

UDC 669.716:621.777.2

USSR

BARANCHIKOV, V. M., GLEBOV, Yu. P., GOROKHOV, V. S., DEHISOV, S. M., ZAKHAROV, M. F., MILORADOVA, O. N., KHARENKO, V. F., and TSAREV, V. I.

"Development and Investigation of the Process of Pressing Rods and Shapes of Aluminum Alloys with Lubricant Without Press-Residue"

Metallovedeniye Splavov Legkikh Metallov-Sbornik, Moscow, "Nauka", 1970, pp 129-137, resume

Translation: A number of problems related to the investigation of the process of pressing aluminum alloys with lubricant and the investigation of rechanical properties, macrostructure, and geometric dimensions of products are discussed. Technological-economical data on the process are presented. Five figures, nine tables, seven bibliographic references.

1/1

UDC: 629.78.018.1

USSR

RINKEVICHYUS, B. S., TOLKACHEV, A. V., KHARCHENKO, V. N.

"Determination of the Velocity of a Hypersonic Stream by the Doppler Effect"

Uch. Zap. Tsentr. Aero-Gidrodinam. In-ta [Scientific Writings of Central Institute of Aerodynamics and Hydrodynamics], 1973, Vol 4, No 1, pp 25-32 (Translated from Referativnyy Zhurnal Raketostroyeniye, No 6, 1973, Abstract No 6.41.133, from the Resume).

Translation: The operation of an optical Doppler velocity measuring device is studied. A narrow-band Fabry-Perot interferometer filter is used to separate the Doppler frequency shift. Experimental data are presented on the stream velocity profile in a hypersonic wind tunnel at M_{∞} = 5 with prechamber

temperatures of 120 and 250° C. The maximum value of velocity measured was 1040 m/sec. The results are compared with data produced by temperature and pressure measurements. 4 figures, 8 biblio. refs.

1/1

unc: 632.95

USSR

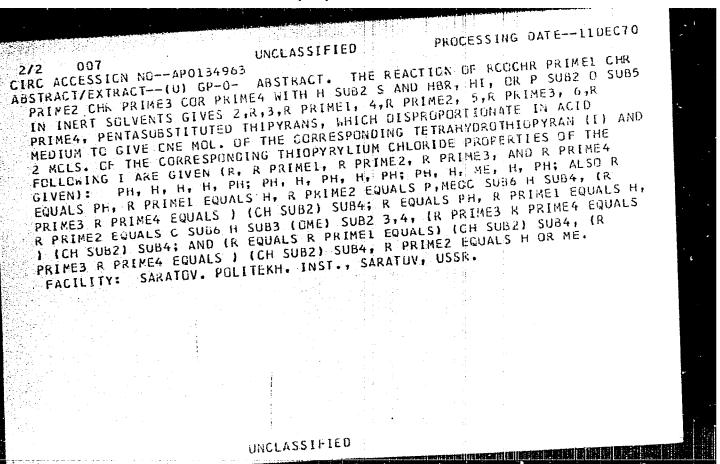
KHARCHENKO, V. G., KUPRANETS, N. M., POLIKARPOVA, N. V., KRUPINA, T. I., and KLIMENKO, S. K., Saratov Polytechnical Institute

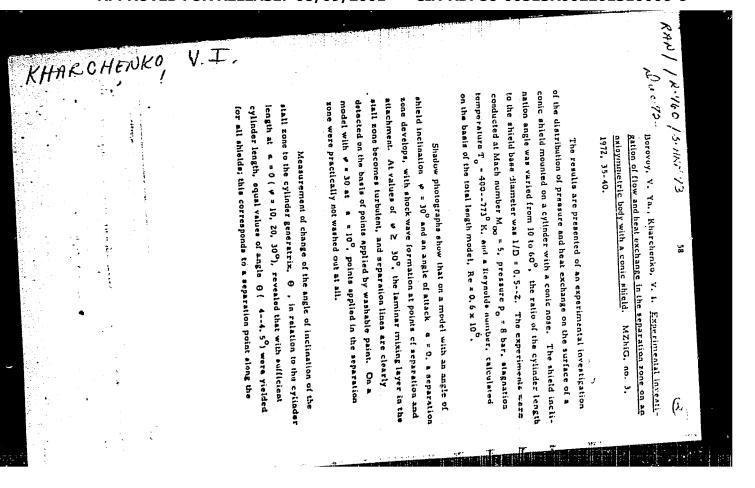
"A Method for Preparing Tetrahydrothiochromyl or symm-Octahydrothioxanthenyl Chlorides"

USSR Author's Certificate No 255292, filed 19 Mar 68, published 8 Apr 70 (from RZh-Khimiya, No 22, 25 Nov 70, Abstract No 22 N674 P by G. V. Kuznetsova)

Translation: These substances, which can be used as physiologically active compounds, are obtained from the reaction of semi- or bicyclic 1,5-diketones with H₂S and HC1 in an AcOH medium. A solution of 13.4 g of 1-phenyl-3-(n--methoxyphenyl)-3-(2-cyclohexanonyl)-propanone-1 in 45 ml of glacial AcOH is saturated with H2S (1 hour) and then with a mixture of H2S and HC1 gas (3 hours) and H₂S (1 hour). 6 g (about 45%) of 2-phenyl-2-mercapto-4-(n-methoxyphenyl)--heptahydrothiochromene is filtered off from the reaction mass. The filtrate is diluted with 300 ml of dry ether, the sediment filtered off, washed with ether and benzene, producing 3.3 g (about 20%) hydrochloride of 2-phenyl-4--(n-methoxyphenyl)-5,6,7,8-tetrahydrothiochromyl chloride, C22H22C12OS, melting

1/2


KHARCHENKO, V. G., et al., USSR Author's Certificate No 259292, filed 19 Mar 68, published 6 Apr 70 (from RZh-Khimiya, No 22, 25 Nov 70, Abstract No 22 N674 P


point 111-4°; perchlorate of chloride, C H C10 S, melting point 169-71°. Symm-Octahydrothioxanthenyl chloride (I), C₂₂H₁₇ClS, is prepared from methylenedicy-clohexanone under similar conditions, yield 50%, melting point 95-7 (chloroform-clohexanone under similar conditions, yield 50%, melting point 95-7 (chloroform-clohexanone under similar conditions) ether). The corresponding iodide, C₁₃H₀71 IS, is obtained from the action of 45% HI in ether on I, melting point 153.5-6. 9-Benzyl-symm-octahydrothioxanthene in obtained from the resetion of 1.50 Provided from the action of 1.50 Provided from the 1.50 Pr is obtained from the reaction of I with PhCH MgC1, yield h1%, melting point 107-9°. The hydrochloride of 9-methyl-symm-octahydrothicxanthenyl chloride, C1H20C1₂S, is obtained under these conditions from ethylenedicyclohexanone with a yield of 40%, melting point 155-6 (chloroform-ether). It is converted by the action of HI into the corresponding iodide, $C_{1\downarrow}$ H₁₉IS, melting point 143-5 •

2/2

91 -

CIA-RDP86-00513R002201310006-6" APPROVED FOR RELEASE: 08/09/2001

USSR

KARPINOS, D. M., KRAVCHENKO, A. A., PILIPOVSKIY, Yu. Ya., TKACHENKO, V. G., SHAMATOV, Yu. M., KHARCHENKO, V. K., Kiev

"Study of Mechanical Characteristics of Hot Pressed Tungsten-Copper Pseudoalloys"

Kiev, Problemy Prochnosti, No. 12, Dec 70, pp. 64-68

Abstract: Studies are made of the mechanical characteristics of hotpressed tungsten-copper pseudoalloys and their dependence on the density of the tungsten framework containing the lower-melting component and the time of isothermal holding at the pressing temperature. It is demonstrated that the strength, plasticity and impact toughness increase with increasing density of the refractory framework and holding time in the 1900-2200°C temperature interval during pressing. The hardness and strength in compression depend primarily on the density of the framework and the degree of filling of the pores with copper.

1/1

- 57 -

UDC 532.526:533.694.71/72

USSR

KHARCHENKO, V. N.

"Experimental Investigation of Flow About Sharp and Blunt Cones by a Hypersonic Stream of Helium in the Presence of Strong Injection"

Moscow, Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No 6, Nov-Dec 72, pp 149-153

Abstract: Results of optical and weight tests are presented, as well as the pressure distribution along the lateral surface of cones with half-angles of 5 and 10° during uniformly distributed injection through the lateral surface or through spherically blunted noses of the cones. It is shown that strong injection brings about an essential change in the distribution of pressure and resistance. This report is a continuation of a report published by the author in the same journal in 1969, in which were presented the first results of experiments in a helium wind tunnel at $M \approx 25$, with intensive hilium injection through the lateral surface of a sharp cone. Subsequent tests, some results of which are presented in the present report, supplement the presently available experimental and technical data, and also permit some characteristic features of flow to be ascertained. Six figures, two tables, seven references.

1/1

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002201310006-6"

UDC 532.526.6.011.6.011.7

USSR

BOROVOY, V. YA., KHARCHENKO, V. N., Moscow

"Experimental Study of Flow and Heat Exchange in the Separation Zone on an Axisymmetric Body With a Conical Shield"

Moscow, Mekhanika zhidkosti i gaza, No. 2, Mar/Apr 72, pp 35-LO

Abstract: An experimental study of the pressure distribution and heat exchange on the surface of a conical shield located on a cylinder with a conical nose is described. The angle of inclination of the shield varied from 10° to 60° and the ratio of the length of the cylinder to the diameter of the base of the shield 1/D=0.5-2. The experiments were made at one has a pressure 1/D=0.5-2. The experiments were made at 1/D=0.5-2. The exper

1/2

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002201310006-6"

ÚSSR

BOROVOY, V. YA., KHARCHENKO, V. N., Mekhanika zhidkosti i gaza, No. 2, Mar/Apr 72, pp

The effect of angle of attack on heat exchange was studied over a wide range of values of α up to 30° and the results showed that the degree of nonuniformity of the distribution of heat flow over the length of the generatrix does not increase with an increase in angle of attack; in many cases it decreases considerably. This is explained by the fact that the length of the separation zone on the windward surface shortens with an increase in the angle of attack and practically the entire shield is covered with a connected flow.

2/2

- 10 -

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002201310006-6"

USSR

KHARCHENKO, V. N., Central Aerohydrodynamics Institute imeni N.Ye. Zhukovskiy UDG: 536.24:532.526.4

"Heat Exchange in a Hypersonic, Turbulent Boundary Layer During the Introduction of a Cooling Gas Through a Slit"

Moscow, Teplofizika Vysokikh Temperatur, Vol 10, No 1, Jan-Feb 1972, pp 101-105

The author presents the results of an experimental study associated with flow and heat exchange on a cone surface in a hypersonic stream during the blowing in of air and helium through a tangential, annular slit. The test was conducted at Man = 5, To \$500°K, and P = 8bar. The data of various authors are compared. Film type and porcus type cooling are considered. The results show that the effectiveness of a heat shield accomplished by blowing in gas through a tangential slit is somewhat lower than it is for blowing through a porous surface. Criginal article: three formulas, five figures, and 12 bibliographic entries.

1/1

1./3 023 11: TITLE--RESECTION AND PLASTIC REPAIR OF TRACHEAL BIFURCATION IN PROCESSING DATE--04DECTO AUTHOR-(02)-KHARCHENKO, V.P., VOLOKHOV, 8.E.

