

PANICHEVA, A. S.: Master Tech Sci (diss) -- "Investigation of the properties of austenitic steel on a chrome-manganese base". Moscow, 1958. 15 pp (Min Higher Educ USSR, Moscow Order of Lenin and Order of Labor Red Banner Higher Tech School im Bauman), 150 copies (KL, No 4, 1959, 127)

PARICHEVA, G.F., ISHMAMETOV, A,S.

Stamped plywood barrels. Standartisatsiia 24 no.7:37-38
J1 '60. (MIRA 13:7)

(Barrels--Standards)

ACCESSION NR: AP4043677

5/0109/64/009/008/1433/1439

AUTHOR: Morgulis, N. D.; Levitskiy, S. M.; Panichevskiy, V. A.

TITLE: Determination of parameters of gas-discharge cesium plasma by the superhigh-frequency method

SOURCE: Radiotekhnika i elektronika, v. 9, no. 8, 1964, 1433-1439

TOPIC TAGS: plasma, plasma gas collision, plasma measurement, cesium plasma, gas discharge plasma

ABSTRACT: An experimental investigation of the electron-collision frequency and rate of decay of a weak ionized cesium plasma by the SHF-resonator method at 3-cm wavelength is reported. Charge concentrations within $10^{11}-10^{12}$ cm⁻⁸ and cesium vapor pressures within 0.01-0.2 torr were used. By measuring the Q-factor of a cesium-plasma-filled resonator at various pressures, the collision frequency at 1 torr was found to be 3×10^{9} per sec and the effective cross-section

Card 1/2

ACCESSION NR: AP4043677

of the scattering of electrons by plasma atoms, 0.4×10^{-24} cm². Also, the coefficient of bipolar diffusion (10--20 cm²/sec) was determined. This data is compared with results published by other researchers and discussed. Orig. art. has: 6 figures and 5 formulas.

ASSOCIATION: \Kiyevskiy gosudarstvenny*y universitet (Kiev State University)

SUBMITTED: 15Jun63 ENGL: 00

SUB CODE: ME NO REF SOV: 008 OTHER: 008

Card 2/2

MORGULIS, N.D.; LEVITSKIY, S.M.; PANICHEVSKIY, V.A.

Determination of the parameters of gas-lischarge cesium plasma using a microwave technique. Radiotekh. i elektron. 9 no.8:1433-1439 Ag (MIRA 17:10)

1. Kiyevskiy gosudarstvennyy universitet.

PANICHKIN, I. A.

"K voprosu vliyaniya granits potoka kruglogo poperechnogo secheniya na aerodinamicheskie kharakteristiki kryla." "On the Question of the Influence of the Edges of a Stream with Curved Cross-Section on the Aerodynamic Characteristics of the Wing." Prik. Mate. i. Mekh, Vol. 9, No. 2, pp. 171-178, 1945

"Opredelenie tsirkulyatsiy po razmakhu kryla v otkrytoy i poluotkrytoy strue prymougolnogo secheniya." "Determination of the Circulation On the Wing Spread in Open and Half-Open Stream with Right Angle Cross-Section." Prik. Matg. i Mekh., Vol. 10, No. 4, pp. 529-536, 1946

PANICHKIN,	I. A.	
	USSR/Velocity, Ultrasonic Jan 1947 Wing profiles - Wind tunnel tests	7 .
	"Forces Acting on an Oscillating Profile in a Supersonic Gas Flow," I. A. Panichkin, 4 pp	
	"Prik Mate 1 Mekh" Vol XI, No 1, pp. 165-170	
	Supersonic gas flow past a thin, slightly bent, oscillating wing profile, in two cases: a) where the angle of incidence of the profile varies according to the harmonic law, b) the case of a flapping wing.	• •
	*)
	-	
		···

O skose potoka za krylom. (Akademiia Nauk SSST. Institut mekhaniki. Inzherernyi sbornik, 1949, v. 5, no. 2, p. 164-170, diagrs.)

Title tr.: Angle of downwash past the wing.

Reviewed by F. H. Giese in Mathematical Reviews, 1951, v. 12, no.8, p. 646)

TA4.37 3049, v.5

50: Aeronautical Sciences and Aviation in the Soviet Union, Library of Congress, 1955

Kvoprosu vliianiia granits potoka kruglogo poperechnogo secheniia na aerodinamicheskie kharakteristiki kryla. (Prikladnaia matematika i mekhanika, 1945, v.9, no.2, p. 171-178, diagrs.)

Summary in English.

Title tr.: Effect of the boundary of a flow with a circular cross section on aerodynamic characteristics of the wing.

QA801.P7 1945

SO: Aeronautical Sciences and Aviation in the Soviet Union, Library of Congress, 1955

K teorii kryla v strue s kruglym poperechnym secheniem. (Prikladnaia matematika i mekhanika, 1945, v.9, no.4, p. 312-317, diagrs.)

Summary in English.

Title tr.: On the theory of a wing in a flow of circular cross section .

