomatiki i Elektrometrii AN SSSR

remainder of the components of the bridge circuit in the described manner, resulting in a signal of increased strength. An algebraic equation for determining the strength of the e.m.f. is included, together with a graph which relates sensitivity of the sensor with excitation field.

2.9.66 as 1100773/18-24. B.M.ROCACHEVSKIY & E.V. SHEREMETYEV. INST. OF AUTOMATION & ELECTROMETRY WITHIN THE ACAD. OF SCIENCES OF THE USSR. (16.6.69) Bul 7/3.2.69. Class 74b. Int.Cl.G O8c.

EB

19820122

1/2

1/2 023

UNCLASSIFIED

PROCESSING DATE--20NOV70

TITLE--AN AUTCMATIC CONNECTION FINDER -U-

AUTHOR--RCGALEV, R.I.

K

CCUNTRY OF INFU--USSR

SOURCE--USSR NO 264002 REFERENCE--UTKRYTIYA, IZOBRETENIYA, PROMYSHLENNYYE OBRAZTSY, TOVARNYYE DATE PUBLISHEC-----70

SUBJECT AREAS -- ELECTRONICS AND ELECTRICAL ENGR.

TOPIC TAGS--PATENT, COMPUTER CIRCUIT, COMPUTER COMPENENT, COMPUTER INPUT UNIT, COMPUTER MEMORY, COMPUTER OUTPUT UNIT, COMPUTER TECHNOLOGY, COINCIDENCE CIRCUIT, PULSE COUNTER, COINCIDENT CURRENT MAGNETIC MEMORY

CENTROL MARKING-NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3004/1177

STEP NO--UR/C482/70/000/000/0000/0000

CIRC ACCESSION NU--AA0131632

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202630008-8"

2/2 CIRC ACCESSION NO--AA0131682 UNCLASSIFIED ABSTRACT/EXTRACT-- (U) CP-0- ABSTRACT. THIS AUTHOR'S CERTIFICATE PROCESSING DATE--20NOV70 INTRODUCES: 1. AN AUTOMATIC CONNECTION FINDER WHICH CONTAINS A COMMUTATION UNIT, COUNTERS, COINCIDENCE CIRCUITS, A MAGNETIC MEMORY UNIT; ADDRESS DECUDING UNIT, ADDER, AND PRINTOUT AND PUNCHING UNIT. A DISTINGUISHING FEATURE OF THE PATENT, CHECKING SPEED IS INCREASED BY SIMULIANEOUSLY CONNECTING EACH POINT OF THE CIRCUIT TO BE CHECKED TO A CONTACT OF THE COMMUTATION UNIT AND GAE INPUT OF THE COUNCIDENCE CIRCUIT, WHILE THE OTHER INPUTS OF THE COINCIDENCE CIRCUITS ARE CONNECTED THROUGH MATCHING ELEMENTS TO THE OUTPUTS OF THE COUNTER IN THE ANALYSIS UNIT. 2. A MODIFICATION OF THIS CONNECTION FINDER DISTINGUISHED BY INCREASED CPERATING SPEED AND A REDUCTION IN THE TIME FOR ANALYSIS OF THE RESULTS OF THE CHECK. THE CUTPUTS OF THE COUNTER IN THE ANALYSIS UNIT ARE CONNECTED TO THE INPUTS OF THE ADDRESS SECTION OF THE MAGNETIC MEMORY THROUGH MATCHING ELEMENTS, AND THE COUNTING INPUT OF THE CCUNTER IN THE ANALYSIS UNIT IS CONNECTED TO THE COUNTING INPUT OF THE COUNTER IN THE AUGRESS DECODER AND TO THE CONTROL UNIT. THE CONTROL IS CONNECTED TO THE OUTPUTS AND INPUTS OF THE NUMBER SECTION AND TO THE INPUTS OF THE MAGNETIC MEMORY CONTROL UNIT, WHILE THE OUTPUTS OF THE BECGGER COUNTER ARE CONNECTED THROUGH MATCHING ELEMENTS TO THE INPUTS OF THE PRINTOUT AND PUNCHING UNIT. SCHEING-ARALITICHESKIKH MASHIM. FACILITY: MUSKOVSKIY ZAVOD

· UNCLASSIFIED

er seneggenali i sellogera villante i kurusi eno.

USSR

R

UDC 681.326.77

ROGALEV, R. I., Moscow Analog Computer Plant

"An Automatic Connection Finder"

Moscow, Otkrytiya, Izobreteniya, Promyshlennyye Obraztsy, Tovarnyye Znaki, No 8, 1970, p 120, patent No 264002, filed 1 Dec 66

Abstract: This Author's Certificate introduces: 1. An automatic connection finder which contains a commutation unit, counters, coincidence circuits, a magnetic memory unit, address decoding unit, adder, and printout and punching unit. As a distinguishing feature of the patent, checking speed is increased by simultaneously connecting each point of the circuit to be checked to a contact of the commutation unit and one input of the coincidence circuit, while the other inputs of the coincidence circuits are connected through matching elements to the outputs of the counter in the analysis unit. 2. A modification of this connection finder distinguished by increased operating speed and a reduction in the time for analysis of the results of the check. The outputs of the counter in the analysis unit are connected to the inputs of the address section of the magnetic memory through matching elements, and the counting input of the counter in 1/2

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202630008-8"

Consideration of the state of t

USSR

ROGALEV, R. I., et al., Moscow, Otkrytiya, Izobreteniya, Promyshlennyye Obraztsy, Tovarnyye Znaki, No 8, 1970, p 120, patent No 264002,

the analysis unit is connected to the counting input of the counter in the address decoder and to the control unit. The control is connected to the outputs and inputs of the number section and to the indecoder counter are connected through matching elements to the inputs of the printout and punching unit.

2/2

- 35 -

1/2 007

FITLE—REDUCTION IN THE LOSSES OF FATTY ACIDS DURING THE THERMAL TREATMENT AUTHOR—ROGANIN, F.D.

UNCLASSIFIED PROCESSING DATE—300CT70

PROCESSING DATE—300CT70

PROCESSING DATE—300CT70

PROCESSING DATE—300CT70

PROCESSING DATE—300CT70

OF SOAP SOLUTIONS OF SYNTHETIC FATTY ACIDS —U—

CGUNTRY OF INFO-USSR

SOURCE-NEFTEPERARAB. NEFTEKHIM. (MOSCOW) 1970, (3), 32-4

DATE PUBLISHED----70

SUBJECT AREAS-MATERIALS, BIOLOGICAL AND MEDICAL SCIENCES

TOPIC TAGS-SUAP, FATTY ACID

CENTROL MARKING-NO RESTRICTIONS

DOCUMENT CLASS—UNCLASSIFIED PROXY REEL/FRAME—2000/1123

STEP NO--UR/0318/70/000/003/0032/0034

EIRC ACCESSION NO--APO124778

UNCLASSIFIED

2/2 007

GIRC ACCESSIGN NO—APO124778

ABSTRACT/EXTRACT—(U) GP—O— ABSTRACT. SOLNS. CONTG. SOAP,
UNSAPONIFIABLES, AND WATER ARE HEAT TREATED TO REMOVE UNSAPONIFIABLE
LOST, MOST GF THEM IRREVOCABLY, BECAUSE FATTY ACIDS ARE
UNSAPONIFIABLE MATTER. THE YIELD AND COMPN. OF THE FATTY ACIDS DEPENDS
RELATIONS BETWEEN THESE 3 FACTORS NECESSARY FOR REDN. OF LOSSES OF
ANN, VOLGOGRAD, USSR.

UNCLASSIFIED

UNCLASSIFIED

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202630008-8"

1/2 021

TITLE--THERMODYNAMICS OF METHYLHEXANE ISOMERIZATION -U-PROCESSING DATE--090CT70 AUTHOR-(04)-RUGANOV, G.N., KOBU, G.YA., ANDREYEVSKIY, D.N., NIKULIN, K.V.

COUNTRY OF INFO-USSR

SOURCE-NEFTEKHIMIYA 1970, 10(1), 16-21

DATE PUBLISHED ---- 70

SUBJECT AREAS-CHEMISTRY

TOPIC TAGS-THERMODYNAMICS, HEXANE, ALKYL RADICAL, ISOMERIZATION, PHASE

CONTROL MARKING-NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME-1992/1966

STEP NO--UR/0204/70/010/001/0016/0021

CIRC ACCESSION NO-APOLIZ930

UNCLASSIFIED

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202630008-8"

2/2 021 UNCLASSIFIED PROCESSING DATE--090CT70 CIRC ACCESSION NO--APO112930 ABSTRACT/EXTRACT--(U) GP-0-ABSTRACT. EQUIL. WAS STUDIED IN THE SYSTEM 2. METHYLHEXANE (I), 3, METHYLHEXANE (II) IN THE LIQ. AND VAPOR PHASES AT 20-1700EGREES BY USING ALCL SUB3 AS A CATALYST. FROM THE EQUIO. DATA DELTAETADEGREES SUB368 AND DELTASDEGREES SUB368 WERE MINUS 24 PLUS OR MINUS, 50 CAL-MOLE AND MINUS 0.47 PLUS OR MINUS 0.1 EU. DIFFERENCE IN ENTROPY OF I AND II CALCO. FOR ONE STEREOISOMER OF II IL OR DI HAS MINUS 1.85 EU BASED ON EQUIL. DATA. FACILITY: BELORUSS. GOS. UNIV. IM. LENINA, MINSK, USSR. UNCLASSIFIED

"APPROVED FOR RELEASE: 09/17/2001

CIA-RDP86-00513R002202630008-8

USSR

UDC 539.181.1

GOL'DANSKIY, V. I., Corresponding Member of the USSR Academy of Sciences, DZHURAYEV, A. A., YEVSEYEV, V. S., OBUKHOV, Yu. V., ROGANOV, V. S., FRONTAS YEVA, M. V., KHOLODOV, N. I., Institute of Chemical Physics, USSR Academy of Sciences

"Atomic Capture of Negative Mesons in Compounds Containing Hydrogen"

Moscow, Doklady Akademii Nauk SSSR, Vol 211, No 2, 11 Jul 73, pp 316-318

Abstract: An attempt is made to find possible underlying regularities in the distribution of negative muons between the individual groups $\mathbf{Z}_m \mathbb{X}_n$ and atoms Z' in substituted hydrogen-containing organic compounds and in hydrogen-containing compounds in general of the type $\Sigma_m H_n Z_k^*$ or $Z_m H_v Z_k^* H_v$. A table is given summarizing the relative probabilities of capture of μ -mesons by hydrocarbon and hydrogen-containing groups and by aromatic rings in compounds with ionic bonds, in alkyl chlorides, and in phenyl

1/1

- 53 -

UNCLASSIFIED PROCESSING DATE--230CT70
LE--EFFECT OF THE CRYSTAL LATTICE OF SILICON ON THE HYPERFINE SPLITTING
NERGY OF MUONIUM -UHOR-(05)-ANDRIANDV, D.G., MINAYCHEV, YE.V., MYASISHCHEVA, G.G.,
BUKHOV, YU.V., ROGANDV, V.S.
UNTRY OF INFO2-USSR