COUNTRY OF INFO--USSR

SOURCE--KHIRURGIYA, 1970, NR 5, PP 26-30

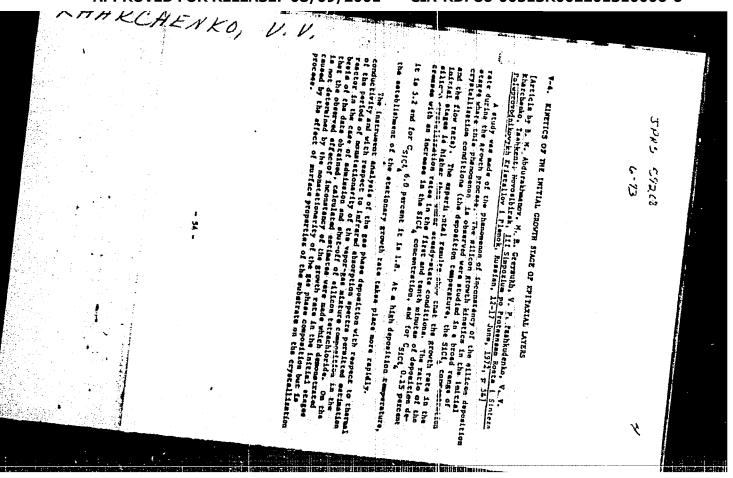
DATE PUBLISHED ----- 70

SUBJECT AREAS--BIOLOGICAL AND MEDICAL SCIENCES

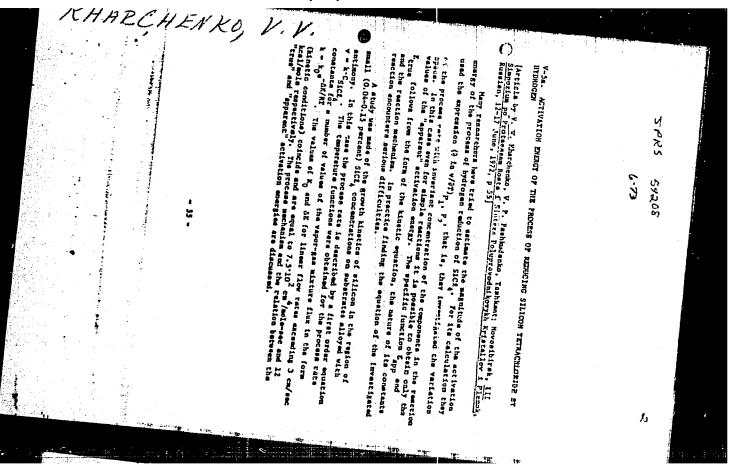
TOPIC TAGS--SURGERY, LUNG, RESPIRATORY SYSTEM, CANCER, PNEUMONIA, CARDIOVASCULAR SYSTEM, RADIOTHERAPY, CHEMOTHERAPY, ANTINEOPLASTIC DRUG,

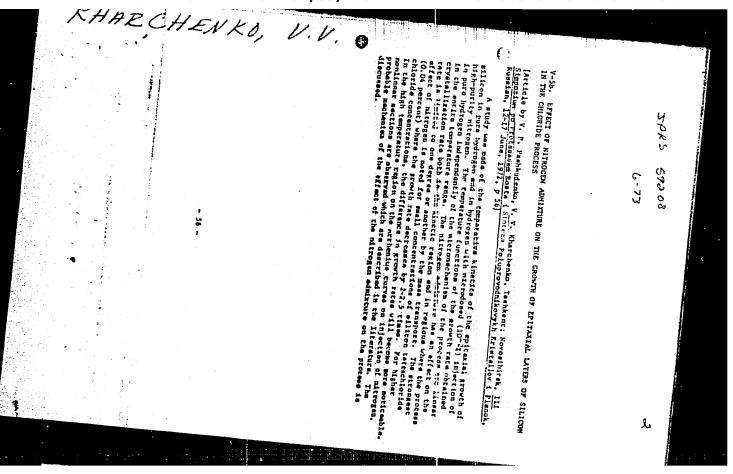
CONTROL MARKING--NO RESTRICTIONS

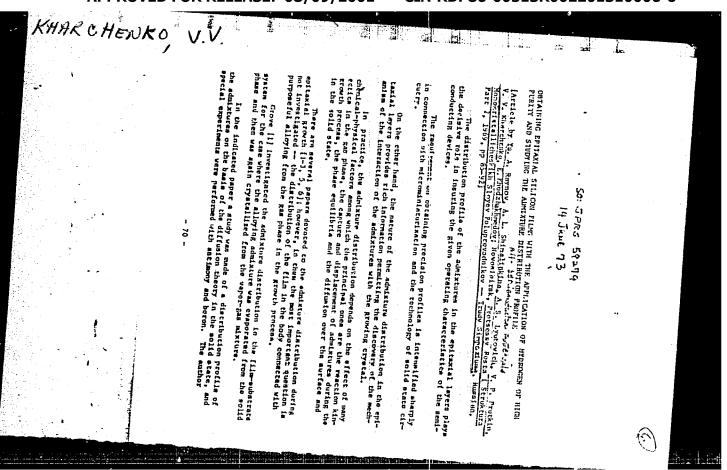
DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3007/1902

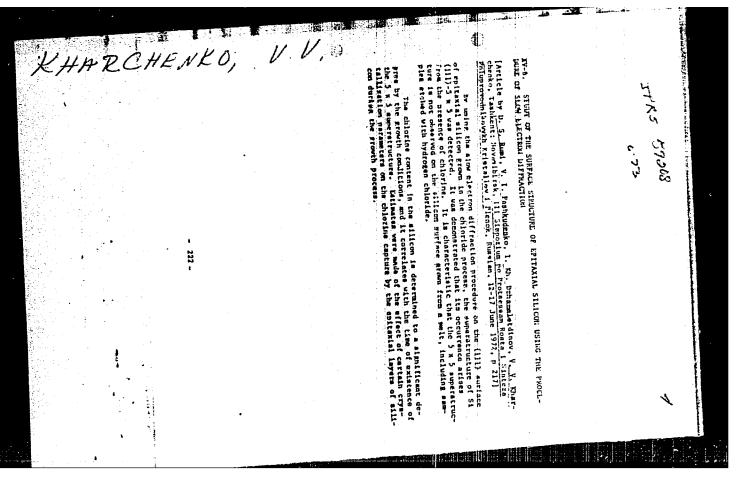

STEP NO--UR/0631/70/000/005/0026/0030

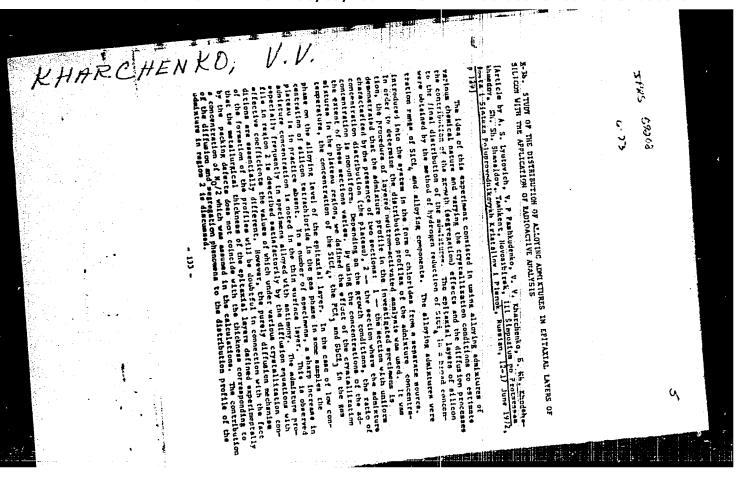
CIRC ACCESSION NO--APQLITORS

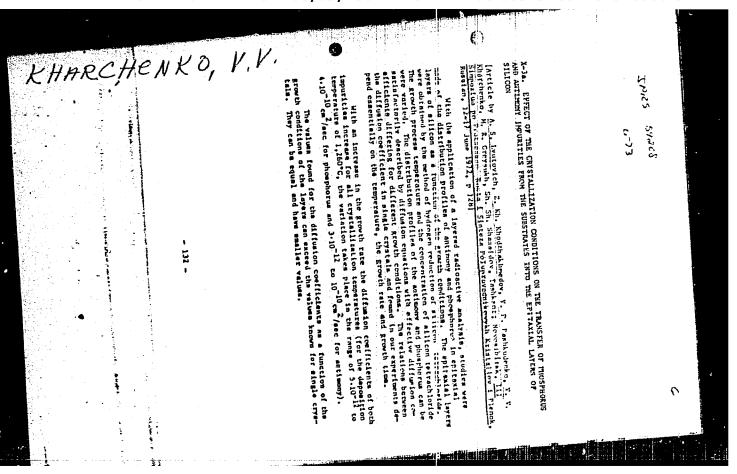

UNCLASSIFIED

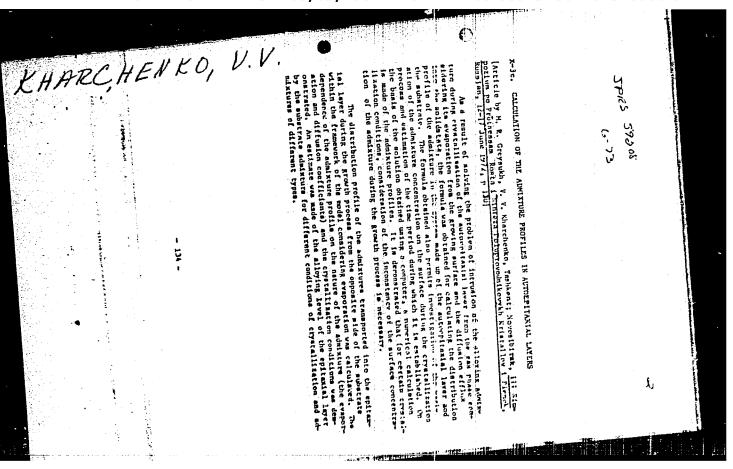

. 2/3 023 CIRC ACCESSION NO--APOL37099 UNCLASSIFIED ABSTRACT/EXTRACT--(U) GP-0-PROCESSING DATE--04DECTO NO. 62 120 RECONSTRUCTIVE PLASTIC OPERATIONS WERE PERFORMED. ABSTRACT. AT THE MOSCOW ONCOLOGICAL HOSPITAL AND PLASTIC REPAIR OF TRACHEAL BIFURCATION WERE DONE IN 26 CASES. CANCER OF THE UPPER LOBE BRONCHUS OF THE RIGHT LUNG WITH INVOLVEMENT OF THE MAIN BRONCHUS, TRACHEOBRONCHIAL ANGLE AND CARINA OF TRACHEAL BIFURCATION SURVED AS AN INDICATION TO RESECTION. RIGHT SIDED PULMONECTOMY WITH CIRCULAR AND WEDGE LIKE RESECTION OF TRACHEAL BIFURCATION HERE PERFORMED IN 7 PATIENTS, CIRCULAR RESECTION OF TRACHEAL BIFURCATION WITH UPPER LOBECTOMY ON THE RIGHT SIDE WAS DONE IN ONE CASE. IN THIS GROUP OF PATIENTS AN END TO END ANASTOMOSIS WAS FORMED BETWEEN THE LEFT MAIN BRONCHUS AND TRACHEA. ONE PATIENT UNDERWENT A CIRCULAR RESECTION OF THE THORACIC TRACHEA FOR MALIGNANT TUMOR WITH AN END TO END THE REMAINING PATIENTS WERE SUBJECTED TO UPPER AND LOWER LOB BILOBECTOMY WITH RESECTION OF THE CARINA OF TRACHEAL BIFURCATION, TRACHEOBRONCHIAL ANGLE AND LATERAL WALL OF THE TRACHEA. AN ANASTOMOSIS WAS ESTABLISHED BETWEEN THE BRONCHUS OF THE REMAINING PART OF THE LUNG. MEDIAN WALL OF THE LEFT MAIN BRONCHUS AND PRELIMINARILY PARTIALLY SUTURED LATERAL TRACHEAL WALL. THREE PATIENTS DIED IN THE POSTOPERATIVE IN TWO CASES DEATH WAS DUE TO PNEUMONIA, IN ONE, ACUTE CARDIOVASCULAR INSUFFICIENCY. IN 16 PATIENTS THE OPERATION WAS COMBINED WITH POSTOPERATIVE AND IN 4, WITH PREOPERATIVE GAMMA THERAPY. THE TOTAL FOCAL DOSE AMOUNTED TO 4500-5000 RAD. IN 6 PATIENTS THE OPERATION WAS COMBINED WITH CHEMOTHERAPY; CYCLOPHOSPHAN WAS INJECTED INTRAVENOUSLY IN UNCLASSIFIED

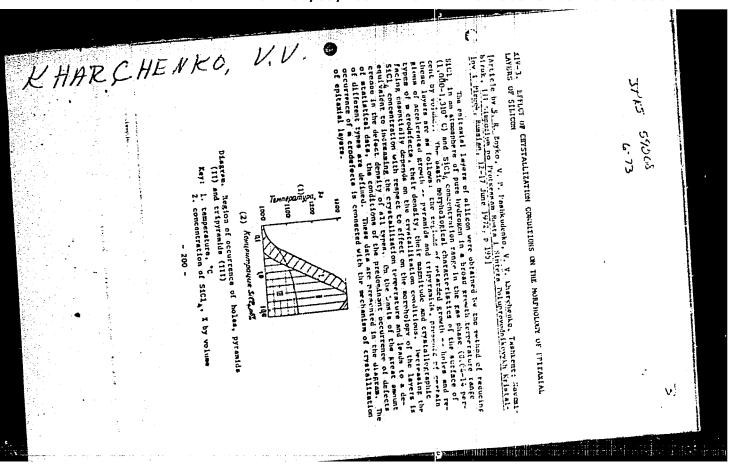

3/3 023	UNCLASSIFIED	PROCESSING DATE	04DEC70
CIRC ACCESSION NOA2013709 ABSTRACT/EXTRACTFOLLOW UP FIVE PATIENTS. THREE OF LYMPH NODES AND TWO INTO KLINICHESKAYA ONKOLOGICHE	RANGING UP TO REVEAL THEM DEVELOPED METAST, OTHER ORGANS.	ED UNFAVORABLE RE	SULTS IN
WAR THE THE PARTY OF THE PARTY	SVATA DUL'NITSA NU. 6		
			•
			:
UN	CLASSIFIED.		




"APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002201310006-6







"APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002201310006-6

UDC: 621.396.621.33

USSR

KHARCHENKO

"Transient Processes in a Circuit With Tracking Frequency Converter"

Kiev, IVUZ Radioelektronika, Vol 15, No 5, May 72, pp 635-640

Abstract: The author considers transient processes in a threshold reduction circuit with tracking frequency converter for reception of signals with analog frequency modulation. It is shown that with certain simplifying assumptions, the given circuit is a third-order servosystem. The nature of the transient processes is determined by the relations between the time constants of the loops rather than by their absolute values. The transient processes can only be oscillatory. The regions of aperiodic and oscillatory transient processes are plotted in the space of circuit parameters, and families of transient characteristics are presented.