QA801. P7 1945

SO: Aeronautical Sciences and Aviation in the Soviet Union, Library of Congress,

Opredelenie tsirkuliatsii po razmakhu kryla v otkrytoi i poluotkrytoi strue priamougol'nogo secheniia. (Prikladnaia matematika i mekhanika, 1946, v.10, no4, p. 529-536, diagrs.)

Summary in English.

Title tr.: Determination of the circulation along a span of a wing in an open and simeopen flow of rectangular cross-section.

QA801.P7 1946

So: Aeronautical Sciences and Aviation in the Soviet Union, Library of Congress, 1955

O silakh, deistvuiushchikh na kolebliushchiisia profil! kryla v sverkhzvukovom potoke gaza. (Prikladnaia matematika i mekhanika, 1947, v.ll, no.1, p.165-170)

Summary in English.

Bibliography: p. 170

Title tr.: Forces acting on an oscillating airfoil in a supersonic gas flow.

QA801. P7 1947

SO: Aeronautical Sciences and Aviation in the Soviet Union, Library of Congress, 1955

Vliianie granits svobodnoi strui ellipticheskogo secheniia na aerodinamicheskie kharakteristiki kryla. (Akademiia Nauk SSSR. Institut mekhaniki. Inzhenernyi sbornik 1948, v.4, no.2, p. 161-173)

Title tr.: Effect of the boundaries of a free elliptical flow on aerodynamic characteristics of the wing.

Reviewed by J.H. Giese in Mathematical Reviews, 1951, v.12, no.8, p.646.

TA4.A37 1948, v.4.

SOP Aeronautical Sciences and Aviation in the Soviet Union, Library of Congress, 1955.

Opredelenie tsirkuliatsii po razmakhu kryla v zakrytoi strue priamougol¹nogo secheniia. (Akademiia Nauk SSSR. Institut mekhaniki. Inzhenernyi sbornik, 1948, v.5, no.1, p.189-197, diagrsl, bibliography)

Title tr.: Determination of the circulation along wing span in a closed flow of a rectangular cross section.

Reviewed by J.H. Giese in Mathematical Reviews, 1951, v.12, no.8. p1646.

TA4, A37 1948, v.5

SO: Aeronautical Sciences and Aviation in the Soviet Union, Library of Congress, 1955

O skose potoka za krylom. (Akademiia Nauk SSSR. Institut mekhaniki. Inzhenernyi sbornik, 1949, v.5, no.2, p.164-170, diagrs.)

Title tr.: Angle of downwash past the wing.

Reviewed by J.H.Giese in Mathematical Reviews, 1951, v.12, no.8, p.646.

TA4.A37 1949, v.5

SO: Aeronautical Sciences and Aviation in the Soviet Union, Library of Congress, 1955

ACHERKAN, N.S., doktor tekhnicheskikh nauk, professor, glavnyy redaktor; ANTSYFEROV, M.S., kandidat fiziko-matematicheskikh nauk; ASTAKHOV, K.V., professor; VUKALOVICH, M.P., professor, doktor tekhnicheskikh nank; KORELIN, A.I., kandidat tekhnicheskikh nauk; KRIPETS, E.S., inzhener; IAZAREV, L.P., kandidat tekhnicheskikh nauk; MAZYRIN, I.V., inzhener; MATYUKHIN, V.M., kandidat tekhnicheskikh nauk; HIKITIN, H.M., kandidat fixiko-matematicheskikh nauk; PANIGHVIN I.A., kandidat tekhnicheskikh nauk; PETUKHOV, B.S., kandidat tekhnicheskikh nauk; PODVIDZ, L.G., kandidat tekhnicheskikh nauk; SIMONOV, A.F., inzhener; SMIRYAGIN, A.P., kandilat tekhnicheskikh nauk; FAYNZIL BER, E.H., professor, doktor tekhnicheskikh nauk; KHALIZEV, G.P., kandidat tekhnicheskikh nauk; YAN'SHIN, B.I., kandidat tekhnicheskikh nauk; MARKUS, M.Ye., inzhener, redaktor; KARGANOV, V.G., redaktor graficheskikh materialov, inzhener; SOKOLOVA, T.F., tekhnicheskiy redaktor.

[A machinebuilder's manual in six volumes] Spravochnik mashinostroitelia v shesti tomakh. Izd. 2-e, ispr. i dop. Moskva, Gos. nauchno-tekhn. (1:8 ARIM) izd-vo mashinostroit. lit-ry, Vol. 2. 1954. 559 p. (Machinery-Construction) (Mechanical engineering)

PANICHTIN, I PHASE I BOOK EXPLOITATION

351

Sinyarev, Gennadiy Borisovich and Dobrovol'skiy, Matislav Vladimirovich

Zhidkostnyye raketnyye dvigateli; teoriya i proyektirovaniye (Liquid Propellant Rocket Engines; Theory and Design) 2d ed., rev. and enl. Moscow, Oborongiz, 1957. 579 p. Number of copies printed not given.

Reviewer: Panichkin, I. A., Doctor of Technical Sciences, Professor; Ed.:
Senichkin, G. V., Engineer; Ed. of Publishing House: Petrova, I. A., Tech.
Ed.: Zudakin, I. M.; Managing Ed.: Sokolov, A. I., Engineer

PURPOSE: This book was written as a textbook for tekhnikums, but may also be useful to students in institutions of higher learning and to workers specializing in the field of rocket engineering.