JRCE--ZHURNAL EKSPERIMENTAL'NOY I TEORETICHESKOY FIZIKI, 1970, VOL 58,
NR 6, PP 1896-1898
TE PUBLISHED-----70

BJECT AREAS--PHYSICS

PIC TAGS--CRYSTAL LATTICE, SILICON, SINGLE CRYSTAL, LONGITUDINAL
MAGNETIC FIELD

NTROL MARKING--NO RESTRICTIONS

CONTREEL/FRAME--1997/1728

STEP NO--UR/0056/70/058/006/1896/1898

RC ACCESSION NU--AP0120440

UNCLASSIFIED

STRAC POLAF STLIC ATOM	CT/EXT REZATE CON SE IN TH	RACT ON ON NGLE C IE CRYS	RYSTALS.) ABSTR IAL MAG THE HY	PERFINE	HE DEPEN IELD STR SPLITTI	DENCE OF MU	ASURED IN IF THE MUONI		
414021	KUM.			•	•		LOS ON TITAL	3 910101		4
					•					
: - -, -										:
	100						٠			
mad Maria									: :	
									-	
					**					
		•		•					- 1	
									1	
•										
					•					
										,
			UNG	ASSIF.	[ED				i	191.6345
	100						····			

TITLE—PASCHEN BACK EFFECT FOR THE MUONIUM ATOM —U—

PROCESSING DATE—300C170

AUTHOR-(05)-MINAYCHEV, YE.V., MYASISHCHEVA, G.G., OBUKHOV, YU.V., ROGANOV, CCUNTRY OF INFO-11500

SOURCE—ZHURNAL EKSPERIMENTAL NOY I TEORETICHESKOY FIZIKI, 1970, VOL 58, DATE PUBLISHED————70

SUBJECT AREAS-PHYSICS

TOPIC TAGS—LUNGITUDINAL MAGNETIC FIELD, MAGNETIC FIELD INTENSITY, MAGNETIC POLARIZATION, MUUN, SINGLE CRYSTAL PROPERTY, QUARTZ, CORUNDUM

CONTROL MARKING-NO RESTRICTIONS

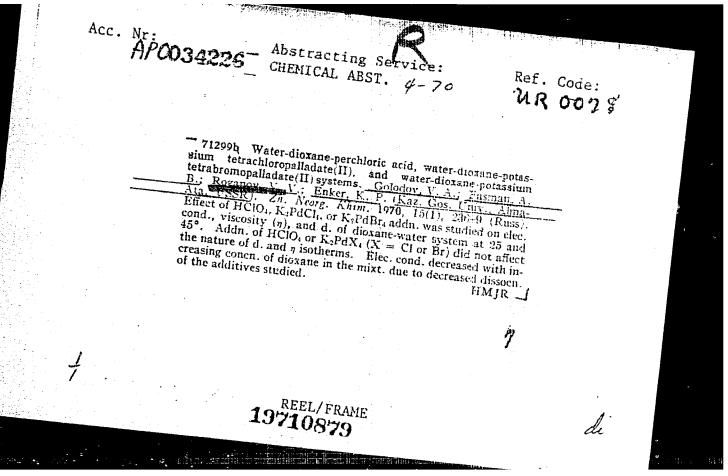
DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3001/2236

STEP NO--UR/0056/70/058/005/1586/1592

CIRC ACCESSION NO--AP0127598

UNCLASSIFIED

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202630008-8"


CIRC ACCESSION NO—APO127598

CIRC ACCESSION NO—APO127598

ABSTRACT—(U) GP—O— ABSTRACT. THE POLARIZATIONOF MU PRIME
POSITIVE MESSONS AS A FUNCTION OF LONGITUDINAL MAGNETIC FIELD STRENGTH IS
MEASURED BETMEN O AND 3 KOE IN SINGLE CRYSTAL QUARTZ AND CORUNDUM. FOR
QUARTZ THE EXPERIMENTAL DATA ARE FOUND TO BE IN GOOD AGREEMENT WITH THE
CRITICAL MAGNETIC FIELD STRENGTH FOR MUONIUM IN QUARTZ EQUALS WITHIN THE
EXPERIMENTAL ERRORS THE VALUE OBTAINED IN VACUUM. THE POSSIBLITIES
MHICH THE METHOD AFFORDS FOR MEASURING THE SIZE OF MUONIUM IN VARIOUS

UNCLASSIFIED

UNCLASSIFIED

USSR

RCGASHKCVA, A.I.

UDG 621.385.632;535.9.12

"Interaction Of Modulated Electron Beam With Plasma"

Elektron. tekhniks. Nauchno-tekhn. sb. Elektron. SVCh (Electronics Technology. Scientific-Technical Collection. Microwave Electronics), 1970, No 5, pp 143-147 (from RZh-Elektroniks i yeye primeneniye, No 8, August 1970, Abstract No 8A23)

Translation: The mechanism is discussed for amplification of a high-frequency signal in a plasma-beam system because of the interaction of the beam with the charges induced by it in the plasma. On the basis of equations of nonlinear one-dimensional traveling-wave tube theory, the process of bunching of the electron flow is considered as well as interaction with the field of the decelerating system in plasma de-

1/1

USSR

ROGASHKOVA, A.I.

UDC 621.385.632

"Effect Of Inhomogenity Of The Field Of The Cross Section Of A Beam On The Efficiency Of A Plasma TyT"

Elektron. tekhniks. Nauchno-tekhn. sb. Elektron. SVCh (Electronice Technology. Scientific-Technical Gollection. Microwave Electronica), 1970, No 6, pp 153-157 (from RZh--Elektroniks i yeye primeneniye, No 10, October 1970, Abstract Nc 10A156)

Translation: The effect is considered of a radial change of the high-frequency field on the efficiency of a plasma TWT. The space charge is not considered. Computations by the quations of nonlinear TWT theory showed that with large radiuses of the beams, the efficiency is significantly diminished. Author's Summary.

1/1

UDC 624.073.012.35.04

ANTONOV, K. K., ROGATIN, YU. A., Moscow

"On Calculating Fastening Beams of Reinforced Concrete Plates Supported on an Elastic Contour"

Moscow, Stroitel'naya mekhanika i raschet sooruzheniy, No. 3, 1972, pp 26-29

Abstract: A method is presented for determining support reactions and forces in elastic fastening beams of reinforced concrete square plates supported over a contour loaded with a uniformly distributed statistical load. The studies showed that the nature and magnitude of support reactions and a contour are functions of reinforced concrete plates supported over relative rigidities of the system. This parameter \$\phi\$, the coefficient of in calculating beams under elastic operation of a plate-contour system and with experimental results and are illustrated by examples.

1/1

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202630008-8"

UDC 577.1:612.12-015

PODDUBNAYA, L. T., ROCATINA I. N., KUSTOV, V. V., and MIKHAYLOV, V. I.

"Effect of Chemical Preservative Agent on Rate of Emission of Certain Gaseous Toxic Substances From Stored Units"

V sb. Probl. kosmich. biol. (Problems in Space Biology -- Collection of Works), Vol 16, Moscow, "Nauka" (Science), 1971, pp 170-173 (Russian) (from RZh-Biologicheskaya Khimiya, No 19, 10 Oct 71, Abstract No 19F1534 from summary)

Translation: A study was made of the effect of a chemical preservative of the phenol class on the rate of gas emissions from stored urine. It was established that addition of the preservative lessens the input into the air of substances of the ammonia, ketone, fatty-acid and nitrogen-oxide group. The emission of carbon monoxide and organic compounds, as determined cumulatively according to carbon, does not vary.

1/1

- 67 -

UDC 577.1:612.12.015

ROGATINA. L. N., KARAGODINA, A. M., and PANCHENKO, V. A.

"Urine Preservation in a System of Water Recovery From Urine"

V sb. Probl. kosmich. biol. (Problems in Space Biology - Collection of Works), Vol 16, Moscow, "Nauka" (Science), 1971, pp 173-178 Russian) (from RZh-Biologicheskaya Khimiya, No 19, 10 Oct 71, Abstract No 19F1536 from summary)

Translation: A study was made of 32 substances and combinations thereof for preservation of urine when stored for two weeks at 18-20°. Five formulas were investigated using apparatus for water recovery from urine in order to ascertain the feasibility of their application for urine preservation in this system. When urine is treated with a preservative, the condensate shows a decline in the amount of ammonia and total content of organic substances as compared with the condensate obtained on the evaporation of urine untreated with a preservative agent. The condensate met the requirements of the All-Union State Standard for drinking water in respect to microorganism content, clarity and odor. Slight additional purification using ion-exchange resins is required in order to obtain water meeting the All-Union State Standard requirements for drinking water in respect to physicochemical indicators.

Commence of the state of the st

PETRUN'KO, A. N., MEYERSON, G. A., ROGATKIN, A. A., PAMPUSHKO, N. A., OLESOV,

"Method of Processing of Iron-Titanium Concentrates"

USSR Author's Certificate Number 353992, Filed 12/07/70, Published 10/11/72 (Translated from Referativnyy Zhurnal Metallurgiya, No 8, 1973, Abstract No 8G212P, by G. Svodtseva).

Translation: A method of processing of Fe-Ti concentrates, consisting in reduction of the concentrates by carbon in an atmosphere of N₂ at 1200-1400°, the needlest in the residue. In order to increase the productivity of the process and reduction of the concentrate to oxicarbonitride containing 5-7% O_2 , reduction is performed in a stream of rarefied N_2 with a residual gas pressure of 0.2-0.4 atm. abs. at 1200-1500°, while FeCl is crystallized from the solution produced after leaching, then reduced by

A CONTRACTOR OF THE LOCAL PROPERTY OF THE PROPERTY OF THE PARTY OF THE

1/1

The same

USSR

ROGATKIN A.

"Programs for a Three-Stage Method of Least Squares"

Vopr. Postroeniya i Primeneniya Statist. Modeley Ekon. Pokazateley Predpriyatiy Ch. 2 [Problems of the Construction and Application of Statistical Models of the Economic Indicators of Enterprises, Part 2 -- Collection of Works], Novosibirsk, 1971, pp 213-224, (Translated from Referativnyy Zhurnal, Kibernetika, No 3, 1972, Abstract No 3 V541 by V. Mikheyev).

Translation: The following problem is solved. A system of M linear econometric equations is given for M endogenic variables. It is assumed that this system can be solved for all endogenic variables; that the perturbations in the structural equations have zero mean, are sequentially independent and homoscedastic, i.e., their dispersions are finite and constant with time. The parameters of the interdependent econometric equations must be calculated. A mathematical model is presented of this problem and a program is written in "Alpha" language for the BESM-6 computer, based on a three-step method

· 🖓

1/1

USSR

"APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202630008-8 TITLE--CEPCSITION OF SALTS AND CORROSICN PRODUCTS IN THE FLOW THROUGH PART AUTHOR-(G2)-MARTYNOVA, C.I., ROGATSKIN, B.S. PROCESSING. DATE-20NOV70 CCUNTRY OF INFO-USSR SGURCE-TEPLGENERGETIKA 1970, 17(5), 50-4 DATE PUBLISHED ----- 70 SUBJECT AREAS-MATERIALS, ENERGY CONVERSION (NON-PROPULSIVE) TCPIC TAGS--X RAY ANALYSIS, STEAM TURBINE, CHEMICAL COMPOSITION, INORGANIC CENTREL MARKING--NO RESTRICTIONS OGCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3004/1908 STEP NU--UR/0096/70/017/005/0050/0054 CIRC ACCESSION NG--APG132170 UNCLASS FF 160

CIRC ACCESSION NG-APOL321/0

ABSTRACT/EXTRACT--(U) GP-C- ABSTRACT. THE RESULTS OF X RAY ANAL. UF THE DEPOSIT AND CONSISTS OF SIO SUB2. THE COMPN. DEPENDS ON THE LOCATION OF THE THE DEPOSIT AND CONSISTS OF SIO SUB2. FE SUB2.0 SUB3. AND COD. ON THE VERY SMALL DEPOSIT IS FOUND. THE FE,CU DEPOSIT IS VERY DANGEROUS FOR VERY SMALL DEPOSIT CAN EFFECT THE CAPACITY OF THE TURBINE ON A LARGE SCALE. CNLY A NJ. OF MEASURES CAN IMPROVE THE TURBINE ON A LARGE CONDENSATE BEFORE DEAERATION.