1/1

UDC 529.014.2

USSR

KHARCHEVNIKOV, V. P., and OVSYANNIKOV, B. M., Moscow, Central Scientific Research Institute of Ferrous Metallurgy

"Tendency to Brittle Fracture of Low-Carbon Steels Under Tensile Stress"

Kiev, Problemy Prochnosti, No 8, Aug 70, pp 94-98

Abstract: A method is outlined for evaluating the resistance to brittle fracture of two brands of 17G1S steel under tensile stress. Flat samples with initiated cracks of definite size were used. The temperature range of the tests was from 20° to -196°C. Samples were cut from heat rolled sheets 3 mm thick. Resistance to brittle fracture was studied through variation of yield point, strength, elongation per unit length, strength of samples with an initiated crack, and coefficient of stress intensity, with real size of ferrite grain. Grain size was determined after normalizing in the temperature range from 900 to 1250°C in accordance with GOST 5639-65.

The temperature corresponding to fracture without deformation initiation may serve as a criterion for low-carbon steel. The strength, yield point, and elongation of both steel melts were about the same, although they varied a little with grain size.

1/1

UNCLASSIFIED

PROCESSING DATE--13NOV70

TITLE-A PLANE IS GETTING KEADY FOR A TAKE OFF -U-

AUTHOR-KHARCHIKOV. V.

CCUNTRY OF INFO-USSR

SOURCE-SOVETSKAYA LATVIYA, MAY 28, 1970, P 2, COLS 1-6

DATE PUBLISHED-28MAY70

SUBJECT AREAS-AERONAUTICS, MECH., IND., CIVIL AND MARINE ENGR.

TOPIC TAGS-AIRFIELD_AUXILIARY EQUIPMENT, BENDING MACHINE, METAL DRAWING,

BORING MACHINE, AIRCRAFT ENGINE HEATER, INDUSTRIAL PRODUCTION

CONTROL MARKING-NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1991/1257

STEP NO--UR/9019/70/000/000/0002/0002

CIRC ACCESSION NO--ANOII0876

UNCLASSIBLED

PROCESSING DATE--13NOV70 020 UNCLASSIFIED 2/2 CIRC ACCESSION NO--ANOLIO876 ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. LAST YEAR THE RIGA CIVIL AVIATION PLANT ACQUIRED A NEW METAL WORKING AND ASSEMBLY BUILDING AND NEW MACHINERY FOR IT INCLUDING AN ECCENTRIC 130 NON BENDING PRESS, A 160 TON DRAWING OUT PRESS, A BORING MILL AND A BALTERY OF PAINT DRYING CHAMBERS. AS A RESULT, THE PLANT WILL INCREASE THE RATE OF THE AIRPORT EQUIPMENT PRODUCTION, INCLUDING ENGINE PREHEATERS WHICH ARE ONE OF THE PRIME PRODUCTS OF THE PLANT. A. VALIYEY, SUPERINTENDENT OF THE METAL WORKING AND ASSEMBLY DEPARTMENT, T. KOSHELEY AND AL ERNEL, TECHNOLOGISTS OF THE PLANT, ARE MENTIONED. UNCLASSIFIED

USSR

UDC: 621.397.61

SHAPIRO, Ya. A., GALAKHOVA, N. G., VOVSI, L. M., BERLIN, B. A., KHARCHIK-YAN, R. S., VOROB'YEVA, F. Kh.

"Technical Facilities of Television Services of the Soviet-Wide Television Center"

V sb. Televizion. tekhnika (Television Technology--collection of works), Moscow, "Svyaz'", 1971, pp 127-163 (from <u>HZh-Radiotekhnika</u>, No 6, Jun 71, Abstract No 66190)

Translation: Basic data are given on studio and announcer TV cameras, motion picture cameras with TV view finder, cameras for transmitting motion picture films in TV and motion picture projection rooms, and epidiascopic projectors for transmitting transparencies, photos, drawings, etc. The individual elements of the instrument and program unit, central instrument room and video recording unit are described. N. S.

1/1

1/3

UNCLASSIFIED

PROCESSING DATE-- 20NOV70

TITLE--A METHOD FOR FORECASE OF THE AVERAGE MONTHLY TEMPERATURE. COLD AND

HEAT WAVES . AND MONTHLY TOTAL ATMOSPHERIC PRECIPITATIONS IN

AUTHOR-KHARCHILAVA. E.T.

CCUNTRY OF INFO-USSR

SOURCE-LENINGRAD, GIDRUMETEDIZDAT, 1970, 256 PP

DATE PUBLISHED----70

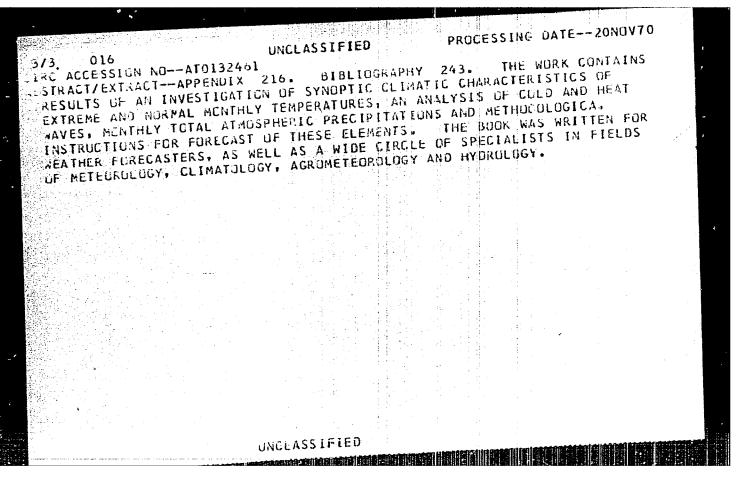
SUBJECT AREAS-ATMOSPHERIC SCIENCES

TOPIC TAGS-LCNG RANGE WEATHER FORECAST, ATMOSPHERIC PRECIPITATION, ATMOSPHERIC CIRCULATION, ATMOSPHERIC TEMPERATURE

CENTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3005/0184

STEP NO--UR/0900/T0/000/000/0001/0256


CIRC ACCESSION NO--ATO132461

UNCLASSIFIED

PROCESSING DATE--20NOV70 UNCLASSIFIED 2/3 0.16 CIRC ACCESSION NO--AT0132461 TABLE OF CONTENTS: PREFACE 3. ABSTRACT. ABSTRACT/EXTRACT--(U) GP-0-PART I. CHAPTER I THE MUST RECENT INVESTIGATIONS DEALING WITH GENERAL ATMOSPHERIC CIRCULATION AND LONG RANGE WEATHER FORECASTS 8. ΙI CLIMATIC CHARACTERISTICS OF AVERAGE MONTHLY ANDMAULES OF TEMPERATURE AND TOTAL PRECIPITATIONS IN TRANSCAUGASIA AND THE DAGESTAN ASSR 45. CHARACTERISTICS OF MONTHLY ATMOSPHERIC CIRCULATION OVER EURASIA AND WEATHER CONDITIONS IN TRANSCAUCASIA AND THE DAGESTAN ASSR 54. CHARACTERISTICS OF MACROCIRCULATION ATMOSPHERIC PROCESSES WHICH DETERMINE THE EXTREME ANOMALIES OF TEMPERATURE (PEUS OR MINUS EDEGREES AND MORE) AND ATMOSPHERIC PRECIPITATIONS IN TRANSCAUCASIA AND THE DAGESTAN ASSR 69. V INVESTIGATION OF EXTREME MONTHLY TEMPERATURE ANOMALIES IN TRANSCAUCASIA AND THE DAGESTAN ASSR 87. POSITION OF ٧I PLANETARY HIGH ALTITUDE FRONTAL ZONES IN EXTREMELY WARM AND COLD MONTHS. AS WELL AS DURING MONTHS WITH AN EXCESS OR SHORTAGE OF PRECIPITATIONS CHAPTER I MONTHLY CHARACTERISTICS OF COLD AND HEAT PART II. 109 . II MONTHLY CHARACTERISTICS OF COLD AND HEAT 114. WAVES IN KUTAISI III SYNOPTIC CONDITIONS IN FORMATION OF COLD AND WAVES IN BAKU 150. HEAT WAVES IN TRANSCAUCASIA AND THE DAGESTAN ASSR 182. PART III. CHAPTER I INSTRUCTIONS FOR FORECASE OF ANOMALIES OF AVERAGE MONTHLY TEMPERATURES AND TOTAL PRECIPITATIONS 194. II INSTRUCTIONS FOR FORECAST OF COLD AND HEAT WAVE PERIODS IN TRANSCAUGASIA AND THE DAGESTAN MAIN STAGES OF OPERATIONS NECESSARY FOR COMPILATION OF ASSR 197. IIIFORECASTS OF ANCMALIES OF AVERAGE MONTHLY TEMPERATURES. COLD AND HEAT WAVES AND TOTAL MONTHLY PRECIPITATIONS 211. CONCLUSION

UNCLASSIFIED

ح و

4

UDC 619:616.981.51-036.21

USSR

BONDARENKO, G. F., POGREBNYAK, L. I., DUBROVIN, Ye. I., KHARCHUK, A. N., and SHEPCHENKO, V. U., Ukrainian Scientific Research Institute of Experimental Veterinary Science

"Some Problems of the Epizootiology of Anthrax"

Moscow, Veterinariya, No 6, Jun 73, pp 48-50

Abstract: In the period 1949-1970, the number of outbreaks of anthrax of farm animals, the incidence of anthrax among these animals, and the mortality rate of animals from anthrax decreased in the UkrSSR by factors of 11.1, 12.8, and 11.5, respectively. The incidence of anthrax of cattle increased from 57.2 to 73.8%, with the cattle owned by the population being affected to the principal extent, while that of sheep and goals decreased. Anthrax of hogs increased. The number of outbreaks of the disease and of the animals affected by it during the period under consideration were highest in the forest-steppe zone of the UkrSSR, being followed by the Steppe, Carpathian mountains and foothills, and forest zone, in that order. Of all identified stationary points unsatisfactory from the sanitary standpoint with respect to anthrax, 77.7% have been inactive for more than 11 yrs. 1/2

- 83 -

"APPROVED FOR RELEASE: 08/09/2001 CIA-

CIA-RDP86-00513R002201310006-6

USSR

BONDARENKO, G. F., et al., Veterinariya, No 6, Jun 73, pp 48-50

The number of such points that were newly recorded decreased vs. 1946 by a factor of 25.7 on the average in 1966-1970 and by a factor of 40 in 1970. One of the conditions that contributes to the persistence of outbreaks is the presence of Bac. anthracis in the soil at locations of old cattle burying grounds. Research is being conducted on the isolation from burying grounds. Research is being conducted antibacterial activity infected soil of actinomycetes with a heightened antibacterial activity towards Bac. anthracis with the view of applying these actinomycetes for the decontamination of cattle burying grounds.

2/2

USSR

UDC 669.24.42:669.25.42

KHARCHUK, M. D., CHERÆNSKIY, V. I., SIDORENKO, R. A., Ural Polytechnic Institute, Department of Semiconductor and Electrovacuum Machine Building

"Desulfurization of Cobalt, Nickel, and Their Eutactic Alloys with Carbon During Crucibleless Zone Melting in a Vacuum"

Ordzhonikidze, Izvestiya vysshikh uchebnykh zavedenii SSSR, Tsvetnaya Metallurgiya, No 3, 1972, pp 47-50

Abstract: A procedure has been developed to obtain superpure cobalt and nickel with respect to sulfur required to study the processes of embossing of graphite in cast iron. The procedure is analogous to that described previously by Chermenskiy, et al. [Izv. AN SSSR, Metally, No 1, 27, 1971]. NKS-0 nickel, KP-1 cobalt, and MGOSCh graphite were used as the initial materials. The sulfur content was controlled by means of the S-35 isotope, additions of which did not exceed (1-2) × 10⁻⁴%. The metals were melted at a displacement rate of the liquid zone (f) of 2 mm/min, and the alloys with carbon, 1 mm/min. Figures are presented showing the distribution curves of the sulfur after 1 and 3 passes through zone melting. The effective distribution coefficients of the sulfur, the coefficients and specific rates of its evaporation in each of the materials near their melting points were determined. In the iron subgroup, the distribution coefficients and the specific rates of evaporation of sulfur decrease from 1/2

USSR

KHARCHUK, M. D., et al., Izvestiya vysshikh uchebnykh zavedenii SSSR, Tsvetnaya Metallurgiya, No 3, 1972, pp 47-50

iron to nickel; the sulfur distribution coefficients in the corresponding eutectic alloys with carbon vary analogously. After three passes through crucible-less zone melting in a vacuum, nickel was obtained with a sulfur content of $2 \cdot 10^{-5}$ %, and after 5 passes, cobalt containing less than $2 \cdot 10^{-6}$ % S.