UNCLASSIFIED

TAVADZE, F. N., GRIKUROV, G. N., TRANTSEVICH, YA. V., SUKHOTIN, A. N. ANTROPOV, N. P., and ROGATSITY, A. L.

"Estinating the Strength of Materials and Their Welded Joints at Cryogenic Tenperatures by the Kethod of Testing Contour-Supported Disks for Flexure"

Kiev, Problemy Prochnosti, No 1, Jan 72, pp 109-112

Abstract: A description is given of the design of an attachment for a tensile testing rachine for determining the strength of contour-supported disks by bending tests. Results are presented for the testing of basic sheet material and helded seems in the form of disks of the austenite-martensite class (steel of the SN-24 type) at temperatures of -196 and -253°C. The strength values were determined, and a comparative analysis of the obtained results with data concerning the strength of the basic metal and the welded seams was conducted. Study of the disks led to the conclusion that breakdown takes place at their point of contact with the punch in the zone of thermal influence. One table,

1/1

- 171 -

APPROVED FOR RELEASE: 09/17/2001

CIA-RDP86-00513R002202630008-8"

USSR MIL'SHTEYN, I. M., ROGATYKH N. C. SHVETSOVA-SHILOVSKAYA, K. D., MEL'NIKOV, UDC 632.95 "Procedure for Obtaining O-arylsulphonylcarbamoyloximes" USSR Author's Certificate No 316688, filed 21 Oct 68, published 14 Dec 71 (from RZh-Khimiya, No 12, Jun 72, Abstract No 12N459) Translation: Compounds with the general formula RR'C = NOC(0)NHSO2A (I) (R and R! = alkyl or aryl; A = aryl) with acaricid activity are obtained with interaction of the corresponding oxime with arylsulphonylisocyanate. In the presence of Et₃N, 0.015 moles of PhSO2NCO are added to a solution of 0.015 moles of mother in the present in the prese methyl isopropyl ketone oxime in 50 m f of benzene; it is mixed for 4-5 hours at 40-500; the solvent is distilled off and I is obtained (R = Me, R' = iso-Pr, A = Ph); the yield is 95%, the melting point is 1200 (benzene). The I (R = Me), the property (Pt is manifold) the median $\frac{1}{2}$ and $\frac{1}{2}$ $\frac{1}{2}$ A = rn); the yield is yyb, the metting point is 120~ (benzene). The I (K = N or) is obtained analogously (R' is recalculated, the yield in \$, melting point in OC): Et, 74, 126; Me 97, 124-5; Sec-Bu, 95, 113. 1/1

USSR

KOVALEVSKTY, N.N., ROGATYLIN, M.I., and FARBEROV, I.L., Institute of Mineral

"On the Theory of the Volumetric Compaction of Graphite With Pyrolytic Carbon" Moscow, Khimiya Tverdogo Topliva, No 2, 1970, pp 141-148

Abstract: The "volumetric" method of compacting artificial graphite with pyrolytic carbon offers significant advantages as regards the physical, thermal, and electrical properties of the product, but it has not been generally adopted owing to the lack of information on the immediate physical processes involved and on the properties of the resultant graphite. The authors summarize recent theoretical and experimental studies relating to the method.

ROGAVA, S. YE., Thilisi

"Optimality of Classifying Stochastic Processes in a Recognition System with Predicting Prototypes" Kiev, Avtomatika, No 3, 1971, pp 39-44

Abstract: A classification system for stochastic processes with predicting filters is described. The System continuously improves the accuracy of its solution as process data is received. The operation of this system is optimal in the sense that it does not differ from the operation of the system with respect to the probability maximum criterion determined by the information available at the end of the observation time.

Use of the mean square error of the prediction filters as the discriminating function insures proper classification for any form of the distribution laws. A complete mathematical analysis is presented for a sample classification system of stochastic processes in a recognition system with predicting prototypes and means of optimizing it. 1/1

USSR

UDC: 621.374.32

ROGAVA, S. Ye., MANUKYAN, Yu. S., DZHIKIYA, K. S., ROGAVA, Z. Ye., Tbilisi Affiliate of Metrology imeni D. I. Mendeleyev "A Binary Pulse Counter"

Moscow, Otkrytiya, izobreteniya, promyshlennyye obraztsy, tovarnyye znaki, No 10, Apr 71, Author's Certificate No 298073, Division H, filed 27 Sep 69,

Translation: This Author's Certificate introduces a binary pulse counter which contains the binary flip-flop counter proper with a ripple-through carry net based on AND elements, and also OR elements, delay elements and a half-adder. As a distinguishing feature of the patent, the device is designed for detection of malfunctions, simplification and increased counting speed. The zero-output terminals of the flip-flops for all digital places are connected to inputs of the corresponding AND elements, which are connected in series and form an auxiliary ripple-through carry net whose input is connected through a delay element to the counter input. The outputs of the AND circuits of the auxiliary ripple-through carry net are connected through an OR

USSR ROGAVA, S. Ye., et al., Otkrytiya, izobreteniya, promyshlennyye obraztsy, element to the input of the half-adder. The outputs of the AND elements of the half-adder. and input of the half-adder.

5/5

- 86 -

saiden inverterante

USSR

UDC: 621.374.32

ROGAVA, S. Ye., MANUKYAN, Yu. S., DZHIKIYA, K. S., ROGAVA, Z., Ye., TDilisi Affiliate of the All-Union Scientific Research Institute of Metrology imeni "A Binary Pulse Counter"

Moscow, Otkrytiya, izobreteniya, promyshlennyye obraztsy, tovarnyye znaki, No 10, Apr 71, Author's Certificate No 298073, Division II, filed 27 Sep 69, published 11 Mar 71, p 193

Translation: This Author's Certificate introduces a binary pulse counter which contains the binary flip-flop counter proper with a ripple-through carry net based on AND elements, and also OR elements, delay elements and a half-adder. As a distinguishing feature of the patent, the device is designed for detection of malfunctions, simplification and increased counting speed. The zero-output terminals of the flip-flops for all digital places are connected to inputs of the corresponding AND elements, which are connected in series and form an auxiliary ripple-through carry net whose input is connected through a delay element to the counter input. The outputs of the AND circuits of the auxiliary ripple-through carry net are connected through an OR

ROGAVA, S. Ye., et al., Otkrytiya, izobreteniya, promyshlennyye obraztsy, tovarnyye znaki, No 10, Apr 71, Author's Certificate No 298073

element to the input of the half-adder. The outputs of the AND elements of the main ripple-through carry net are connected through a delay element and OR element to the second input of the half-adder.

2/2

- 86 -

USSR

logical Institute inent Dear Mendeleev

BUTYRIN, G. M., ROGAYLIN, M. I., and CHALYKH, YE. F., Moscow Chemico-Techno-Forous Structure of Synthetic Graphite and Its Classification According of

Moscow, Khimiya Tverdogo Topliva, No. 1, Jan/Feb 71, pp 131-146 Abstract: One of the most important properties of artificially produced Abstract: One of the most important properties of distributivy produced graphites is their porosity which determines the physicomechanical, thermophysical, and physicochemical properties of these materials. The porosity physical, and physicochemical properties of these materials. The porosity also determines some undesirable properties of graphitic materials; their high permeability and low mechanical - chemical stability. A number of methods have therefore been developed to reduce porosity. Mercury porometry is most widely used to study porosity. This method is sufficiently accurate and one can determine pore size and distribution over the entire range. A Ifterature survey showed that most classifications of graphite materials are limited in their applicability for various reasons. A new classification of artificial graphite: based on pore size, as determined by mercury porometry of several industrial graphites, was developed and proposed. The classification is based on pore size and specific volume of the pores. Artificial graphites are divided into extremely dense, dense, perous, moderately,

USSR

BUTTRIN, G. M., et al., Khimiya Tverdogo Topliva, No 1, Jan/Feb 71, pp 131-146

porous, and extremely porous varieties. On the basis of the movement of gases in a real, porous graphite structure, they are conveniently subdivided into Folmerov, Knudsen, transition, and Poselle (the latter with the subgroup of macropores) pores. A relationship was found between the method of formation of a "green" intermediate product and the character of the specific volume distribution of the pores with respect to the dimensions. It was established that the existence of a significant volume of macropores is characteristic only for pierced graphites, whereas their absolute volume depends on the granulometry of the original batch, which is determined by the dimensions of the forming intermediate products. Impregnation or compacting will preserve the character of the porous structure of the original material. It was established that compacting prior to impregnation is preferred for these artificial graphites because it reduces the subsequent preparation time and improves the properties of the material.

2/2

- 27 -

"APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202630008-8 TITLE-THEORY OF THE VULUMETRIC DENSIFICATION OF GRAPHITE WITH PYROLYTIC AUTHOR-(03)-KOVALEVSKIY, N.N., ROGAYLIN, M.I., EAKBEROV, I.L. PROCESSING DATE-- 13NOV70 COUNTRY OF INFO--USSR SOURCE-KHIM. TVERD. TOPL. 1970, (2), 141-8 (RUSS) DATE PUBLISHED----70 SUBJECT AREAS--MATERIALS TOPIC TAGS--GRAPHITE, PYROLYTIC CARBON, SPECIFIC DENSITY CONTROL MARKING--NO RESTRICTIONS DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--2000/1660 CIRC ACCESSION NO--APO125282 STEP NO--UR/0467/70/000/002/0141/0148 UNICLASSIFIED

"APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202630008-8 Olympia accession no--apol25282 Volumetric delsification of Graphite With Pyrolytic of the Densification of Graphite With Pyrolytic of the Cahracteristics of the Characteristics of the Oldinaterial accuracy in Galco. The Conditions of the And the Properties Required in the Densification of the Inst. Goryuch. Iskop., Muscow, Ussr. Unclassified Unclassi

Acc. Nr: APO049952 Abstracting Service: CHEMICAL ABST. 5-70

Ref. Code: URO467

black from anthracene. Lisyutkina, L. N.; Rogalin, M. I.; Farberov, I. I. (Inst. Goryuch. Iskop., Moscow, USSIR). Khim. Tverd. Topl. 1970, (1), 151-4 (Russ). The sp. surface area, the structure, the elemental and tech. compus., and the pycnometric d. of carbon black from anthracene were detd. Anthracene was pyrolyzed rapidly at 1500 and 2000°K in a specially designed lab. app. The time of pyrolysis was 1, 5, and 120 sec., resp. The obtained carbon blacks were thermally treated at 1470°K in the stream of Ar for 60 min. The compus. of the initial and thermal treated samples are tabulated, the C content being 95-9.7 wt. %. The H content and the yield of gas decreased with an increase of the pyrolysis temp. and the residence time of particles in reaction zone. Electron micrographs showed typical globular particles of the same diam. Joined into chains. In order to evaluate the degree of polydispersion the curves of the size distribution of carbon black particles were constructed. For all samples the sp. surface area and dispersity decreased with increasing residence time of particles in reaction zone and with decreasing temp. of pyrolysis. For a comparison the phys.-chem. characteristics of carbon black obtained from epoxy-pitch are given.

A. Simecek

REEL/FRAME 19801890 .

7

USSR

ROGEL'BERG, I. L.

VDC: 536.532

"New Alloys for Thermocouples and Compensator Wires"

Sb. Sovrem. met. i splavy v priborostroyenii (Symposium on Modern Metals and Alloys for Instrument-Building) Moscow, 1972, pp 93-95 (from Referativnyy Zhurnal-Metrologiya i Izmeritel'naya Tekhnika, No 8, 1972, Abstract No 8, 32, 863 by V.S.K.)

Translation: This is a short review of newly developed alloys for electrodes of special purpose thermocouples, having high precision and sensitivity of temperature measurement, increased temperature range and increase of service life by 3-4 times. A number of alloys have been developed for compensator wires of thermocouples made of Chromel-Alumel, PR 30/6, VR 5/20 and other with compensation limit up to 500°C. The mean square error due to compensator wires does not exceed 2-3°C. The newly developed alloys for thermocouples and compensator wires made it possible to create considerably higher working parameters for the existing types of thermocouples and other thermoelectric devices (7 references).

- 96 -

Explosives and Explosions

USSR

UDC 541.427.6:126

DENISYUK, A. P., and ROGEL'ZANG, A. Ye., Moscow Chemical-Technological Institute Imeni D. Institute Imeni D.

"Temperature Profiles During the Burning of Ballistic Powder With an Anomalous Burning-Pressure Relationship"

Ivanovo, IV 2, Khimiya i Khimicheskaya Tekhnologiya, Vol 14, No 6, 1971, pp 861-864

Abstract: Temperature distribution during the burning of a "N" type powder without a catalyst (control) and one containing lead-copper catalyst was studied in the 50-90 kg/cm² range, where they showed a positive dependence. The control sample showed an increased heat emission in k-phase with increased pressure, while the incoming heat from its smoke-gas zone showed a drop; the incoming heat component amounted to about 10-15% of the total. The sample with the catalyst behaved similarly in regard to the heat emission, but its incoming heat was lower - only about 4-5%. Analysis of the data in the pressure range 20-30 kg/cm² showed that even though the maximum flame temperature is about the same for both powders, the one with the catalyst shows a shorter period for the completion of gas reaction, so it 1/2

USSR

DENISYUK, A. P., and FOGEL'ZANG, A. Ye., Khimiya i Khimicheskaya Tekhnologiya, Vol 14, No 6, 1971, pp 861-864

is concluded that the catalyst accelerates the reactions in the smoke-gas and gas zones, especially the reactions occurring in the k-phase. In the $60\text{--}90~\text{kg/cm}^2$ range the rate of the burning drops in the powder with catalyst probably due to the "poisoning" effect of the catalyst.

2/2

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202630008-8"

UNCLASSIFIED PROCESSING DATE--300CT70
TITLE-EFFECT OF A STOICHIOMETRIC DEVIATION ON THE CRYSTAL STRUCTURE OF
CADMIUM SELENIDE THIN FILMS -UAUTHOR-(04)-SHALIMOVA, K.V., DMITRIYEV, V.A., ROGGE, K., BOTNEV, A.F.

COUNTRY OF INFO-USSR

SOURCE--KRISTALLOGRAFIYA 1970, 15(2), 342-5

DATE PUBLISHED----70

SUBJECT AREAS--MATERIALS, PHYSICS

TOPIC TAGS-CADMIUM SELENIDE, METAL FILM, METAL VAPOR, SELENIUM, THERMAL EFFECT, CRYSTAL STRUCTURE

CENTROL MARKING-NO RESTRICTIONS

PROXY REEL/FRAME--2000/1569

STEP NO--UR/0070/70/015/002/0342/0345

CIRC ACCESSION NO--APO125195

-----UNCLASSIFIED--

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202630008-8"

STEET BESTEEL WEST STEET STEET STEET DE STEET D DE STEET STEET STEET SE STEET STEET DE STEET DE

2/2 UNCLASSIFIED PROCESSING DATE--300CT70 CIRC ACCESSION NO--APO125195 ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. THE EFFECT OF STOICHIGHETRY ON THE CRYSTAL STRUCTURE OF CDSE FILMS, 0.1-3 MU THICK, EVAPD. IN VACUO ONTO GLASS SUBSTRATES AT 90-455DEGREES WAS STUDIED. THE INFLUENCE OF THE HEAT TREATMENT IN CD OR SE VAPORS, AT 250-450DEGREES, AND THE SIMULTANEOUS EVAPN. OF COSE PLUS SE OR COSE PLUS CO ON THE FILM PROPERTIES WAS ALSO STUDIED; EXCESS CD AND SE CAUSES THE FORMATION OF THE HEXAGONAL AND CUBIC PHASE, RESP. OPERATING CONDITIONS ARE GIVEN FOR THE PRODUCTION OF THE SINGLE PHASE FILMS. FACILITY: MOSK. ENERG. INST., MOSCOW, USSR. UNCLASSIFIED

USSR

WC 621/355.8.035.2

SHEKHTMAN, M. I., KRASHOPEROVA, N. N., and ROGINA, V. I.

"Permeability and Breakdown Pressure of Ceramal Electrodes and Some Separation Materials"

V sb. Issled. v obl. khim. istochnikov toka (Research in the Field of Chemical Sources of current -- collection of works) vyp 2, Seratov, Saratov. un-t, 1971, pp 120-128 (from RZh-Khimiya, No 18, Sep 72, Abstract No 18L178)

Translation: The authors consider data found in determining the aero- and hydrodynamic permeability as well as the breakdown pressure of electrodes and separation materials used in hermetic sealing of alkaline energizers. The aerodynamic permeability of electrodes is of the order of 10-5 cm²; in cobalt electrodes permeability is the same along and across the electrode, while for nickel-oxide electrodes the longitudinal permeability is approximately 3 times the transverse value. The hydrodynamic permeability of electrodes is of the order of 10-11 cm², the value being approximately 4 times lower than the aerodynamic permeability in cadmium electrodes. Increasing the degree of dispersion of the filler increases the breakdown pressure, reduces the maximum pore radius and increases the average pore radius. Data are also obtained for FPP, propylene fiber, capron, miplast, cellophane and other separation materials. V. S. Levinson 1/1

19 -

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202630008-8"

SEEN RECEIVED DE RECEIVE DE RECEI

USSR

UDC 621.039.524.034.3

KAZAZYAN, V. T., ROGINETS, L. P.

"Heat Transfer Coefficient for a Gas Flow in a Slot Chemonuclear Channel"

Dissotsiiruyushch. gazy kak terlonositelii rab. tela energ. ustanovok -- V sb. (Dissociating Gases as Heat Transfer Agents and the Working Medium of Power Plants -- Collection of Works), Minsk, Nauka i tekhn. Press, 1970, pp 220-228 (from RZh-Elektrotekhnika i Energetika, No 5, May 1971, Abstract No 50194)

Translation: A study was made of the problem of the effect of physical-chemical processes occurring in a gas during irradiation of it by fission fragments on heat exchange. It is demonstrated that the primary factor affecting the variation of the heat transfer coefficient is the presence of a defined energy profile of the fission fragments in the width of a channel. This variation has a maximum value for small channel dimensions and for thinner uranium containing layers on its wall. The solution of the problem is presented for the case of laminar flow of gaseous ammonia in a flat slot channel. In this case, even with a relatively thick uranium containing layer (23 microns) and great thickness of the channel (4 mm), the heat exchange coefficient is approximately cut in half. There is I illustration, I table and a 4-entry bibliography.

USSR

VDC 632.95

BRIKMAN, L. I., TSETLIN, V. M., ROGINSKAYA, Ye. Ya., ZHUK, Ye. B., VOLKOVA, A. P., VORONKINA, T. M., KLIMENCHUK, V. I., POZHARSKAY', Ye, B.

"Compound for Controlling Household Insects"

USSR Author's Certificate No 340384, filed 15 Feb 71, published 23 Jun 72 (from RZH-Khimiya, No 2 (II), Feb 73, Abstract No 2N486)

Translation: The compound for controlling cockroaches, clones and moths contains the following (in % by weight): γ -hexachlorocyclohexane 0.19%; DDT 1.71%; DDVF 0.6%; xylol 5%; a mixture of CF2Cl2(freon-12) and CFCl3 (freon-II) 55% and kerosene to 100%.

1/1

USSR

UDC: 678.5.06:[539.2+620.173]

KANOVICH, M. Z., KOLTUNOV, M. A., and ROGINSKIY, S. L., All-Union Scientific-Research Institute of Glass Reinforced Plastics and Fiberglass; Moscow Institute of Electronic Machine Building

"Conditions for Producing High-Strength Orthogonally Strengthened Glass Reinforced Plastics With Good Compressive Strength Characteristics"

Riga, Mekhanika Polimerov, No 4, Jul-Aug 73, pp 655-660

Abstract: The authors study the conditions associated with the production of high compressive strength, orthogonally strengthened, glass reinforced plastics. Relationships are determined which relate the physico-chemical and geometric parameters of the composites into a system of inequalities. The satisfaction of this system ensures the production of a high-strength material with an assigned utilization factor. It is shown experimentally that these inequalities can be used as the first approximation for the optimal design of high compressive strength, orthogonally strengthened, composite materials.

1/1

- 5 -

USSR

UDC 678.06-419.8:677.521.01:53

ASLANOVA, M. S., NATRUSOV, V. I., ROGINSKIY, S. L., and KHAZANOV, V. Ye.

"Study of the Effect of Some Factors on the Strength of Fiberglass During Compression by the Method of Mathematical Planning of the Experiment"

Moscow, Plasticheskiye Massy, No 2, 1973, pp 60-63

Abstract: The effect of some physico-mechanical properties of fiberglass and the binder on the strength during compression of fiberglass was studied by means of the mathematical planning of an experiment. Regression equations are reported for the maximum strength of the fiberglass during compression as functions of the fiber diameter, modulus of resilience of the binder and the fiber and adhesive strength of the binder in relationship to the glass fiber. On the basis of the analysis carried out it was possible to optimize the values of basic variables and to determine their qualitative and quantitative effects on the strength of fiberglass. It was established that it is possible to increase the strength of fiberglass during compression by using enlarged fibers with a diameter of 18 mc.

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202630008-8"

1/2 UNCLASSIFIED 010 PROCESSING DATE--230CT70 TITLE--EFFECT OF DIFFUSION ON THE COURSE OF CATALYTIC REACTIONS IN A

CHROMATOGRAPHIC SYSTEM -U-

AUTHOR-(03)-BERMAN, A.D., YANOVSKIY, M.I., ROGINSKIY, S.Z.