2/2

USSR

UDC 576.311.1

GARYEYEV, P. P., KHARCHUK, O. A., and POGLAZOV, B. F., Laboratory of Bioorganic Chemistry, Moscow State University imeni M. V. Lomonosov, Moscow

"Study of Denaturation of Some Structural Virus Proteins by the Method of Optical Rotatary Dispersion"

Moscow, Biokhimiya, Vol 37, No 6, Nov-Dec 72, pp 1210-1214

Abstract: Aqueous solutions of tobacco mosaic virus protein had an optical activity spectrum in the 230-350 m.U range typical for proteins in organic solvents. The protein denatured to the maximum extent with alkali had an optical activity spectrum characteristic for proteins in aqueous solutions. Solutions corresponding to intermediate stages of denaturation showed a stepwise transition from a virtual organic solvent solution state to an aqueous solution state. The spectra, which were determined on a spectropolarimeter, reflected the relative content of the α -helix on the surface of the protein. In the undenatured globular protein, the α -helix sections were hidden within the globules - i.e., they were in a medium resembling an organic solvent. As denaturation proceeded, the globules unfolded and the contacts of the α -helix parts with H2O increased.

1/1

69 -

USSR

UDC 547.26'118

KARGIN, YU. N., SMIRNOV, A. N., USHCHENKO, V. P., and KHARDIN, A. P.

"Synthesis of B-Hydroxyethyl Dialkyl(diaryl)phosphinates"

Leningrad, Zhurnal Obshchey Khimii, Vol 42(104), Vyp 4, 1972, p 955

Abstract: The addition of ethylene oxide to dialkyl- or diarylphosphinic acid goes easily without a catalyst forming the title product as follows:

$$\begin{array}{c} \underset{R}{\overset{POH}{\longrightarrow}} + \underset{O}{\overset{CH_2-CH_2}{\longrightarrow}} \xrightarrow{R} \underset{R}{\overset{POCH_2CH_2OH}{\longrightarrow}} \end{array}$$

for $R = CH_3$, C_2H_5 , C_6H_5 . The reaction was carried out in tetrahydrofuran and dioxane solutions and without a solvent. The structure of the product was confirmed by elemental analysis, optical rotation, and IR spectra.

1/1

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002201310006-6"

1/2 015 UNCLASSIFIED PROCESSING DATE--090CT70
TITLE--FUNCTIONAL ORGANIC PEROXIDES. V. HALDACYL PEROXIDES -U-

AUTHOR-(04)-SHREYBERT, A.I., KHARDIN, A.P., KICALNIKOVA, R.I.,

YERMARCHENKO, V.I.
COUNTRY DF INFO--USSR

SOURCE-- ZH. ORG. KHIM. 1970, 613) 466-8

DATE PUBLISHED----70

SUBJECT AREAS-CHEMISTRY, ORDNANCE

TOPIC TAGS--ORGANIC PEROXIDE, EXPLOSIVE, BENZENE DERIVATIVE, SODIUM

CONTROL MARKING-NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME-+1992/1576

STEP NO--UR/0366/70/006/003/0466/0468

CIRC ACCESSION NO--APOLIZETO

UNCLASSIFIED

UNCLASSIFIED PROCESSING DATE——090CT70

CIRC ACCESSION NO——APO112570

ABSTRACT/EXTRACT——1U) GP—0— ABSTRACT. THE REACTION OF 2RCOCL HITH NA
SUB2 O SUB2 GAVE 55—60PERCENT (RCO) SUB2 O SUB2 (R IS ME—CCL SUB2, CLCH
SUB2 CGL SUB2, BRCH SUB2 CH SUB2, OR ME SUB2 CCL). SIMILARLY, 2 RC—OCL
REACTED WITH BZOONA TO GIVE RCO SUB2 OBZ (R AS ABOVE). THESE COMPOS.

EXPLODE DURING SOTRAGE AT 20—5DEGREES.

UNCLASSIFIED

UNCLASSIFIED

and the second of the control of the

1/2 052 UNCLASSIFIED PROCESSING DATE--020CT70

TITLE--THE ACTION OF PULSED SHOCK WAVES ON POLYMERS -U-

AUTHOR-(04)-VINOGRADOVA, N.G., PAVLOV, A.I., PASHKOV, P.D., KHARDIN, A.P.

COUNTRY OF INFO--USSR

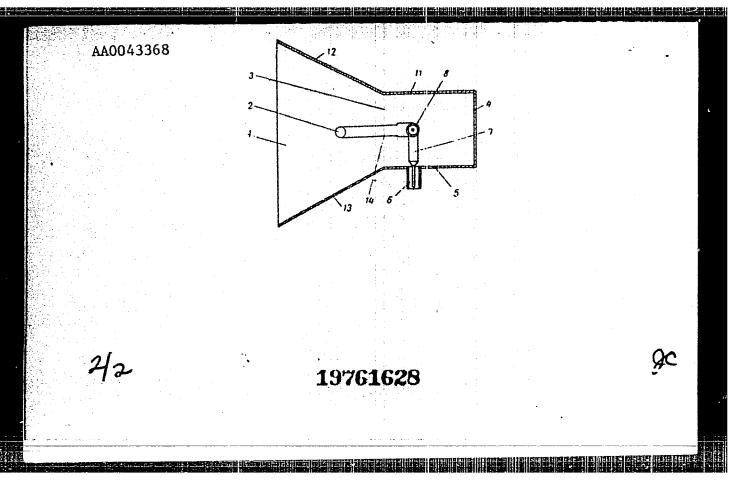
SDURCE--MEKH. PCLIM. 1970, 6(1) 76-80

DATE PUBLISHED----70

SUBJECT AREAS-MATERIALS, CHEMISTRY, PHYSICS

TOPIC TAGS--SHOCK WAVE, POLYMETHYLMETHACRYLATE, NYLON, TEFLON, VIBRATION EFFECT, COMPRESSIVE STRESS, ANISOTROPY, POLYMER PHYSICAL PROPERTY

CONTROL MARKING--NU RESTRICTIONS


DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1992/0329

STEP NO--UR/0374/70/005/001/0075/0080

CIRC ACCESSION NU--APO111523

UNCLASSIFIED

PROCESSING DATE--020CT70 052 UNCLASSIFIED 2/2 CIRC ACCESSION NO--APOLITISES ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. PULY(HE METHACRYLATE), NYLON 6, OR TEFLON WERE COVERED WITH A STEEL PLATE AND SUBJECTED TO A SINGLE SHOCK WAVE IMPACT OR MULTIPLE, VIBRATIONAL IMPACTS. IN THE LATTER CASE A CHARGE WAS EXPLODED ON THE STEEL PLATE COVERING THE POLYMER, WHICH WAS SUPPORTED BY ANOTHER STEEL PLATE. DUE TO THE DIFFERENCES IN THE ACCOUSTICAL D. OF STEEL AND PLASTICS THE SHOCK WAVE WAS REFLECTED AND THE PLASTIC SUBJECTED TO REPEATED COMPRESSIONS. THE METHOD PERMITTED TO APPLY SMALLER THAN OR EQUAL TO 350 KILOBARS PRESSURE TO THE POLYMERS WITHOUT DESTRUCTION. SUCH SHOCK WAVES DECREASED THE ANISOTROPY OF POLYMERS AND THEIR D. UNCLASSIFIED

USSR

K

UDC 621.372.85(088.8)

KHARECHKIN, N. A., ARASLANOV, D. F.

"Power Divider"

USSR Author's Certificate No 248803, Filed 8 Jun 67, Published 15 Jan 70 (from RZh-Radiotekhnika, No 9, Sep 70, Abstract No 98151P)

Translation: The proposed coaxial power divider contains an outer tube and three quarter wave coaxial sleeves which are closed by ring connectors at the base on the outer tube, an inside conductor and 16 coaxial outputs of identical wave impedance which are arranged on the outer tube in different cross sections of the divider in identical groups of four outputs each with an interval between cross sections equal to the height of the sleeves. The internal conductor of the four coaxial outputs on the base of the divider are connected to the internal conductor of the divider. The internal conductors of the remaining 12 outputs are connected in groups of four to the three $\lambda/4$ -sleeves. The wave impedances of the four sections of the divider coaxial are equal to the total loads connected to these segments, and they increase stepwise from the base to the input of the divider as the loads are connected. Variation of the wave impedance is achieved in steps by varying the diameter of the inside conductor of the divider or by varying the outside diameter of the coaxial. The power coming to the divider input 1/2

USSR

KHARECHKIN, N. A., et al., <u>USSR Author's Certificate No 248803</u>, Filed 8 Jun 67, Published 15 Jan 70 (from <u>RZh-Radiotekhnika</u>, No 9, Sep 70, Abstract No 9B151P)

is divided evenly between the groups of outputs and all the outputs of the divider. The phase at the divider outputs is delayed with respect to the phase at the input by an amount proportional to the ratio of the length of the coaxial from the divider input to the corresponding output to λ . The phase shift between the first group of outputs from the divider input and all the remaining ones increases from group to group by 90° on the middle frequency of the operating band. The design of the divider insures an increase in its wide band nature and improvement of uniformity of power division. There is one illustration.

2/2

USSR

TIMOFEYEV, A. V., UDOVICHENKO, S. P., KHARICHEV, V. V., SHMIDT, A A.

"Full and Continuous Systems of Invariants in a Pattern Recognition Problem"

Vestn. Leningr. Un-ta [Herald of Leningrad University], 1972, No 19, pp 143-144 (Translated from Referativnyy Zhurnal Kibernetika, No 4, 1973, Abstract No 4V700, by the authors).

Translation: A problem of recognition of classes of images which are invariant relative to groups of transforms is studied. Definitions are presented and full and continuous systems of invariants of the group of shifts, rotations and similarity transforms frequently encountered in applied pattern recognition problems are constructed.

- 105 -

1/1

8.74 UDC:

USSR

TIMOFEYEV, A. V., KHARICHEV, V. V., SIMIDT, A. A., YAKUBOVICH, V. A.s

"A Problem in Pattern Recognition and Description"

Kiev, Biol., med. kibernet. i bionika, sbornik (Biology, Medical Cybernetics and Bionics--collection of works), 1971, pp 364-375 (from RZh-Kibernetika, No 10, Oct 72, abstract No 10V660 by E. Vagner)

Translation: In the teaching mode, images are presented to a computer, each of which is accompanied by its "description" in word form. The "content" of the words of the descriptions is not communicated to the computer, and it learns on its own to "understand" the simplest concepts. In the recognition mode, only the images are presented to the computer; the machine itself constructs their descriptions, which become the "butput". In this connection, the computer also constructs descriptions hich have not been presented during teaching. The words of the description are broken down in the teaching process into "adjection are broken down in the teaching process into "adjection".

1/2

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002201310006-6" USSR

TIMOFEYEV, A. V. et al., Biol. med. kibernet. i bionika, 1971, pp 364-375

tives" associated with different groups of image transformations, and "nouns" which are invariant with respect to these groups. Each image is a set of n points, where n is always less than some fixed N. In other words, a set of n complex numbers is assigned. A family of transformations consisting of a group of rotations about the coordinate source, similarity transformations, and horizontal and vertical translations can be applied to this set. A complete system of invariant functions can be constructed, which are given on the set of all images and do not change their value with any transformations of any image. In the recognition mode, the computer calculates the values of the invariants of the image presented, compares them with the corresponding values for the images of the teaching sequence, and determines the noun of the description. Then, in accordance with the recognition of the center of gravity of the image, its dimensions, and the angle of turn, the adjectives are found.

2/2

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002201310006-6"

UNCLASSIFIED PROCESSING DATE--160CT70

1/2 012

TITLE--EFFECT OF POWDERED ADDITIVES ON THE PROPERTIES OF AMMUNIUM NITRATE

AUTHOR-(04)-GANZ, S.N., VILESOV, G.I., DOBROVELSKIY, YE.I., KHARICHKOV,

COUNTRY OF INFO--USSR

SOURCE--KHIM. PROM. UKR, 1970, (1), P 10-11

DATE PUBLISHED----70

. 1

SUBJECT AREAS -- AGRICULTURE

TOPIC TAGS--AMMONIUM NITRATE, WASTE CHEMICAL CONVERSION, LINC OXIDE, MAGNESIUM, CALCIUM CARBONATE, CALCIUM SULFATE, MINERAL FERTILIZER

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1993/0385

STEP NO--UR/0436/70/000/001/0010/0011

CIRC ACCESSION NO--APOLI3303

UNCLASSIFIED

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002201310006-6"