COUNTRY OF INFO--USSR

SOURCE--DOKL. AKAD. NAUK SSSR 1970, 190(4), 864-7 (PHYS CHEM)

DATE PUBLISHED ---- 70

SUBJECT AREAS -- CHEMISTRY

TOPIC TAGS--CATALYSIS, CHROMATOGRAPHY, DIFFUSION COEFFICIENT

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1995/1579

STEP NO--UR/0020/70/190/004/0864/0867

CIRC ACCESSION NU--ATO116987

UNCLASSIFIED

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202630008-8"

ABSTRACT/EXTR CATALYTIC F AN IRREVERS REACTION, A	ON NOATO11698 RACT(U) GP-O- REACTIONS IN A SIBLE REACTION, A FORMS AND IS DNSTS. ON THE D	ABSTRACT. THE CHROMATOGRAPHIC S' 2A YIELDS B, AND FORMED FROM 2B. IFFUSION COEFF. A	FFECT OF DIFFUS YSTEM IS DISCUSS A 2ND ORDER REV GRAPHS FOR THE	ION ON ED CONSIDERING ERSIBLE DEPENDENCE OF
INST. KHIM.	. FIZ., MOSCOW,	USSR.		
表集 2013年 記載 2013年		•		
	•	· · · · · · · · · · · · · · · · · · ·		
				,
			•	•
	1.3			
1				
		•	į	
		; ·	•	
		·		
	<u></u>	HCLASSIFIED		
-		in the state of th	edor-parospaceostraunituro4[4] hiridžili	**************************************
		na kasan na maani maani si sii sii ki k		

1/2 023 UNCLASSIFIED PROCESSING DATE--20NOV70
TITLE--APPLICATION OF STATISTICAL KINETIC THEORY TO THE DESORPTION OF
SIMPLE GASES -U-

AUTHOR-(03)-RCGINSKIY, S.Z., BERKOVICH, M.A., SHUB, B.R.

CCUNTRY OF INFO-USSR

A.

SGURCE--DOKL. AKAD. NAUK SSSR 1970, 190(5), 1143-6

DATE FUBLISHED ----- 70

SUBJECT AREAS-PHYSICS, CHEMISTRY

TUPIC TAGS-DESURPTION, GAS STATE, KINETIC THEORY

CENTREL MARKING-NE RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1998/0725

STEP NO--UR/0020/70/190/005/1143/1146

CIRC ACCESSION NU--AT0121384

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202630008-8"

2/2 023 UNCLASSIFIED PROCESSING DATE--20NOV7C
CIRC ACCESSION NO--ATO121364
ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. THE STATISTICAL KINETIC THEORY WAS
USED TO DET. THE RANGE OF CGMPENSATION EFFECTS IN THE DESORPTION OF
SIMPLE GASES. CALCNS. WERE MADE TAKING INTO ACCOUNT THE VOL.
CORRDINATION NO., AND THE RESULTS ARE TABULATED; THIS METHOD IS EITHER
NOT APPLICABLE AT ALL FUR DESCRIBING THE SURFACE OF THE SURFACE.
THERE IS AN EFFECTIVE SURFACE COORDINATION NO., I.E. A NO. WHICH GIVES
THE PROPER ORDER OF MAGNITUDE FOR THE COMPENSATION EFFECT.

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202630008-8"

Luminescence

USSR

UDC: 541.183 + 535.37

ROGINSKIY, S.Z. (DECEASED) and RUFOV, YU.N., Institute of Chemical Physics, Moscow, Academy of Sciences USSR

"Adsorption Luminescence and Other Forms of Luminescence Upon Contact of Gases with Solids"

Moscow, Kinetika i Kataliz, Vol 11, No 2, Mar-Apr 70, pp 383-394

Abstract: Results obtained in the study of interactions of gas molecules with solid surfaces are reviewed and considered. Upon contact of gases with solid surfaces, two types of luminescence may be assumed to occur, luminescence associated with adsorption and unspecific luminescence of the solid produced by the impact of gases impinging on the solid with a certain momentum. Adsorption luminescence has been studied in detail in connection with the interaction of gas molecules (specifically those of O₂) with NiO, MgO, and NiO-MgO solid solutions. Adsorption luminescence associated with the catalytic reactions of oxidation of H₂ and MeOH and the decomposition of N₂O on these metal oxides was also investigated. Unspecific luminescence is not due to chemisorption, but charging of the surface by the gas flow and electric discharge phenomena at centers that form during the heat treatment of solids. The gas and surface charging and phenomena of this type taking place at excited centers under the effect of the gas must play a definite role in catalysis.

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202630008-8"

1/2 UNCLASSIFIED PROCESSING DATE--04DEC70 TITLE--REACTIONS OF FHOTOEXCITED ALLYL TYPE RADICALS WITH HYDROCARBON MOLECULES IN THE SCLID PHASE -U-AUTHOR-(02)-ROGINSKIY, V.A., PSHEZHETSKIY, S.YA.

COUNTRY OF INFO--USSR

Saura.

SOURCE--KHIM. VYS. ENERG. 1970, 4(3), 240-5

DATE PUBLISHED----70

SUBJECT AREAS--CHEMISTRY, NUCLEAR SCIENCE AND TECHNOLOGY

TOPIC TAGS--EPR SPECTRM, GAS CHROMATOGRAPHY, FREE RADICAL, GAMMA RADIATION, RADIOLYSIS, HEXENE, LIGHT EXCITATION, HEPTENE

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY FICHE NO----FD70/605012/E05 STEP NO--UR/0456/70/004/003/0240/0245

CIRC ACCESSION NO-+APO140310

UNCLASSIFIED

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202630008-8"

PROCESSING DATE--04DEC70 **UNCLASSIFIED** 2/2 CIRC ACCESSION NO--APO140310 ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. EPR SPECTROSCOPY AND GAS CHROMATOG. WERE USED TO STUDY REVERSIBLE PHOTOCHEM. TRANSFORMATIONS OF ALLYLIC FREE RADICALS OBTAINED BY THE GAMMA RADIOLYSIS OF 1 HEXENE (1), I HEPTENE, AND 2 PENTENE, AS WELL AS OF THEIR SOLNS. IN 3 METHYLPENTANE (II) AT 77DEGREESK. THE EPR SPECTRA OF THE RADICALS OF HTE TYPE NEGATIVE CH SUB2 MINUS CH-CH-CH SUB2 (III) CONTAINED 5 OR 7 LINES. EXCITATION WITH VISIBLE LIGHT (MU LESS THAN OR EQUAL TO 410 M MU) THESE RADICALS DISAPPEAR AND GIVE RISE TO AN EQUIV. AMT. OF ALKYL RADICALS OF THE MATRIX FORMED BY THE REACTION III SEXTILE PLUS RH YIELDS NEGATIVE CH SUB2 CH SUB2 CH:CH SUB2 (IV) PLUS R. REVERSE REACTIONS TAKE PLACE IN THE DARK (IV PLUS R YIELDS III PLUS RH). THE KINETICS OF THE FORWARD AND REVERSE REACTIONS IN GAMMA IRRADIATED SOLNS. OF I IN II WAS STUDIED AND THE MECHANISM WAS DISCUSSED. FACILITY: FIZ.-KHIM. INST. IM. KARPOVA, MOSCOW, USSR. IMPLACEMENT

USSR

UDC 541.14

CHERVONENKO, V. S., ROGINSKTY, V. A., PSHEZHETSKIY, S. YA. Physicochemical Institute imeni L. Ya. Karpov, Moscow, State Committee for Chemistry

"Photochemistry of Free Radicals. Alcohol and Ether Radicals"

Moscow, Khimiya Vysokikh Energiy, Vol 4, No 5, Sep-Oct 70, pp 450-451

Abstract: The methods of EPR, low-temperature spectroscopy, and chromatography were used to study photoreactions of the radicals which form in the gamma irradiation of methanol, ethanol, n-propanol, iso-propanol, and n-butanol frozen at 770K, as well as diethyl, di-n-propyl and diisopropyl ethers.

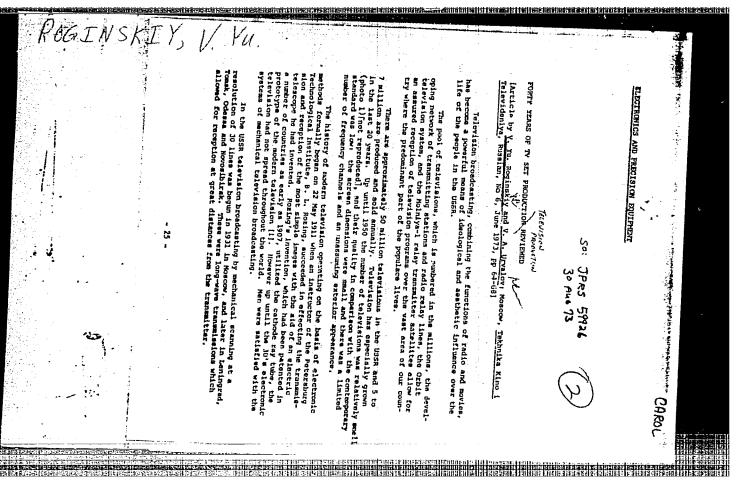
1/1

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202630008-8"

USSR

ROGINSKIY, VADIM NIKOLAYEVICH, Dr., Professor

"Automatic Telephone Communication And Persons"


Avtomaticheskaya telefonnaya svyaz' i chelevek (ef English above), Moscow, Izd. "Znaniye," 1972, 32 pp

Abstract: In the brochure the possibilities and problems are discussed of automatic telephone communication as well as the services it renders to persons in control of production and to the interchange of information with other people. The possible directions for further development of automatic telephony are contemplated. The brochure is intended for a wide circle of readers.

CONTENTS

You callyou are called How sutomatic telephone communications works From selector to crossbar connector and hermatic contact Automation of intercity communication How are you services?				
Services which a telephone network can render Automatic telephone communication, electronic computers and person fonclusion				

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202630008-8"

USSR

UDC: 621.37/39(075)

ROGINSKIY, V. Yu.

"Electric Power Supply for Radio Equipment. Textbook for Radio Engineering Colleges and Departments. Second Revised Edition"

Elektropitaniye radioustroystv. Uchebnik dlya radiotekhn. vuzov i fak. Izd. 2-ye, pererabot. (cf. English above), Leningrad, "Energiya", 1970, 319 pp, 111. 87 k. (from RZh-Radiotekhnika, No 11, Nov 70, Abstract No 11A14 K)

Translation: The author elucidates the theory and discusses methods of calculating electric power supply sources for radio engineering devices. Information is given on electric rectifiers and their properties, unregulated rectifiers with resistive and reactive loads, regulated rectifiers, rectifiers with intermediate current conversion, smoothing filters, energy converters, and devices for regulating and stabilizing current and voltage. The book is a text for a program of the same title in electrical engineering and radio engineering institutions, and can be used by students, but may also be useful for engineers and technicians engaged in research and development in the area of electric power supply sources for radio equipment. A. K.

1/1

- END -

5915 C80: 1860-W

- 124 -

USSR

ROGOV, G. A., SHCHERS, A. L.

"Operative Control of Reserves of Products at Distributing Refrigeration

Teoriya i Praktika Sbora Peredachi i Obrabotki Ekon. Inform. [Theory and Practice of Collection, Transmission and Processing of Economic Information -- Collection of Works], Moscow, 1971, pp 93-103, (Translated from Referativnyy Zhurnal, Kibernetika, No 3, 1972, Abstract No 3 V476).

NO ABSTRACT.

1/1

USSR

UDC: 51:330.115

OREL, T. Ya., ROGOV, G. A.

"On the Problem of Setting up Optimum Routes for Shipments on Refrigerated Trucks"

V sb. Teoriya i praktika mashin. obrab. ekon. inform. (Theory and Practice in Computer Processing of Economic Information-collection of works), Moscow, 1971, pp 96-103 (from RZh-Kibernetika, No 9, Sep 71, Abstract No 9V534)

[No abstract]

1/1

USSR

UDC 51:621.391

ROGOVA, G. V., TARASENKO, F. P.

"One Approach to Estimation of Optimal Redundancy in Transmission of Binary Signals Through Channels with Noise"

Tr. Sib. Fiz.-tekhn. In-ta pri Tomsk. Un-te [Works of Siberian Physics and Technology Institute at Tomsk University], No 51, 1970, pp 287-290, (Translated from Referativnyy Zhurnal, Kibernetika, No 10, 1971, Abstract No 10 V645 by Yu. Pyatoshin).

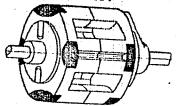
Translation: Tables are presented for the transmission rate of information through a binary channel with additive Gaussian noise and amplitude and phase modulation of the signal with various signal/noise ratios.

1/1

- 17 -

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202630008-8"

USSR


UDC: 621.372.837.1

YUR'YEV, F. N., KISELEV, R. I., ROGOV, L. S., FIRER, V. I.

"A Waveguide Switch"

Moscow, Otkrytiya, Izobreteniya, Promyshlennyye Obraztsy, Tovarnyye Znaki, No 31, Nov 71, Author's Certificate No 318102, Division H, filed 24 Mar 69, published 19 Oct 71, pp 198-199

Translation: This Author's Certificate introduces a waveguide switch containing a stator and rotor with waveguide channels, radial grooves and absorbing elements. As a distinguishing feature of the patent, decoupling between channels is increased by locating the absorbing elements at the ends of \(\frac{1}{2} \)—wave grooves from the level of the narrow walls of the waveguide channels to the end faces of the rotor.

1/1

- 129 -

USSR

UDC: 621.372.837(088.8)

KISELEV, R. I., ROGOV, L. S.

"A Waveguide Switch"

USSR Author's Certificate No 263883, filed 19 Apr 68, published 26 Jun 70 (from RZh-Radiotekhnika, No 1, Jan 71, Abstract No 1B209 P)

Translation: The proposed switch consists of a housing, a waveguide channel rotor and matching elements. To improve decoupling between channels, the matching elements are made in the form of quarter-wavelength grooves in the rotor inserts and quarter-wavelength clearance segments between the inserts and the housing. Two illustrations.

1/1

- 135 -

UBBR

UDC: 621.373.4(088.8)

DEMCHENKO, K. H., SHRIPKA, L. M., ANDONCV, Ye. V., KAULIN, Ye. F., ROGGY, P. V., and MAUNCV, A. M.

"Test Signal Formation Device for Tuning Electronic Equipment"

Avt. sv. 333R (Author's Certificate USSR) Class 21a4, 8/01, (H 03 b 23/00), No. 270825, Application 27.01.69, Publication 1.09.70 (from RZh-Radiotekhnika, No. 3, March 71, Abstract No. 34406P)

Translation: A device is proposed for forming a test signal for tuning electronic equipment, containing a frequency webbulator, a modulator, fixed stable frequency oscillators, an automatic gain control circuit, a marker generator, and a control device. The device is distinguished in that, for the purpose of simplifying the equipment for formation of powerful undistorted signals consisting of pulses of FM oscillations at low resistance loads, the fixed frequency oscillators mentioned above are connected through a summing circuit to the frequency webbulator. T. L.

1/1

USSR

UDC: 518.9

reconfineres come no no come a marco como momento manero de la come en en la describa de la come en como en com Como en como e

RCGOV, S. F.

"On a Problem of Distributing Resources for Attack and Defense"

V sb. <u>Issled. operatsiy. Vyp. 2</u> (Operations Research--collection of works. No 2), Moscow, 1971, pp 69-81 (from <u>RZh-Kibernetika</u>, No 12, Dec 71, Abstract No 12V772)

Translation: For the problem of distributing offensive and defensive forces along some line S with limitations on the concentration of offensive forces, the quantities $\max_{x} W(x, y)$, $\min_{y} W(x, y)$, $\min_{x} \max_{y} W(x, y)$, $\max_{x} \min_{y} W(x, y)$

are found, as well as the functions $x(\xi)$ and $y(\xi)$ which realize these quantities. Here $W(x,y) = \int_{S}^{\max} (x-\rho y,0) d\xi$ is the gain in attack when both

sides use pure strategies $x(\xi)$ and $y(\xi)$. The problem of finding optimum mixed strategies is considered. I. Fokin.

1/1

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202630008-8"

+2

USSR

UDC 665.534

OSIPOV, L. N., KHAVKIN, V. A., AGAFONOV, A. V., ROGOV P., P., RYSAKOV, M. V., and PEREZHIGINA, I. Ya., All Union Scientific Research Institute of the Petroleum Industry

"Hydrofining of Sulfur-Containing Secondary Gasolines to Obtain Stock for Catalytic Reforming"

Moscow, Khimiya i Tekhnologiya Topliv i Masel, No 2, 1971, pp 1-3

Abstract: The article describes results of experiments on the hydrofining of thermal-cracked and TCC gasolines, as well as mixtures of these gasolines with straight-run gasoline for the purpose of obtaining stock for catalytic reforming. The experiments were carried out on an apparatus with alumina-cobalt-molybdenum catalyst loading of 0.5 1, a total pressure of 35 at, a temperature of 350-425°C, space velocity 0.5-5.0 hr⁻¹, gas circulation 300 1/1 stock. The object of the experiments was to obtain a product containing not more than 0.003 percent sulfur by weight or 0.0002 percent nitrogen by weight, with an iodine number no greater than 1 g I $_2$ /100 g. The results indicate that these gasolines can be successfully improved on existing blocks or units for the preliminary hydrofining of straight-run gasoline L-24-300 following a slight 1/2

USSR

OSIPOV, L. N., et al, Khimiya i Tekhnologiya Topliv i Masel, No 2, 1971, pp

modification of the design requiring merely a 50-100 percent increase in the loading volume of the alumina-cobalt-molybdenum catalyst.

2/2

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202630008-8"

1/2 013 UNCLASSIFIED PROCESSING DATE--13NOV70

TITLE--PRODUCTION OF CILS BY HYDROCRACKING A VACUUM DISTILLATE OF ARLANSKII PETROLEUM -U-

AUTHOR-(05)-LIPOVSKAYA, K.S., GOLDSHTEYN, D.L., ROGOV, S.P., PEREZHIGINA,

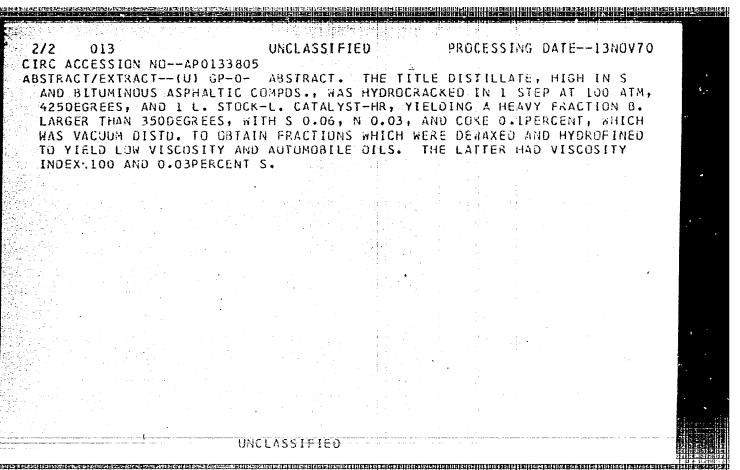
COUNTRY OF INFO--USSR

SOURCE--NEFTEPERERAB. NEFTEKHIM. (MOSCOW) 1970, (5), 45

DATE PUBLISHED----- 70

SUBJECT AREAS--MATERIALS, EARTH SCIENCES AND OCEANOGRAPHY

TOPIC TAGS--LUBRICATING DIL, PETROLEUM HYDROCRACKING, PETROLEUM DEPOSIT, CEMICAL COMPOSITION, PETROLEUM DEWAXING, VACUUM DISTILLATION


CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3005/1961

STEP NO--UR/0318/70/000/005/0045/0045

CIRC ACCESSION NO--AP0133805

UNCLASSIFIED

UNCLASSIFIED PROCESSING DATE--L3NOV70
TITLE--HYDROFINING OF DIL FRACTIONS, MEANS FOR IMPROVING THE QUALITY OF
LUBRICATING DILS -U-

AUTHOR-(04)-BEKAYEV, R.B., ROGOV, S.P., CHERNOZHUKOV, N.I., AGAFONOV, A.V.

COUNTRY OF INFO--USSR

SOURCE--NEFTEPERERAB. NEFTEKHIM. (MOSCOW) 1970, (4), 24-6

DATE PUBLISHED ---- 70

SUBJECT AREAS -- MATERIALS

TOPIC TAGS--ZEOLITE, LUBRICATING DIE, PETROLEUM REFINING PRUCESS,

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3005/1939

STEP NO--UR/0318/70/000/004/0024/0026

CIRC ACCESSION NO--APOL33783

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202630008-8"

2/2 012 UNCLASSIFIED PROCESSING DATE--13NOV70
CIRC ACCESSION NO--APO133783
ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. HYDROFINED DISTILATES, AFTER
PHENGL REFINING, GAVE OILS WITH LONEN S CONTENT AND HIGHER VISCOSITY
INDEX (94-7), YIELDING 1.1-4.4PERCENT ADDNL. REFINED OILS WITH HIGHER
CONTENTS OF PARAFFINIC NAPHTHENIC HYDROGANDAS AND LESS HEAVY AROMATICS
AND RESINS THAN THOSE OBTAINED WITHOUT HYDROGINING. DISTILLATES
HYDROFINED ON NI-MO-ZEOLITE YIELDED REFINED DILS WITH HIGHER VISCOSITY
INDEXES THAN THOSE HYDROFINED ON NI-MO-AL SUB2 O SUB3. FACILITY:
MOSK. INST. NEFTEKHIM. GAZOV. PROM. IM. GUBKINA, MUSCOW, USSR.