UNCLASSIFIED PROCESSING DATE-160CT70

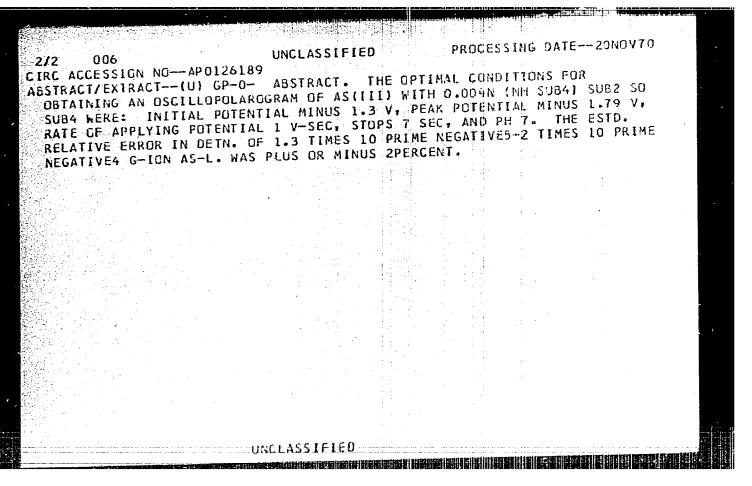
2/2 012

CIRC ACCESSION NO--APO113303

ABSTRACT/EXTRACT--(U) GF-O- ABSTRACT. WASTE FROM PRODUCTION OF ZNO

ABSTRACT/EXTRACT--(U) GF-O- ABSTRACT. WASTE FROM PRODUCTION OF ZNO

PIGMENT AND SLIME FROM MN MINES WERE DRIED AND MIXED IN THE RATID OF 3


PIGMENT AND SLIME FROM MN MINES WERE DRIED AND MIXED IN THE STORAGE LIFE OF MIXT., CONTG. ALL TRACE ELEMENTS REQUIRED FCR FERTILIZING, WAS ADDED TO MIXT., CONTG. ALL TRACE ELEMENTS REQUIRED FCR FERTILIZING, WAS ADDED TO MIXT., CONTG. ALL TRACE ELEMENTS TO PHOLONG THE STORAGE LIFE OF NH SUB4 NO SUB3 (1, 3, 5, OR 6PERCENT) TO PHOLONG THE STORAGE LIFE OF NH SUB4 NO SUB3 (1, 3, 5, OR 6PERCENT) TO PHOLONG THE STORAGE LIFE OF NH SUB4 NO SUB3 (1, 3, 5, OR 6PERCENT) TO PHOLONG THE STORAGE LIFE OF NH SUB4 NO SUB3 (1, 3, 5, OR 6PERCENT) TO PHOLONG THE STORAGE LIFE OF NH SUB4 NO SU

PROCESSING DATE-110EC70 TITLE--ESCILLUPCLAFEGRAPHIC DETERMENATION OF THE COMPOSITION OF NICHROME FILES SPRAYED ON A SCLID SUBSTRATE IN VACUO -U-AUTHOR-(04)-LYAKUVA, A.P., SEMYACHKO, G.YA., KHARIN, A.N., DYAKOV, V.I. COUNTRY OF INFO-USSR SOURCE--ZH. PRIKL. KHIM. (LENINGRAD) 1970, 43(3), 593-6 DATE PUBLISHED ----- 70 . SUBJECT AREAS -- CHEMISTRY, MATERIALS TOPIC TAGS--PCLARCGRAPHIC ANALYSIS, NICKEL, CHROMIUM, METAL COATING, CHEMICAL ANALYSIS, NICHROME ALLOY CONTROL MARKING-NO RESTRICTIONS STEP NO--UR/0080/70/043/003/0593/0596 DOCUMENT CLASS--UNCLASSIFIED PRGXY REEL/FRAME--3004/0954 CIRC ACCESSION NO--APO131539 UNCLASSIFIED

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002201310006-6"

NEGATIVE 1.3 V FOR CR. FACILITY: TAGANRCG. RADIOTEKH. INST., PLUS OR MINUS 3PERCENT. TAGANROG. USSR.	UNCLASSIFIED PROCESSIA DATE11DEC70 2/2 023 CIRC ACCESSICN NOAPOI31539 ABSTRACT/EXTRACT(U) GP-0- ABSTRACT. NICHROME FILM SAMPLE WAS DISSOLVED ABSTRACT/EXTRACT(U) GP-0- ABSTRACT. NICHROME FILM SAMPLE WAS DISSOLVED IN 5-7 ML HCL WITH HEATING AND THE SCLN. WAS EVAPO. THE IN 5-7 ML HCL WITH HEATING AND THE SCLN. WAS EVAPO. THE OSCILLOPOLARCGRAPHIC ANAL. WAS PERFORMED IN A 1 M NH SUB4 CL PLUS IM NH OSCILLOPOLARCGRAPHIC ANAL. WAS PERFORMED IN A 1 M NH SUB4 CL PLUS IM NH SUB4 CH BUFFER; THE INITIAL VOLTAGE WAS NEGATIVE 0.7 V FOR NI AND SUB4 CH BUFFER; THE INITIAL VOLTAGE WAS NEGATIVE 1.3 V FOR CR. O WAS REMOVED BY N BUBBLING. THE ERROR WAS NEGATIVE 1.3 V FOR CR. O WAS REMOVED BY N BUBBLING. RADIOTEKH. INST.,				
TASANRŪG. USSK.	PLUS OR HINUS SPERCENT.	EVCTT1A: 140	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
UPCLASSIFIED.	TAGANROG. USSR.				
UNCLASSIFIED.	해양보험하는 보통하는 이 생활이 되었다. 목사이라는 사람들이 되었다.				
UPCLASSIE IED	경험 위에 시간되었다. 그 시간 이 시간		在1000年(1000年) 1800年9月 - The Company of Comp		
U.C.A.SSIFIED	꽃을 보는 다른 사람이 되었다. 그런 				
UPCLASSIFIED.	취임하는 이 기계를 하는 것이 되었다. 휴대에 가는 문화에 가는 사람들은 기계를 하는 것이 되었다.	一定門 军营业 建建油锅 计			
UPCLASSIFIED					
UPCLASSIFIED					
UNCLASSIFIED					
UPCLASSIFIED.	선택되는 경기 등에 가는 사람들이 되었다. 육대한 장상 기본 등에 되었다.				
UNCLASSIFIED					
UNCLASSIFIED.	SSE TO THE TOTAL THE TOTAL TO T				
UNCLASSIFIED					
UNCLASSIFIED	명합 사회의 이 원인 생각이 있는 것이 있는 것이 없는 것이다. 범학자 전 기가 되었다면 보다 있는 것이 되었다.				
		LCIASSIFIED	<u> </u>		

A CONTRACTOR OF THE PROCESSING DATE-- 20NOV70 UNCLASSIFIED TITLE-OSCILLOPOLAROGRAPHIC CHARACTERISTICS OF ARSENIC III -U-AUTHOR-(04)-DYAKOVA, A.P., KHARIN, A.N., LOMAKINA, T.P., DYAKOV, V.I. COUNTRY OF INFO-USSR SCURCE-ZH. PRIKL. KHIM. (LENINGRAD) 1970, 4314), 917-20 DATE PUBLISHED -----70 SUBJECT AREAS-CHEMISTRY TUPIC TAGS--ARSENIC, POLAROGRAPHY CENTROL MARKING-NO RESTRICTIONS DECUMENT CLASS--UNCLASSIFIED STEP NO-UR/0080/70/043/004/0917/0920 PROXY REEL/FRAME--3001/0436 CIRC ACCESSION NO--APO126189 UNGLASSIFIED

1/2 038 UNCLASSIFIED

PROCESSING DATE--27NOV70

TITLE--DESERT AIR LABORATORY -U-

AUTHOR-KHARIN, N.

COUNTRY OF INFO--USSR

SOURCE--TURKMENSKAYA ISKRA, AUGUST 14, 1970, P 4, COLS 1-4

DATE PUBLISHED--14AUG 70

SUBJECT AREAS--METHODS AND EQUIPMENT, EARTH SCIENCES AND OCEANOGRAPHY

TOPIC TAGS--AERIAL PHOTOGRAPHY, DESERT, IR SPECTRUM

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3008/1785

STEP ND--UR/9026/70/000/000/0004/0004

CIRC ACCESSION NO--ANOI38736

UNCLASSIFIED

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002201310006-6"

PROCESSING DATE--27NOV70. UNCLASSIFIED 2/2 038 CIRC ACCESSION NO--ANO138736 ABSTRACT. THE LABORATORY OF AERIAL METHODS ABSTRACT/EXTRACT--(U) GP-0-OF THE TURKMEN REPUBLIC WAS FOUNDED IN 1964. ITS MISSION IS TO DEVELOP AERIAL METHODS THAT CAN BE USED IN STUDIES OF DESERTS. N. K. KELL, CORRESPONDING MEMBER OF THE TURKMEN ACADEMY OF SCIENCES, WAS INSTRUMENTAL IN ESTABLISHING THE SOVIET SCHOOL OF AERIAL PHOTO THE AUTHOR CLAIMS THAT SOME OF THE SOVIET FILMS, SUCH AS INTERPRETERS. THE "SPECTROZONAL" FILM, FOR EXAMPLE, ARE SUPERIOR TO THAT OF THEIR WESTERN COUNTERPARTS. THE SOVIET SPECTROZONAL FILM IS SENSITIVE TO THE THE AUTHOR OF THE ARTICLE HAS VISIBLE AS WELL AS INFRARED SPECTRA. COMPILED A MANUAL THAT LISTS THE BEST TIMES OF THE YEAR FOR TAKING AERIAL PHOTOGRAPHS OF CERTAIN REGIONS OF THE SOVIET UNION USING THE NEW FILMS. A. BABAYEV, CANDIDATE OF BIOLOGICAL SCIENCES, HAS DEVELOPES A CARTOGRAPHY TECHNIQUE WHICH EMPLOYS AERIAL PHOTOGRAPHS OF DESERT VEGETATION.

UNCLASSIFIED

PROCESSING DATE--11SEP70 UNCLASSIFIED

TITLE--EFFECT OF TEMPERATURE ON A LIQUID VAPOR EQUILIBRIUM IN AN ETHANOL

WATER PROPONAL SYSTEM -U-AUTHOR--PERELYGIN, V.M., REMIZOV, G.P., KHARIN, S.YE.

COUNTRY OF INFO--USSR

SOURCE-IZV. VYSSH. UCHEB. ZAVED., PISHCH. TEKHNOL. 1970, (1), 122-6

DATE PUBLISHED----70

SUBJECT AREAS--CHEMISTRY

TOPIC TAGS -- PHASE EQUILIBRIUM, ETHANOL, WATER, PROPANOL, VAPORIZATION, THERMAL EFFECT

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1989/1554

STEP NO--UR/0322/70/000/001/0122/0126

CIRC ACCESSION NO--ATO107974

1/2 015 UNCLASSIFIED

PROCESSING DATE--11SEP70

TITLE--LIQUID VAPOR PHASE EQUILIBRIUM IN WATER FURFURAL AND ETHANOL

FURFURAL SYSTEMS -U-

AUTHOR-KHARIN, S.YE., PERELYGIN, V.M.

COUNTRY OF INFO--USSR

SOURCE--GIDROLIZ. LESOKHIM. PROM. 1970, 23(2) 15-16

DATE PUBLISHED----70

SUBJECT AREAS--CHEMISTRY

TOPIC TAGS -- PHASE EQUILIBRIUM, FURFURAL, WATER, ETHANOL

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1989/0209

STEP NO--UR/0328/70/023/002/0015/0016

CIRC ACCESSION NO--AP0106865

____UNCLASSIFIED

PROCESSING DATE--11SEP70 UNCLASSIFIED 2/2 CIRC ACCESSION NO--APO106865 ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. LIQ. VAPOR EQUIL. IN THE 2 TITLE SYSTEMS WAS CONDUCTED BY THE METHOD DESCRIBED IN AN EARLIER REPORT (K., P., AND REMIZOV, 1967), AT 50, 65, AND SODEGREES AND AT THE B.P. (760 MM). THE SOLNS. WERE PREPD. FROM REDISTD. WATER, ABS. ETOH, AND FURFURAL (I). THE COMPN. OF THE EQUIL. PHASES WAS DETD. BY ANAL. FOR I BY THE OXIMATION METHOD. IN THE DISTN. OF THE WATER I SYSTEM WITH A LOW CONTENT OF I (SOLNS. OF I IN WATER), I CONSTITUTES THE HEAD FRACTION: WHILE AT HIGH I CONTENTS (SOLNS, OF WATER IN I), IT CONSTITUTES THE TAIL FRACTION. IN THE SYSTEM ETOH-I, I IS THE TAIL FRACTION WITHIN THE WHOLE RANGE OF THE BINARY SYSTEM COMPN. IN BOTH SYSTEMS, THE VOLATILITY OF I IS HIGHER AT LIGHER TEMPS. EQUATIONS ARE DERVIED FOR THE CALCH. OF THE COMPN. OF THE EQUIL. VAPOR IN BOTH SYSTEMS AS A FUNCTION OF THEIR COMPN. AT 50-80DEGREES AND AT 8.P. (760 MM).

UNCLASSIEIED

1/2 013 UNCLASSIFIED PROCESSING DATE--160CT70
TITLE--EFFECT OF MELANDIDIN FORMATION ON THE ACID RESISTANCE OF MALT BETA
AMYLASE -U-

AUTHOR-(03)-ZHEREBTSOV, N.A., KHARIN, S.YE., KRAYUSHKINA, E.A.

COUNTRY OF INFO--USSR

SOURCE-PRIKL. BIOKHIM. MIKROBIOL. 1970, 6(1), 51-7

DATE PUBLISHED ---- 70

SUBJECT AREAS--BIOLOGICAL AND MEDICAL SCIENCES

TOPIC TAGS -- INHIBITION, AMYLASE, HEPARIN, PROTEIN

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1990/0962

STEP NO--UR/0411/70/005/001/0051/0057

CIRC ACCESSION NO--APO109119

UNCLASSIFIED

2/2 013	UNCLASSIFIED	PROCESSING DATE160CT70	
CIRC ACCESSION NOAPO10911 ABSTRACT/EXTRACT(U) GP-O- MELANOIDINS ON BETA AMYLA OF THESE COMPDS. BETA AM	9 ABSTRACT. THE INHIB SE SEEM TO BE RELATED YLASE ACTIVITY IN ACID	MEDIA WAS STRONGLY INCLUDING HEPARINA	
TANNIN, AND PROTEIN DEAMIS MALT BETA AMYLASE BY HIGH INCREASING CONCN OF H PRI	MOL. WT. ACIDIC CUMPO ME POSITIVE.	S. SEEMS TO DECREASE WITH	
TECHNOL. INST., VORONEZH,	USSK.		
	NCLASSIFIED		

1/2 008 UNCLASSIFIED PROCESSING DATE--230CT70
TITLE--KINETICS OF THE DECOMPOSITION OF SOME AMINO ACIDS IN RELATION TO PH

AUTHOR-(03)-KHARIN, S.E., KOLCHEVA, R.A., SAPRONOV, A.R.