UNCLASSIFIED : PROCESSING DATE--115EP70 1/2 TITLE--EFFECT OF SILICON DIOXIDE CONTENT ON THE PHYSICOMECHANICAL AMD CATALYTIC PROPERTIES OF HYDROCRACKING CATALYSTS -U-AUTHOR--ROGOV, S.P., PEREZHIGINA, I.YA., AGAFONOV, A.V., SEMENOVA, YE.S., LIKHOVA, Z.V. COUNTRY OF INFO--USSR SOURCE--KHIM. TEKHNOL. TOPL. MASEL 1970, 15(3), 8-11 DATE PUBLISHED ---- 70

SUBJECT AREAS--MATERIALS

TOPIC TAGS--OXIDE CATALYST, ALUMINUM DXIDE, COBALT, MOLYBDENUM, SILICON DIOXIDE, MECHANICAL STRENGTH, PETROLEUM DESULFURIZATION, ISOMERIZATION, PETROLEUM HYDROCRACKING

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1990/2040

STEP NO--UR/0065/70/015/003/0003/0011

CIRC ACCESSION NO--AP0109972

- 227222222222 -- UNGLASSIFIFD --

__x.come.com toppe with the particular and a linear property of the control of 2/2 042 UNCLASSIFIED. PROCESSING DATE--11SEP70 CIRC ACCESSION NO--APO109972 ABSTRACT/EXTRACTE-(U) GP-0- ABSTRACT. SIO SUB2 ADDED TO A COMOO SUB4-AL SUB2 O SUB3 CATALYST INCREASED ITS CRACKING AND ISOMERIZATION ABILITY, PRODUCING AN INCREASE IN THE CONVERSION AND IN THE RATIO OF ISO TO Y HYDROCARBONS IN THE GASEOUS AND LIQ. PRODUCTS. THE MECH. STRENGTH OF THE CATALYST WITH ADDED SID SUB2 INCREASED BY SOPERCENT; ITS PORE VOL. AND AV. PORE RADIUS ALSO INCREASED. THE DIESEL FRACTION OBTAINED WITH SUCH A CATALYST HAD A LOWER POUR POINT. THE CATALYST CONTG. 20PERCENT SIO SUB2 LOST ITS HYDRODESULFURIZATION ACTIVITY MORE RAPIDLY THAN THAT CONTG. 10PERCENT SID SUB2. UNCLASSIFIED

USSR

UDC 513.78

ROGOV, V.-B. K.

"Eigenfunctions of the Beltrami-Laplace Operator on a Single-Sheet Hyperboloid"

Moscow, Matematicheskiye Zametki, Vol 7, No 2, 1970, pp 255-263

Abstract: The differential operator permutable with all operators T_g , where $T_gf(x) = f(g^{-1}x)$, is the Laplace operator. In this discussion, the author limits himself to consideration of the operator of the second order, the Beltrami-Laplace operator, which is determined by the pseudo-Riemannian metric on space X including x. He considers a set of functions bounded outside of a neighborhood of two isotropic straight lines which intersect at infinity. The necessary and sufficient condition that the function of this set be an eigenfunction of the Beltrami-Laplace operator is derived. In concluding, the author expresses his gratitude to F. I. Karpelevich for his assistance in solving the problem.

1/1

¥ USSR

ROGOV, Ye. I.

UDC: 51

"Theory and Methods of Mathematical Modeling of Production

Alma-Ata, Teoriya i metody matematicheskogo modelirovaniya proizvodstvennykh protsessov v gornom dele (cf. English above), "Nauka", 1973, 142 pp, ill. 97 k. (from RZh-Kibernetika, No

Translation: Chapter I. Theoretical Principles of Constructing Mathematical Models in Design and Planning in the Mining Industry. Chapter II. Hierarchical Principle of Organizing Systems. Chapter III. Isolating Important Variables in Constructing Mathematical Models. Chapter IV. Breaking Down Systems into Subsystems in Mathematical Modeling of Technological Processes in Mining. Chapter V. Mathematical Models for Design of Ventilation, Electrical and Other Networks of Shafts. Chapter VI. Mathematical Models for Control in Shaft Ventilation Networks. Chapter VII. Mathematical Models of

USSR

ROGOV, Ye. I., Teoriya i metody matematicheskogo modelirovaniya proizvodstvennykh protsessov v gornom dele, "Nauka",

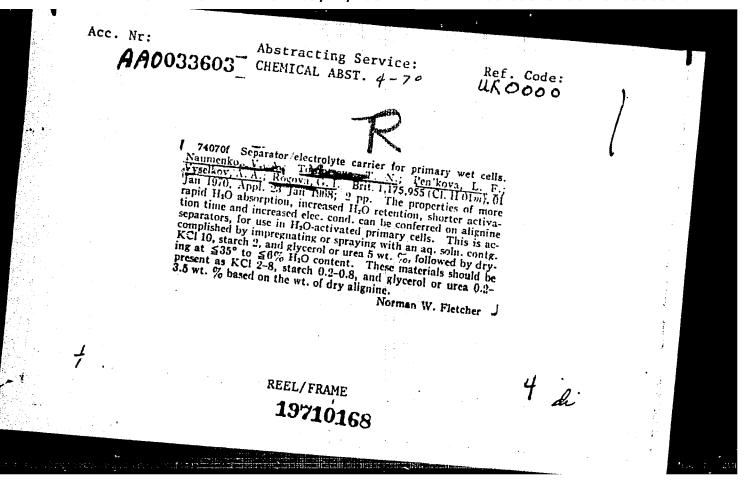
Systems With a Certain Criterion, Classes of Models and Their Field of Application in Mining.

2/2

- 83 -

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202630008-8"

USSR


UDC: 621.376.5

ROGOV, Yu. M. and SHAMINA, G. P.

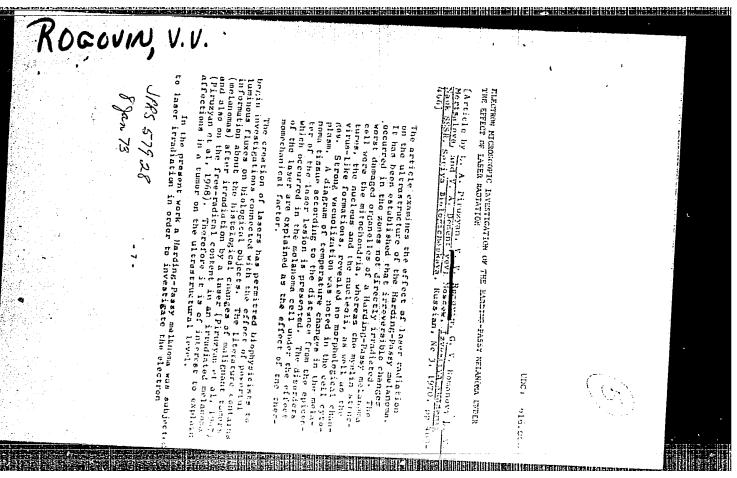
"Operating Characteristics of Several High-Powered Thyratron Modulators on the Total Load"

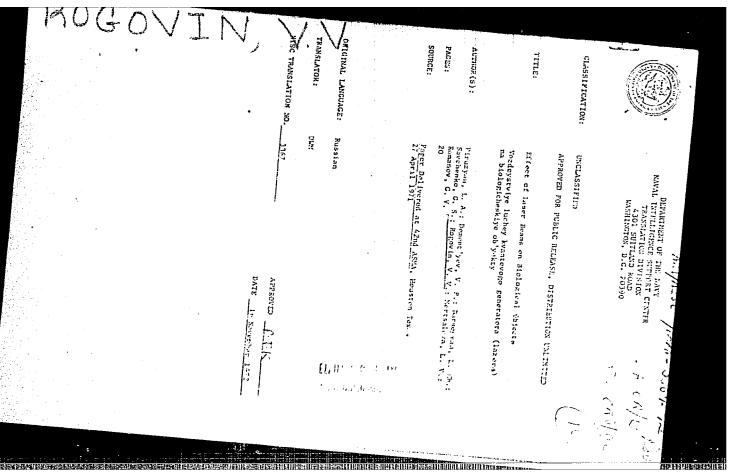
Elektron. tekhnika. Nauchro-tekhn. sb. Gazorazryadn. pribory (Electronic Engineering, Scientific-Technical Collection, Gas Discharge Devices) 1970, No. 3(19), pp 54-60 (from RZh-Radiotekhnika, No. 3, March 71, Abstract No. 3D424)

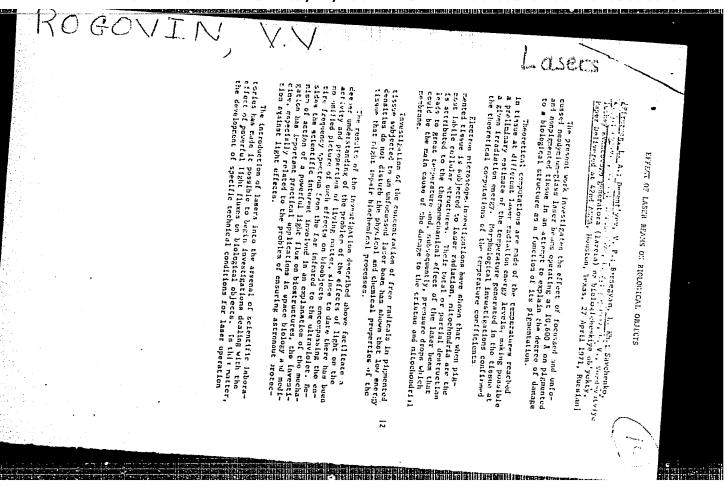
Translation: The circuit of a high-powered thyratron modulator for obtaining groups of pulses of varying duration with lessening time intervals between them is examined. An analysis is made of the effect of the modulator thyratrons on each other; the processes in the thyratron grid and plate circuits are considered. A grid circuit design is recommended. Six illustrations, bibliography of 1/1

USSR

UDC 621.387.233


AVLAKHORA, R. G., LARSHINA, S. I., POLYAKOVA, A. A., ROCOVA, G. N.


"Study of Oxide Cathode Sputtering in Hydrogen Thyraton With Current Commutation of Short Duration"


Elektron. tekhnika. Nauchno-tekhn. sb. Gazorazryadn. pribory (Electronic Technology. Scientific-Technical Collection. Gas-Discharge Devices), 1970, Issue 4(20), pp 49-53 (from RZh-Elektronika i yeye primeneniye, No 5, May 1971, Abstract No 5A165)

Translation: It is demonstrated by the method of radioisotopes that in hydrogen thyratrons with commutation of pulses of 100 nsec duration, intense ion bombardment of the cathode takes place. Summary.

1/1

1/2 TITLE--ELECTRONNICROSCOPICAL INVESTIGATION OF THE GARDING PASSY MELANOME 039 AUIHOR-1051-PIRUZYAN, L.A., ROGUVIN, V.V., ROMANOV, G.V., MERISALOVA, PROCESSING DATE--300CT70 COUNTRY OF INFO-USSR SOURCE-IZVESTIYA AKADEMII NAUK SSSR, SERIYA BIOLOGICHESKAYA, 1970, NR 3, DATE PUBLISHED ______70 SUBJECT AREAS-BIOLOGICAL AND MEDICAL SCIENCES, PHYSICS TOPIC TAGS--LASER RADIATION, ELECTRON MICROSCOPE, TUMOR CENTROL MARKING-NO RESTRICTIONS DGGUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME-3001/1176 CIRC ACCESSION NO--AP0126778 STEP NO--UR/0216/70/000/003/0463/0467 UNCLASSIFIED

2/2 039 UNCLASSIFIED CIRC ACCESSION NO--AP0126778 PROCESSING DATE--300CT70 ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. THE EFFECT OF LASER IRRADIATION ON THE GARDING PASSY MELANOMA ULTRASTRUCTURE IS DISCUSSED. IT WAS FOUND THAT THE ZONES WHICH HAD NOT BEEN DIRECTLY ILLUMINATED CONTAINED IRREVERSIBLE CHANGES. AMONG THE ORGANELLES OF A GARDING PASSY MELANOMA CELL THE MITOCHONDRIA APPEARED TO BE MOST DAMAGED WHEREAS THE MYELIN STRUCTURES THE NUCLEUS AND THE NUCLEULI AS WELL AS VIRUS LIKE FORMATIONS REVEALED NO MORPHOLOGICAL CHANGES. STRONG VACUOLIZATION OF THE CELL CYTOPLASM WAS STATED. A DIAGRAM OF THE TEMPERATURE CHANGES IN THE MELANGME TISSUE RELATIVE TO THE DISTANCE OF THE EPICENTER OF THE LASER LESIGN IS SHOWN. THE LESIGNS CAUSED IN THE MELANOME CELL UNDER LASER ACTION ARE EXPLAINED ON THE BASIS OF THE EFFECT OF THE THERMOMECHANICAL FACTOR. FACILITY: INSTITUTE OF CHEMICAL PHYSICS, ACADEMY OF SCIENCES, USSR.