COUNTRY OF INFO--USSR

SOURCE--FERMENT. SPIRT. PROM. 1970, 36(2), 21-3

DATE PUBLISHED ---- 70

SUBJECT AREAS -- BIOLOGICAL AND MEDICAL SCIENCES

TOPIC TAGS -- AMINO ACID, CHEMICAL DECOMPOSITION, HYDROGEN ION CONCENTRATION

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1997/0795

STEP NO--UR/0071/70/036/002/0021/0023

CIRC ACCESSION NO--APOL19702

UNCLASSIFIED

PROCESSING DATE--230CT7C UNCLASSIFIED 008 CIRC ACCESSION NO--APO119702 ABSTRACT. BUFFERED SOLNS. OF 0.2 MOLE-L. OF ABSTRACT/EXTRACT--(U) GP-0-BOTH MONOBASIC AND DIBASIC AMINO ACIDS WERE MADE TO UNDERGO DECOMPOSITION 5 HR AT 130 DEGREES AT VARIOUS PH VALUES, ESP. 5-7. THE GREATEST AND FASTEST DECOMPNS. OCCURRED CLOSE TO THE ISOELECTRIC POINT OF THE AMINO ACIDS: BOTH IN THE MORE ACID OR MORE ALK PH REGIONS THE ACTOS WERE MORE STABLE; AT PH 1 THE DECOMPN. WAS SLOWED DOWN TO ONE TENTH OF THE VALUE AT THE ISOELECTRIC POINT, AND AT PH 10 THE DECOMPN. DROPPED ALMOST TO ZERO. FACILITY: VORONEZH. TEKHNOL. INST., VORONEZH, USSR. UNCLASSIFIED

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002201310006-6"

1/2 024 UNCLASSIFIED PROCESSING DATE--300CT70
TITLE--PHYSICOCHEMICAL AND THERMOPHYSICAL VALUES OF SOME THREE COMPONENT

SYSTEMS -U-

AUTHOR-103)-KHARIA. S.YE., SOROKINA, G.S., KHARIN, V.M.

CCUNTRY OF INFO-USSR

SOURCE-IZV. VYSSH. UCHEB. ZAVED. PISHCH. TEKHNOL. 1970, (2), 58-69

DATE PUBLISHED ---- 70

SUBJECT AREAS-CHEMISTRY

TOPIC TAGS—CALCULATION, SURFACE TENSION, SPECIFIC DENSITY, FLUID VISCOSITY, HEAT CONDUCTIVITY, PHYSICAL CHEMICAL PROPERTY, ALCOHOL, WATER, METHANOL, ETHANOL, ETHYL ETHER, ALDEHYDE

CONTROL MARKING-NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--2000/0952

STEP. NO---UR/0322/70/000/002/0058/0069

CIRC ACCESSION NO--APO124612

UNCLASSIFIED

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002201310006-6"

UNCLASSIFIED PROCESSING DATE—300CT70

2/2 024

CIRC ACCESSION NO—APO124612

ABSTRACT/EXTRACT—(U) GP-O— ABSTRACT. EQUATIONS ARE GIVEN FOR CALCG. D.,

REFRACTION, VISCOSITY, SURFACE TENSION, AND HEAT COND. OF SYSTEMS H SUB2

Q-EIOH—X. WHERE X IS MEDH, PROH, ME SUB2 CHOH, BUOH, ME SUB2 CHCH SUB2

OH, ME SUB2 CH(CH SUB2) SUB2 OH, ACOME, ACOET, ACOPR. ACOICH SUB2) SUB2

OH, ME SUB2. ET SUB2 O, ACH, MECH:CHCHO, ETCHO, OR PRCHO. EMPIRICAL

CHME SUB2. ET SUB2 O, ACH, MECH:CHCHO, ETCHO, OR PRCHO. EMPIRICAL

COEFFS. OF THE EQUATIONS ARE TABULATED. AV. DIFFERENCES OF CALCD. AND

EXPTL. VALUES OF THE PHYS. CHARACTERISTICS DO NOT EXCEED 0.1—0.2PERCENT,

MINUS, 5—7PERCENT, MINUS, AND 8PERCENT, RESP. FACILITY:

VORONEZH. TEKHNOL. INST., VORONEZH, USSR.

UNCLASSIFIED

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002201310006-6"

1/2 008 UNCLASSIFIED PROCESSING DATE--20NOY70
TITLE--KINETICS OF PARALLEL REACTIONS CURING MELANDIDIN FORMATION -U-

AUTHOR-(03)-KCLCHEVA, R.A., KHARIN, S.YE., SAPRONOV, A.R.

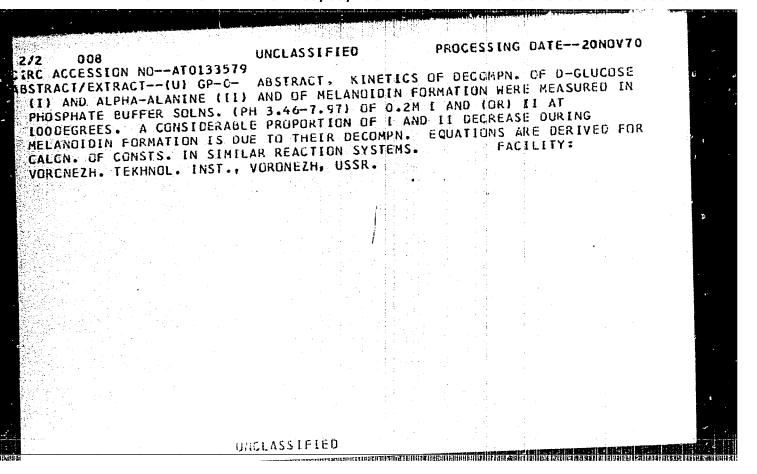
COUNTRY OF INFO--USSR

SOURCE--12V. VYSSH. UCHEB. ZAVED., FISHCH, TEKHNOL. 1970, (2), 206-10

DATE PUBLISHED----70

SUBJECT AREAS—BIOLOGICAL AND MEDICAL SCIENCES

TOPIC TAGS-GLUCUSE, ALANINE, PHOSPHATE, BIOLOGIC PIGMENT


CENTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3005/1674

STEP NO--UR/0322/70/000/002/0206/0210

IRC ACCESSION NO--ATO133579

UNCLASSIFIED

UNCLASSIFIED 024

PROCESSING DATE--300CT70

1/2 TITLE--PHYSICOCHEMICAL AND THERMOPHYSICAL VALUES OF SOME THREE COMPONENT

SYSTEMS -U-

AUTHOR-103)-KHARIN, S.YE., SOROKINA, G.S., KHARIN, V.H.

CCUNTRY OF INFO-USSR

SOURCE-IZV. VYSSH. UCHEB. ZAVED., PISHCH. TEKHNUL. 1970, [2], 58-69

DATE PUBLISHED ---- 70

SUBJECT AREAS-CHEMISTRY

TOPIC TAGS-CALCULATION, SURFACE TENSION, SPECIFIC DENSITY, FLUID VISCOSITY, HEAT CONDUCTIVITY, PHYSICAL CHEMICAL PROPERTY, ALCOHOL, WATER, HETHANOL, ETHANOL, ETHYL ETHER, ALDEHYDE

CONTROL MARKING-NO RESTRICTIONS

DOCUMENT CLASS--- UNCLASSIFIED PROXY REEL/FRAME--2000/0952

STEP NO---UR/0322/70/000/002/0058/0069

CIRC ACCESSION NO--APO124612

-----UNCLASSIFIED

UNCLASSIFIED PROCESSING DATE—300CT70

2/2 024

CIRC ACCESSION NO—APO124612

ABSTRACT/EXTRACT—(U) GP—0— ABSTRACT. EQUATIONS ARE GIVEN FOR CALCG. D.,

REFRACTION, VISCOSITY, SURFACE TENSION, AND HEAT COND. OF SYSTEMS H SUB2

OETOH—X, WHERE X IS MEDH, PROH, ME SUB2 CHOH, BUDH, ME SUB2 CHCH SUB2)

OH, ME SUB2 CH(CH SUB2) SUB2 OH, ACOME, ACOET, ACOPR, ACO(CH SUB2) SUB2

OH, ME SUB2, ET SUB2 O. ACH, MECH:CHCHO, ETCHO, OR PRCHO. EMPIRICAL

CHME SUB2, ET SUB2 O. ACH, MECH:CHCHO, ETCHO, OR PRCHO. EMPIRICAL

COEFFS. OF THE EQUATIONS ARE TABULATED. AV. DIFFERENCES OF CALCO. AND

COEFFS. OF THE PHYS. CHARACTERISTICS DO NOT EXCEED O.1—0.2PERCENT,

EXPIL. VALUES OF THE PHYS. CHARACTERISTICS DO NOT EXCEED O.1—0.2PERCENT,

MINUS, 5—7PERCENT, MINUS, AND 8PERCENT, RESP. FACILITY:

VORONEZH. TEKHNOL. INST., VORONEZH, USSR.

UNCLASSIFIED

UNCLASSIFIED PROCESSING DATE--230CT70
TITLE--THE FORMATION OF UNIFORM DOSE FIELDS OF HIGH ENERGY BREMSSTRAHLUNG
BY MEANS OF EQUILIZING TARGETS -UAUTHOR-(04)-KOVALEY, V.P., KHARIN, V.P., GORDEYEV, V.V., FILIPENOK, S.P.

COUNTRY OF INFO--USSR

SOURCE-MEDITSINSKAYA RADIOLOGIYA, 1970, VOL 15, NR 5, PP 49-54

DATE PUBLISHED ---- 70

SUBJECT AREAS -- BIOLOGICAL AND MEDICAL SCIENCES

TOPIC TAGS--BRENSSTRAHLUNG, NEUTRON RADIATION, RADIOTHERAPY, ANGULAR OISTRIBUTION, ALUMINUM, FILTRATION, COPPER

CONTROL MARKING -- NO RESTRICTIONS'

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1998/0275

STEP NO--UR/0241/70/015/005/0049/0054

CIRC ACCESSION NO--APO120964

UNCLASSIFIED

2/2 019 UNCLASSIFIED PROCESSING DATE--230CT70 CIRC ACCESSION NO--AP0120964 ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. THE RESULTS OF EXPERIMENTAL STUDIES OF ANGULAR DISTRIBUTIONS OF BREMSSTRAHLUNG AND NEUTRON RADIATION FOR TARGETS FROM COPPER WHICH WAS SELECTED AS A "MODEL" MATERIAL ARE DEPICTED. IN ALTERATION OF THE FORM OF THE TARGET THERE IS SEEN A DISTINCT EFFECT OF "EQUILIZATION" OF THE FIELD OF BREMSSTRAHLUNG. THE PAPER CARRIES THE RESULTS OF EXPERIMENTAL VERIFICATION OF THE INFLUENCE OF THE FACTOR OF ACCUMULATION ON THE DOSE VALUE FOR A COMBINATION OF COPPER TARGET AND ALUMINUM FILTER. THE EXPERIMENTAL RESULTS OF MEASUREMENT OF ANGULAR DISTRIBUTIONS OF NEUTRONS ARE IN ACCORDANCE WITH THE THEORY OF PHOTONEUTRON REACTIONS. THE EFFECT OF THE FORM OF THE TARGET ON THE ANGULAR DISTRIBUTION OF NEUTRONS IS DEMONSTRATED. FACILITY: INSTITUT MEDITSINSKOY RADIOLOGII ANN SSSR.

UNCLASSIFIED

1/2 019

UNCLASSIFIED

PROCESSING DATE--230CT70

TITLE--EXPERIMENTAL MANUFACTURE OF ALL WELDED PANELS OF THE AVERAGE

RADIATOR PART OF THE PK-38-2 BOILER -U-

AUTHOR-(03)-VIVSIK, S.N., GODZHIYEVA, YE.M., KHARIN, V.P.

COUNTRY OF INFO--USSR

SOURCE--LENINGRAD, ENERGOMASHINOSTROYENIYE, NO. 2, 1970, PP 32-34

DATE PUBLISHED ---- 70

SUBJECT AREAS--MECH., IND., CIVIL AND MARINE ENGR

TOPIC TAGS--WELDING TECHNOLOGY, BIBLIOGRAPHY, STEAM BOILER/(U)PK382 BOILER

CONTROL MARKING -- NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1997/1843

STEP NO--UR/0114/70/000/002/0032/0034

CIRC ACCESSION NO--APO120520

UNCLASSIFIED

UNCLASSIFIED

PROCESSING DATE--230CT70

CIRC ACCESSION NO--APO120520

ABSTRACT--(U) GP-0- ABSTRACT. THE EXPERIMENTAL MANUFACTURE OF ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. THE EXPERIMENTAL MANUFACTURE OF COMMERCIAL ALL WELDED BLOCKS OF THE AVERAGE RADIATOR PART OF THE PK-38-2 COMMERCIAL ALL WELDED RADIATIONS OF THE SECOPIC PIPES IS CONSIDERED. THE BASIC TECHNOLOGICAL OPERATIONS OF THEIR MANUFACTURE ARE DESCRIBED WITHOUT THE USE OF SPECIALIZED THEIR MANUFACTURE ARE DESCRIBED WITHOUT THE USE OF SPECIALIZED HANDLOGICAL EQUIPMENT AND CERTAIN CONCLUSIONS ARE DRAWN CONCERNING THE TECHNOLOGICAL EQUIPMENT AND TABLE, TWO ILLUSTRATIONS, BIBLIOGRAPHY CONTAINS SIX CITATIONS.

UNCLASSIFIED

UNCLASSIFIED

1/2 022

UNCLASSIFIED

PRUCESSING DATE--230CT70

TITLE--EFFECT OF A COMPENSATING IMPURITY ON THE HOMOGENEITY OF MERCURY

DOPED GERMANIUM -U-

AUTHOR-(04)-GUZHOVA, I.P., ROMANYCHEY, D.A., CHERKASOV, A.P.,

KHARIONOVSKIY, YU.S.

COUNTRY OF INFO-USSR

SOURCE--IZV. AKAD. NAUK SSSR, NEORG. MATER. 1970, 6(2), 196-200

DATE PUBLISHED---- 70

SUBJECT AREAS--PHYSICS

TOPIC TAGS--GERMANIUM SINGLE CRYSTAL, SEMICONDUCTOR IMPURITY, RESISTIVITY, PARTICLE DISTRIBUTION, MERCURY, ANTIMONY

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1987/2000

STEP NO--UR/0363/70/006/002/0196/0200

CIRC ACCESSION NO--AP0105074

UNCLASSIFIED

PROCESSING DATE--230CT70 UNCLASSIFIED 2/2 CIRC ACCESSION NO--AP0105074 ABSTRACT. THE HOMOGENEITY OF RESISTIVITY AND ABSTRACT/EXTRACT--(U) GP-0-IMPURITY CONCN. IN THE TRANSVERSE CROSS SECTION OF GE SINGLE CRYSTALS DOPED WITH HG, PARTIALLY COMPENSATED WITH SB WITH A HG LEVEL OF 0.087 EV WAS INVESTIGATED. THE PRIMARY REASON FOR THE HETEROGENEITY OF THE RESISTIVITY IN THE TRANSVERSE CROSS SECTION OF THE CRYSTALS CONSISTS IN NONUNIFORM DISTRIBUTION OF THE SB DUE TO THE DEVELOPMENT OF THE BOUNDARY EFFECT. THE HG IS DISTRIBUTED UNIFORMLY IN THE TRANSVERSE CROSS SECTION OF THE CRYSTALS, AND THE BOUNDARY EFFECT FOR HG AT A CONCN. OF SIMILAR TO 5 TIMES 10 PRIME14-CM PRIMES WAS NOT DBSD. THE EFFECT OF HETEROGENEITY OF THE SB ON THE HETEROGENEITY OF THE ELEC. PROPERTIES OF THE CRYSTALS DEPENDS ON THE DEGREE OF CONDENSATION. THE HETEROGENEITY OF THE CRYSTALS AT A LOW TEMP. CAN INCREASE TREMENDOUSLY DUE TO THE EFFECT OF RANDOM ACCEPTORS. IF THE CONCN. OF THE LATTER IS CLOSE TO THE CONCN. OF THE COMPENSATING IMPURITIES.

UNCLASSIFIED

Mechanical Properties

utc 620.186.14:669.14:620.178.385

KHARISH, Ye. L., ZLOTNIKOV, S. A., YAREMA, S. Ya., HUSLITSKIY, A. B., and MIZETSKIY, V. L., Institute of Physico Mechanics, Academy of Sciences Ukrainian

"Effect of Monmetallic Inclusions on the Impact Strength of Low-Carbon Steel" SSR

Moscow, Metallovedeniye, No 5, May 70, pp 58-60

Abstract: Steel 20 was melted so as to produce specific types of inclusions: lamellar (unsaturated) silicates, aluminum oxide, silicon dioxide, and titanium nitrides. The chemical composition of all heats was in the following ranges (5): 0.19-0.21 C, 0.21-0.23 Si, 0.35-0.37 Mn, 0.1 Cr, 0.16 Ni, 0.011-0.012S, 0.010-0.012 P, and less than 0.01 N. Hydrogen and oxygen content varied from 0.00010-0.00034% and 0.0048-0.022% respectively. Mechanical properties were affected only slightly by the inclusions and had the following values: 13-46-46 kg/mm2, YS--27-29 kg/m2, elongation-33-35%, reduction in area-66-60.5%, and impact strength--14-16.5 kg/mm. Standard impact test specimens were used for testing.

It was found that the durability of longitudinal samples was letter than for transverse samples and at negative temperatures the fatigue strength is greater than at room temperature. The poorest durability was found in samples which had lamellar silicate inclusions in the grain boundaries. The durability of samples

1/2

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002201310006-6"

USSR

KHARISH, Ye. L., et al., Metallovedeniye, No 5, May 70, pp 50-60

containing the other types of nonmetallic inclusions was 1.2 to 2.2 times better. Maximum durability was noted in samples containing alumina inclusions. The relatively favorable effect of these inclusions was evidently caused by the low magnitude of residual stresses developed in the steel due to comparatively small differences in the modulus of elasticity and volume coefficients of thermal expansion of the inclusions and the metallic matrix. High strength of the silica and titanium nitride inclusions and the large difference in the coefficients of expansion of these particles and the matrix cause considerable residual stresses in the inclusions and lead to earlier rupture than in samples with alumina inclusions. Anisotropy was more noticeable in transverse samples when tested at room temperature. Also, with increased stress the magnitude of anisotropy increased.

Lowering of durability in transverse specimens was caused by the presence of stringer inclusions positioned perpendicular to the direction of applied stress. At small loads, the concentration of stresses in the inclusions is less dangerous. As local stresses grow in transverse samples the yield point is reached much sooner than in longitudinal samples. At negative temperatures the steel is more brittle, but the difference in concentration of stresses in longitudinal and transverse samples becomes less significant and their durability is almost the same.

2/2

USSR

GANGRSKIY, Yu. P., KHARISOV, I. F., Joint Institute of Nuclear Research

"Study of Nuclear Reactions (n, 2n) and (n, γ) Leading to the Isomeric State of Mo⁹³"

Moscow, Yadernaya Fizika, Vol. 12, No. 5, Dec 70, pp 1117-1120

Abstract: The cross sections for the formation of Mo^{93} nuclei in the isomeric state in (n, 2n) and (n, γ) reactionswere measured for neutron energies in the range 2.5-3.0 and 13-15 Mev in order to explain the mechanism for the population of the isomer state. It is noted that many cases have recently been observed in which the isomer ratio measured in experiment was considerably different from that calculated on the basis of the statistical model. In the capture of thermal neutrons by In^{113} and In^{115} , the cross section for the formation of the nucleus in the isomer state with spin 8 was higher than in the state with spin 5; in the study of spontaneously fissioning isomers it was observed that the isomer ratio is independent of the moment imparted to the nucleus; in another study a high yield of the Mo^{93} nucleus in the

1/2

USSR

GANGRSKIY, Yu. P., KHARISOV, I. F., Yadermaya fizika, Vol. 12, No. 6, Dec 70, pp 1117-1120

isomer state with spin 21/2 was observed among fission fragments. The function for the excitation of the reaction Mo^{94} $(n, 2n)Mo^{93m}$ is graphed and shows a typical threshold form; it is compared with the excitation function of (n, 2n)reactions calculated on the basis of the statistical model. The computed functions satisfactorily describe the experimental data. A discrepancy between the experimental and calculated cross sections for Mo⁹² for 15 Mev neutrons is attributed to competition of charge particles emitted by the compound nucleus. For the reaction $Mo^{94}(n, 2n)Mo^{93m}$, the measured excitation function agrees with the calculated function if the isomer state is taken equal to 10⁻². The values of the cross sections for $Mo^{92}(n, \gamma)Mo^{93m}$ reactions are tabulated for various neutron energies. The isomer ratio in neutron capture both with an energy of 14.7 Mev and 2.5-3.0 Mev was of the order of 10⁻¹. This value of the isomer ratio could not be explained on the basis of the statistical model of the nucleus. It is concluded that the isomer ratio measured is close to the ratio calculated on the basis of the statistical model only for comparatively low excitation energies of the Mo93 nucleus. Such behavior of the isomer ratio is said to indicate the unusual mechanism of the population of the isomer state; the anomalously high isomer ratio is attributed to the fact that the population of all remaining levels of the multiplet leads to the isomer state. 2/2

- 125 -

USSR

GANGRSKIY, YU. P., MARKOV, B. N., KHARISOV, I. F., and TSIPENYUK, YU. M., Institute of Physical Problems, Academy of Sciences USSR, Joint Institute for Nuclear Research

"Action of Spontaneously Fissionable Isomeric States of Pu²³⁹ and Am²⁴³ During Inelastic Scattering of Gamma-Quanta"

Moscow, Pis'ma v Zhurnal Eksperimental'noy i Teoreticheskoy Fiziki, Vol 14, No 6, 20 Sep 71, pp 370-372

Abstract: Investigating the activation mechanism of spontaneously fissionable isomeric levels in various nuclear reactions is one of the basic means of studying the nature of these states. The authors use two possible means of activating the isomeric state: (1) the activation of levels lying above the fission barrier (in the energy range of 6-10 MeV), and their discharge using radiation transitions to the levels of the second holes for the isomeric state; and (2) the activation of levels in the first hole below the fission barrier (with an energy of 3-6 MeV) and subsequent tunnel transition to the second potential hole. The results of this article reveal the possibility of studying the properties of spontaneously fissionable isomers in reactions of inelastic scattering of gamma-quanta. By using a larger

USSR

GANGRSKIY, YU. P., et al., Pis'ma v Zhurnal Eksperimental'noy i Teoreticheskoy Fiziki, Vol 14, No 6, 20 Sep 71, pp 370-372

number of test data it is possible to utilize lower activation energies and thus more fully investigate the mechanism of populating the isomeric state and establish the structure of the fission barrier of the nuclei. The article contains 2 illustrations and 9 bibliographic entries.

2/2

122 -

USSR

UDC: 547.26'118.07

KHARIT, Ya. A., ZAV., P. M., SHVARTS, A. S., ANDROSOV, V. T., ZAMORA, V. A., KOROTKAYA, L. I., Indiagrad Institute of the Textile Industry and Light Industry imeni S. M. Kirov

"A Method of Producing Polyphosphonates"

Moscow, Otkrytiya, Izobreteniya, Promyshlennyye Obraztsy, Tovarnyye Enaki, No 26, 1970, Soviet Patent No 276092, Class 12, filed 23 May 69, p 24

Abstract: This Author's Certificate introduces: 1. A method of producing polyphosphonates of the formula

where $n \approx 6$. As a distinguishing feature of the patent, diethylamidoanilide of methylphosphonic acid is interacted with ethanolamine in the presence of heat with subsequent includion of the poul product by conventional methods. 2. A modification of the poul product by conventional methods. 2. A modification of the poul product by conventional methods. 2. A modification of the process is carried out at a consequence of 60° C.

1/2 012

TITLE--MODIFIED P TOLUENESULFONAMIDE, FORMALDEHYDE RESINS -U-UNCLASSIFIED PROCESSING DATE--160CT70

AUTHOR-(05)-MELNIKOVA, YE.P., KOROTKAYA, L.I., KHARITA, YA.A., KOROLEVA,

COUNTRY OF INFO--USSR

SOURCE--U.S.S.R. 260,884

REFERENCE--OTKRYTIYA, IZOBRET., PROM. OBRAZTSY, TOVARNYE ZNAKI 1970 47(4) DATE PUBLISHED--06JAN70

SUBJECT AREAS--CHEMISTRY, MATERIALS

TOPIC TAGS-TOLUENE, SULFONAMIDE, FORMALDEHYDE, POLYCONDENSATION, CYCLOHEXANONE, CHEMICAL PATENT, PLASTIC PRODUCTION

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1995/1055

STEP NO--UR/0482/70/000/000/0000/0000

CIRC ACCESSION NO--AA0116521

UNCLASSIFIED

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002201310006-6"

2/2 012 UNCLASSIFIED PROCESSING DATE--160C170
CIRC ACCESSION NO--AA0116521
ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. HCHO RESINS ARE PREPD. BY
COPOLYCONDENSATION OF HYDROXYMETHYL DERIVS. OF P TOLUENESULFUNAMIDE,
HCHO, AND A MODIFIER, SUCH AS CYCLOHEXANONE OR M SULFAMOYLBENZOIC ACID
(11). FACILITY: INSTITUTE OF HIGH MOLECULAR WEIGHT COMPOUNDS,
ACADEMY OF SCIENCES, U.S.S.R.