UNGLASSIFIED

TO THE RESIDENT OF THE PARTY OF

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202630008-8"

USSR

UDC: 616.006

eren una menural

PIRUZYAN, L.A., ROGOVIN, V.V., ROMANOV, G.V., MERISALOVA, L.V., and DEMENT'YEV, V.A., Institute of Chemical Physics, Academy of Sciences, USSR

"Electron Microscope Study of Harding-Passy Melanoma Under the Influence of Lasers"

Moscow, Izvestiya Akademii Nauk SSSR, Seriya Biologicheskaya, No 3, May/Jun 70, pp 463-467

Abstract: The effect of laser irradiation on the ultrastructure of Harding-Passy melanoma was studied. It was found that the zones which had not been irradiated directly contained irreversible changes. Mitochondria were most dumnged, and their organization disrupted, whereas the myelim structures, nucleus and nucleoli, and virus-like formations showed no morphological changes. A strong vacuolization in the cytoplasm of the cells was noted. Temperature changes in melanoma tissue are proportional to the distance from the center of laser action. All changes in melanoma tissues under the action of lasers are explained on the basis of the thermomechanical effect.

1/1

USSR

UDC 51:330.115

ROGOV Ve-T-

"Separation of Hierarchical Levels in the Control of Large Artificial Systems"

Optimiz. I Upr. Bol'shimi Sistemami V Energ., [Optimization and Control of Large Systems in Power Engineering--Collection of Works], Irkutsk, 1970, pp 106-122, (Translated from Referativnyy Zhurnal Kibernetika, No 5, 1971, Abstract No. 5V583).

No Abstract.

1/1

- 40 -

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202630008-8"

USSR

UDC 621.382.002

ROGOV, YU.P., FREOBRAZHENSKIY, A.I., KRIKUNENKO, N.K., KUINETSOV, A.G.

*Some Distinctive Features Of The Construction Of Multiposition Mechanical Systems Of Inspection-Classification Complexes"

Elektron. tekhnika. Nauchno-tekhn.sb. Upr.kachestvon i standartiz. (Electronic Technology. Scientific-Technical Collection. Quality Control And Standarization), 1970, Issue 2, pp 94-108 (from REh-Elektronika i yeye primeneniye, No 4, April 1971, Abstract No 4B413)

Translation: On the basis of an analysis of the technology for inspection of semiconductor devices, recommendations are given on the use of single- and multiposition inspection-classification equipment. The distinctive features are considered of the construction of multiposition mechanical systems of an automatic inspection-classification complex. The possibility and the advantages of the aggregation principle of construction of mechanical systems on the basis of a single structural scheme are shown. Recommendations are given on the choice of devices for a particular purpose. 6 ref. Summary.

1/1

- 72 -

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202630008-8"

USSR

VDC 632.95

BUTNITSKIY, I. N., ROGOVIK, M. K., GUTSULYAK, B. M.

"Derivatives of Lepidinium as Plant Growth and Development Regulators. IV. Synthesis and Physiological Activity of Some Derivatives of 1-methyl-6-oxy-lepidinium Chloride"

Fiziol. aktivn. veshchestva. Resp. mezhved. sb. (Physiologically Active Materials. Republic Interdepartmental Collection), 1972, No 4, pp 101-105 (from RZh-Khimiya, No 5 (II), 1973, Abstract No 5N641)

Translation: A method was developed for obtaining compounds with the formula (I): 137.6 grams of p-MeNHC $_6$ H $_4$ OH, 240 ml of acetone, 4.9 ml of concentrated HCl (acid) and 100 ml of water were heated at 80°, and a mixture of 12 grams of paraform, 40 ml of BuOH, 1 ml of concentrated HCl (acid) and 60 ml of acetone was added with mixing. The reaction mass was heated for 4 hours and left to stand for 24 hours. The acetone was driven off, 120 ml of alcohol

1/2

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202630008-8"

USSR

BUTNITSKIY, I. N., et al., Fiziol. aktivn. veshchestva. Resp. mezhved. sb., 1972, No 4, pp 101-105

was added, the mass was cooled and the I (R = H, Y = H₂, X = C1) (Ia) was isolated with a melting point of 185° and a 50% yield. On replacing the HC1 (acid) with 57% HC10₄, I (R = H, Y = H₂, X = C10₄) was obtained with a melting point of 195-197°. The reaction of Ia with the corresponding aromatic aldehydes in the presence of pyridine yields I (R, Y, X are presented, melting point in °C): H, CHPh, Cl 233-235; H, CHC₆H₄NO₂- π , Cl, 217; H, CHC₆H₄NO₂- π Cl, 223-224; H, CHC₆H₄OH- π , Cl, 223-225; H, CHC₆H₃OH- π -OMe- π , Cl (Ib), 228-229; H, CHC₆H₄NMe₂- π , Cl (Ic), 207-209. On solution in an acetic anhydride medium, I (R = Ac, Y = CHC₆H₄NMe₂-p, X = Cl) is obtained with a melting point of 74-5°. Also 1-methyl-6-oxyquinoline-4-(1'-ethylquinoline-4')-monomethinecyaniniodide is obtained with a melting point of 205-207°. The growth stimulating activity of Ib and Ic in the initial growth phase of Belotserkovskaya 23 wheat and Nadezhnyy oats with a 0.0001 M concentration of the solutions is equal to the activity of K heteroauxinate. For Part III see RZh-Khimiya, 1971, Abstract No 18N683.

2/2

- 52 --

A PROPERTY OF THE PROPERTY OF

USSR

UDC 531.01

RVALOV, R.V., and ROGOVOY, V. M., Moscow

"On Rotations of a Body With a Hollow Containing Liquid"

Moscow, Izvestiya Akademii Nauk, Mekhanika Tverdogo Tela, No 3, May-Jun 72,

Abstract: The Cauchy problem is investigated for the motion of a solid body disturbed with regard to a uniform rotation. The body has a hollow wholly filled up with an ideal incompressible liquid. Contrary to studies of other authors of harmonic oscillations for particular forms of hollows or for constrained motion of the liquid, assuming its proper motions in the hollow of the rotation body being attenuated, no restrictions are posed on the shape of the hollow and the character of the disturbed motion. The problem of the combined solution of equations of hydromechanics and mechanics is reduced to the solving of eigenvalues of a certain problem the solution of which depends only on the geometry of the hollow, and to the subsequent integration of a system of ordinary differential equations. A hollow bounded by conformal ellipsoids of revolution is discussed as an example. It is demonstrated that the motion of a body with a hollow of similar type is affected only by a partial motion of the liquid. For the particular case of an ellipsoidal hollow, the results coincide with data obtained by other 1/2

USSR:

UDC: 518.5:681.3.06

SHEHERBAKOVA, V. M., ROGOVOY, V. M.

"An Algorithm for Rapid Fourier Transformation"

Sb: tr: Mosk. tekhnol. in-t (Collected Works of Moscow Technological Institute), 1971, No 21, pp 183-194 (from RZh-Kibernetika, No 9, Sep 71, Abstract No 9V610)

AND THE PROPERTY OF THE PROPER

[No:abstract]

1/11

TECHNOLOGY OF PRODUCING NEW MITERIALS TECHNOLOGY OF PRODUCING NEW MITERIALS TECHNOLOGY OF PRODUCING NEW MITERIALS CONTENTS PAGE TECHNOLOGY OF PRODUCING NEW MITERIALS CONTENTS PAGE TECHNOLOGY AND CONTENTS AND CONTENTS AND CONTENTS TECHNOLOGY CONTENTS CONTENTS PAGE TO CONTENTS AND CONTENTS AND CONTENTS TECHNOLOGY PAGE TO CONTENTS AND CONTENTS AN	ROGOVO	Study of Sintering Kinetics by Hot Extrusion of Zirconium and Titanium Carbides in the Regions of Their Homogenelty (V. Ya. Naumenko, R. Ya. Petrykina)	E Composite Materials 14 Rainforced Plastics 7.5. Klimenko) Rainforced Plastics 18 18 19 19 19 19 10 10 10 10 10 10	CONTENTS PAGE of Zirconium and Niobium Carbides in the lonogeneity Okirgmchuk, G. Sh. Upadkhaya)	TECHNOLOGY OF PRODUCING NEW MATERIALS Translation of Russian-Language collection: Tekhnologiya Polucheniya Novykh Materialov, 1972, Kiev.	JPRS 59873 23 August 1973	
--	--------	---	---	---	---	---------------------------	--

Nuclear Science and Technology

USSR KOVAL'CHENKO, M. S., ROGOVOY, Yu. I., KELIM, V. D.

"Change in Structure in Properties of Titanium Carbide Under Neutron Bombardment"

Atomnaya Energiya, Vol 32, No 4, Apr 72, pp 321-323.

Abstract: An experimental study was performed of the change in microstructure, lattice parameter, electrical resistance and microhardness of titanium carbide under the influence of neutron bombardment with integral doses of $1.0\cdot10^{19}$, $3.7\cdot10^{19}$, $7.5\cdot10^{19}$ and $1.5\cdot10^{20}$ thermal neutrons per square centimeter (flux ratio of thermal neutrons to fast neutrons 8:1) at about 50°C and with subsequent annealing in a vacuum of 10^{-4} mm h.g. at showed no change in mean grain size. Bombardment with the largest dose caused an increase in specimen volume of 0.3-0.5%. Bombardment caused a significant increase in resistance and lattice parameter. A regular shift intensity was observed, as well as improvement in the degree of resolution of the α doublet on the (333) line. Annealing at 100° C increased the lattice parameter, while annealing at $200-800^{\circ}$ C decreased the lattice parameter. The experimental data indicated that there are two stages of recovery in annealing, at 350 and 600° C. The similarity of the mechanisms

USSR

ROGOVSKIY, Ye. A.

"Multistage, Multiproduct Stochastic Model of Prospective Planning"

eserialnen erikaria erikaria karalaria erikaria erikaria erikaria erikaria erikaria erikaria erikaria erikaria

Issled. po mat. Ekon. i Smezh. Vopr. [Studies in Mathematical Economics and Related Problems -- Collection of Works], Moscow University Press, 1971, pp 99-119, (Translated from Referativnyy Zhurnal, Kibernetika, No 3, 1972, Abstract No 3 V441).

NO ABSTRACT.

1/1

UBSR

UDC: 51:330.115

ROGOVSKIY, Ye. A.

"An Adaptive Model of Stock Control"

Tr. 3 Zimm. shkoly po mat. programmir. i smezhn. vopr., 1970, vyp. 3 (Works of the Third Winter School on Mathematical Programming and Related Problems, 1970, No 3), Moscow, 1970, pp 479-489 (from RZh-Kibernetika, No 9, Sep 71, Abstract No 9V521)

[No abstract]

1/1

APPROVED FOR RELEASE: 09/17/2001 CIA-RDP86-00513R002202630008-8"