TITLE--SYNTHESIS OF RESINS BASED ON SULFANILAMIDE AND VARIOUS ALDEHYDES

AUTHOR-(04)-KOROTKAYA, L.I., KHARIT, YA.A., SHVARTS, A.S., MELNIKOVA,

COUNTRY OF INFO--USSR

SOURCE--IZY. VYSSH. UCHEB. ZAVED., TEXHNOL. LEGK. PROM. 1970, (1), 59-63

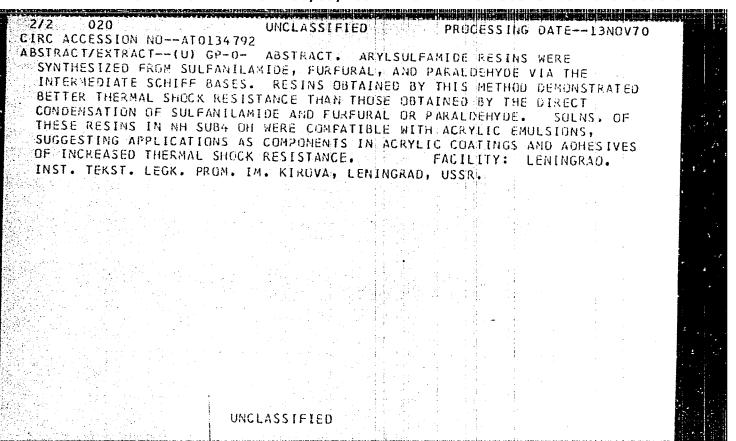
DATE PUBLISHED----70

SUBJECT AREAS--CHEMISTRY, MATERIALS

TOPIC TAGS--SULFANILAMIDE, FURFURAL, ALDEHYDE, SCHIFF BASE, RESIN, ACRYLATE, ADHESIVE, THERMAL SHOCK

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3006/1106


STEP NO--UR/0323/70/000/001/0059/0063

CIRC ACCESSION NO--ATO134792

UNCLASSIFIED

并被各种的数据的设计的 在特别的对象的 (1994年) 在中国的 (1994年) 在1994年 (1994年) 在1994年 (1994年) (1994年) (1994年) (1994年)

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002201310006-6"

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002201310006-6"

USSR

UDC 616.5-003.6.05-085.849.19-091

VISHNEVSKTY, A. A., Jr., KHARITON, A. S., MUZYKANT, L. I., and SHERPUTOVSKAYA, K. Ye., Moscow, Department of Pathological Anatomy and Department of Pulmonary Surgery, Institute of Surgery imeni A. V. Vishnevskiy, Academy of Medical Sciences USSR

"Morphological Changes in the Skin After Irradiation With a Pulsed Laser to Remove Tattooing"

Moscow, Arkhiv Patologii, Vol 35, No 4, 1973, pp 59-63

Abstract: A pulsed neodymium laser (wave length 1.05 A and energy density 80-120 j/cm²) was used to remove tattoos in 113 persons aged 18 to 60. The irradiated skin was covered with a boric ointment dressing until the pigmented tissue was completely lysed and rejected (5-20 days) and then with Vishnevskiy's ointment dressing to promote granulation (3-5 days). The final healing took place under the naturally formed scab. Biopsy samples of pigmented with adjacent normal skin were taken prior to and at various periods up to 60 days after irradiation. Morphological and histochemical examinations of the samples revealed a mild inflammatory reaction, frequent absence of demarcation boundaries, infiltration by lymphocytes and hystiocytes, and a moderate development of granulation tissue. Epithelialization proceeded mainly from the edges of the wound, with new epithelial cells containing large glycogen granules and a 1/2

- 76 -

USSR

VISHNEVSKIY, A. A. Jr., et al., Arkhiv Patologii, Vol 35, No 4, 1973, pp 59-63

considerable amount of mucopolysaccharides. In 3-4 weeks, the wound was healed completely (approximately the same period as with clean surgical wounds), and fine, smooth, pink, mobile scar tissue of the contour of the tattoo was formed. The underlying young connective tissue was rich in acid mucopolysaccharides but contained no elastic fibers. In 1 year, the scar became quite unnoticeable.

2/2

The state of the second st

USSR:

UDC: 519.2:621.391

TERPUGOV, A. F., KHARITONENKO, A. A.

"Determining the Moment of Arrival of Optical Radar Signals With a

Tr. Sib. fiz.-tekhn. in-te pri Tomsk. un-te (Works of the Siberian Physicotechnical Institute Affiliated With Tomsk University), 1970, vyp. 51, pp 157-169 (from RZh-Kibernetika, No 9, Sep 71, Abstract No 9V277)

Translation: Against a background of a Poisson stream of events of constant intensity there may appear an optical radar signal generated by a Poisson stream of variable intensity $\rho\mu(t)$, where $\mu(t)$ is a given function of time determined by the shape of the signal, and ρ is an unknown constant with known a priori distribution. A system of equations is derived for evaluating the moment of arrival of the signal by the equations are studied. From the authors' resume.

1/1

- 10 -

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002201310006-6"

USSR

UDC: 519.2:621.391

TERFUGOV, A. F., KHARITONENKO, A. A.

"Determining the Moment of Arrival of Optical Radar Signals With a Photoelectric Receiver. II"

Tr. Sib. fiz.-tekhn. in-ta pri Tomsk. un-te (Works of the Siberian Physicotechnical Institute Affiliated With Tomsk University), 1970, vyp. 51, pp 170-179 (from RZh-Kibernetika, No 9, Sep 71, Abstract No 9V278)

Translation: See abstract 9V277 for part I. The second part deals with estimating the moment of arrival of an optical radar signal on the basis of the function of indeterminacy and the method of maximum likelihood in the case where the signal has a fairly steep front. From the authors' abstract.

1/1

AP0037763

Abstracting Service: CHEMICAL ABST. 4/70

Ref. Code: **N E 0000**

art Constant in the operation is a constant and the property of the constant is a constant of the property of the constant is a constant of the constant is a constant of the constant is a constant in the constant in the constant is a constant in the constant in

K

79440m Electron paramagnetic resonance study of free radical products of the reaction of ninhydrin with amino acids, peptides, and proteins. Yuferov, V. P., Froncisz. Wojciech; Kharitonenkov, I. G.; Kalmanson, A. E. (Dep. Biophys., D. I. Ivanovskii Inst. Virol., Moscow, USSR). Biochim. Biophys. Acta 1970, 200(1), 160-7 (Eng). EPR was used to study free radical products formed in the reaction of ninhydrin with amino acids and peptides. The EPR spectra of free radicals were characteristic of various amino acids and N-terminal amino acids of peptides. The anals. of these spectra showed that their hyperfine structure was produced by interaction of the unpaired electron with one N nucleus and protons which were a part of structure of the free radical products. The yield of free radicals depended on pH of the medium and on the amt. of H₁O and O in the reaction mixt. Specificity of spectra permits use of EPR to identify amino acids and N-terminal amino acids in peptides.

ALS

1/1

REEL/FRAME

19730750

1

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002201310006-6"

USSR UDC 532,52,63

STRUMINSKIY, V. V., KHARITONOV, A. M., CHERNYKH, V. V., Novosibirsk

"Experimental Study of the Transition of a Laminar Boundary Layer of a Turbulent Boundary Layer at Supersonic Velocities"

Moscow, Mekhanika zhidkosti i gaza, No. 2, Mar/Apr 72, pp 30-34

Abstract: Experiments on the effect of the unit Reynolds number on the transition of a laminar boundary layer into a turbulent boundary layer under supersonic flow of a plane plate in wind tunnels with different dimensions of the working elements are described. It is noted that experimental data in the literature present a fairly clear picture of the effect of the unit Reynolds number (U/v, where U is the velocity and v is the coefficient of kinematic viscosity) on the transition to the boundary layer, but that the results of these studies were conducted over a relatively narrow range of unit Reynolds numbers (up to $23 \cdot 10^6 \text{ m}^{-1}$) and it was therefore of interest to study the effect of the unit Reynolds number on the transition in a wider range of U/v. New results were obtained on the transition of the laminar boundary layer into a turbulent boundary layer on a plane plate at N=3 and 4 over a wide range of variation in unit

1/2

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002201310006-6"

USSR

STRUMINSKIY, V. V., et al, Mekhanika zhidkosti i gaza, No. 2, Mar/Apr 72, pp 30-34

Reynolds numbers (10-74)· 10^6 m $^{-1}$. A stabilization effect which appears earlier in wind tunnels with greater dimensions of the working element was observed for large values of the unit Reynolds number. The position of the transition region in different wind tunnels was fairly well defined by the number Re_D for small values of the unit Reynolds number, where $Re_D = UD/\nu$ and D is the dimension of the working element of the wind tunnel. Data from experiments with five different wind tunnels are presented.

2/2

UDC 533.607.11

USSR

BELYANIN, B. V., KHARITONOV, A. M., CHUSOV, D. V.

"Study of the Flow Characteristics After Exit Cones with Large Expansion Angles"

Izvestiya sibirskogo otdeleniya Akademii Nauk SSSR, Seriya tekhnicheskikh nauk, No 8 (203), vyp. 2, Jun 1972, pp 54-57

Abstract: A study was made to obtain data on the flow characteristics in the forechamber after exit cones with large angles of expansion and large area ratios in the presence of various equalizing and deturbulizing devices. The studies were performed on a special test unit which was equipped with replaceable exit comes with angles of expansion of 8, 45 and 90° with fixed area ratio of 14. Equalizing lattices, a perforated cone or longitudinal barriers were installed in the exit cones successively, and in the forechamber, a set of deturbulizing grids. The forechamber 800 nm in diameter and three diameters long ended in a convergent channel with a cylindrical chamber of smaller diameter. In the second chamber the flow velocity was 2,5 times higher than in the forechamber. The equalizing lattices were installed one in the exit cross section of the exit cone with a degree of preparation of 37%, two at a distance of 1/3 and 2/3 of the length of the exit cone from the intake cross section with a perforation of 42 and 43% respectively. The perforated cone with a central angle of 120° was installed in the exit cross section of the exit cone. The Re numbers were varied with respect to the parameters at the intake to the

USSR

BELYANIN, B. V., et al., Izvestiya sibirskogo otdeleniya Akademii Nauk SSSR, Seriya tekhnicheskikh nauk, No 8 (203), vyp. 2, Jun 1972, pp 54-57

exit cone in different experiments in the range from 10^6 to 10^7 . Significant flow pulsations and unsatisfactory uniformity of the velocity field were observed in all cases when studying the velocity field after exit cones with the given angles of expansion without equalizers. The equalizers were studied in an exit cone with an angle of 45°. The characteristics of the degree of nonuniformity of the velocity field in the forechamber $\Delta V_{mean} / V_{mean} / (\Delta V_{mean})$ is the mean value of the deviations from the mean velocity in the forechamber, V is the mean flow velocity in the forechamber) are tabulated for various equalizers. It was found that $\Delta V_{mean}/V_{mean} \leq 3\%$ is acceptable. The results of multiple measurements of the turbulence level E in the second cross section of the forechamber are tabulated. They show that for identical combinations of equalizers (perforated cone and 7 grids) the degree of turbulence after the exit cones of 8 and 45° is identical in practice. The drag was found to be constant in the investigated range of Reynolds numbers, and the greatest part of the losses are created by the exit cone itself. Exit cones with large angles of expansion can be used with properly chosen equalizers in wind tunnels and other devices.

2/2

USSR

UDC:532.526.2:536.423

KHARITONOV, A. A., Dnepropetrovsk

"The Boundary Layer on an Evaporating Surface"

Moscow, Mekhanika Zhidkosti i Gaza, No 5, Sep-Oct 73, pp 48-53

Abstract: A laminar boundary layer on an evaporating surface of liquid hydrogen, over which molecular oxygen flows, is studied. Pressure p in the boundary layer corresponds to the saturation temperature of oxygen T_0 , which is lower than the temperature of the incident stream T_0 , but higher than the temperature of the surface of the liquid hydrogen. Under these conditions, oxygen condenses in the boundary layer, forming droplets of liquid oxygen of various sizes. It is assumed in the work that when the gas condenses in its volume, droplets of one size are formed. The droplets of this selected mean size are looked upon as molecules of a heavy gas.

This "gas of droplets" is the third component present in the boundary layer.

1/1

1/2 035 UNCLASSIFIED

PROCESSING DATE--27NOV70

TITLE--COMBINED INFLUENCE OF PULSATING STRAIN AND STATIC TORSION ON THE

CORROSION FATIGUE STRENGTH OF STEEL -U-AUTHOR-(02)-KHARITONOV, A.N., GAVRILOV, M.P.

COUNTRY OF INFO--USSR

SOURCE--FIZ.-KHIM. MAKH. MATER. 1970, 6(1), 110-11

DATE PUBLISHED ---- 70

SUBJECT AREAS--MATERIALS, MECH., IND., CIVIL AND MARINE ENGR

TOPIC TAGS--CORROSION FATIGUE, METAL AGING, ALLOY DESIGNATION, MEDIUM CARBON STEEL, FATIGUE STRENGTH, STRAIN, TORSIONAL STRENGTH, TORSION STRESS, COROSION RESISTANCE, PULSE RATEX(U) 50 MEDIUM CARBON STEEL

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED
PROXY REEL/FRANE--3001/0328

STEP NO--UR/0369/70/006/001/0110/0111

CIRC ACCESSION NO--APO126084

-----UNCLASSIFIED