COVERAGE: The basic textbook on liquid propellant rocket engines is divided into two parts. Part one is concerned with "Theory and Thermodynamic Calculation of Liquid Propellant Rocket Engines" where fundamentals of Thermodynamics and Thermo-chemical analysis of the propellant are extensively dynamics and Thermo-chemical analysis of Liquid Propellant Rocket presented. Part two deals with the "Design of Liquid Propellant Rocket Rugines." The authors describe fundamental theories of liquid propellant

Card 1/24

III SEALIS SEA

Liquid Propellant Rocket Engines (Cont.)

351

rocket engines and the design of their basic components. They provide the metessary data for the analyzing thrust and for determining the principal dimensions of various accessories and assemblies of liquid propellant rocket engines. Examples of the application of calculation methods are given. The book covers & rocket engine design and describes considerable number of subjects, pertaining to some equipment. A number of scientists who developed rocket propulsion in the USSR are mentioned. Recent developments in the study of complex phenomena occurring in liquid propellant rocket engines have made necessary the revision of some old concepts presented in the first edition of this book. As a result the new edition differs from the first in a number of chapters. Its extensive Table of Contents gives a detailed review of the book. There are 45 references, all of them Soviet (including 10 translations).

TABLE OF

Preface to the Second Edition CONTENTS:

Preface to the First Edition

Card 2/24

APPROVED FOR RELEASE: Tuesday, August 01, 2000

CIA-RDP86-00513R0012390

PART Ch. 1 2 3	I. THEORY AND THERMODYNAMIC CALCULATION OF LIQUID PROPELIAN I. General Information on Reaction Engines I Liquid propellant rocket engines (ZhRD) Reaction forces Thrust of a liquid propellant rocket engine Derivation of the thrust equation Specific thrust Reaction engine—an engine with a direct thrust Engines with direct and indirect thrusts Various types of direct thrust engines Distinguishing characteristics of rocket and jet engines Conversion of energy in a rocket engine Classification according to type of fuel Classification according to method of compression and for the components Classification according to function	5 6 9 13 15 15 15 21 25 26 26	
Car	rā 3/2 ¹ 4		

Liquid	Propellant Rocket Engines (Cont.) 351		
		29	
6.	Applications of the ZhRD Interplanetary rockets and artificial earth satelites	29	
	Pockets for investigating the upper layers of the	22	
	atmosphere (meteorological rockets)	35 36	
	T.mg_range rockets	33 36 41 42	
	Defensive missiles with ZhRD	75	
	Aircraft liquid-rocket engines	46	
	·	70	• •
7.	A brief historic AL survey of liquid propellant rocket	46	
		65	
(ზ. 1	T Pertinent information on included	46 65 65	
. 8.	Basic properties of gases	66	
a.	Energy characteristics of gases	67	
<i>)</i> -	totamel energy and heat content or gases	73	
	Chemical energy and total nest content	74	
10.	"	1 *	
	Changes in the parameters of the state of a gas in	76	
		77	
	Work performed in thermodynamic processes	11	

n.	Application of the first law of thermodynamics to process in gases Conversion of energy in polytropic processes Adiabatic process Second law of thermodynamics Definition of the law Entropy Entropy and the probability of the state of a gas Reversibility in thermodynamic processes Calculating the numerical value of entropy Thermodynamic processes in chemically active gases Dissociation of combustion products Reversibility of chemical reactions Chemical equilibrium in a gas mixture Equilibrium constant of a chemical reaction Effect of temperature and pressure on the composition of combustion-products	81 82 82 83 85 85 87 89 90 91	
Card	5/ 24	:	

	quid Propellant Rocket Engines (Cont.) 351		
Li	quid Propertant noches mag	98	
	13. Balanced and unbalanced expansion of combustion products	98 98	
	Balanced expansion	100	
	Unbalanced expansion		
		102	
C.P.	. III. Pertinent Information on Gas Dynamics	102	
OH	The Read Clays Of gas motion	102	
	Equation of the conservation of mass		
	riguration of energy	103	
	Equation of the conservation of energy	106	
	15. Speed of sound in a gas	106	
	Speed of sound Derivation of the formula for computing the speed	106	
	Derivation of the formula to	111	
	of sound Speed of sound in a reactive gas	111	
	Speed of sound in a resultive Sund on temperature Dependence of the speed of sound on temperature	112	
	Speed of sound in a moving gas	113	
		زمليد	
	Maxium speed of sound 16. Critical speed of gas flow and special properties of	114	
	supersonic flow	114	
	Critical speed	115	
	Mach number	116	
	Concept of shock waves		

Timid	Propellant Rocket Engines (Cont.)	351
Tridere		117
	Braking temperature	118
17.	Florentary theory of supersonic normals	118
761 4	Shape of a supersolute module	120
	Critical drop of pressure	ion
	Relation between the dimensions of the gas at the of the nozzle and the parameters of the gas at the	121
	nozzle intake Changes in the parameters of the gas flow along the	length 123
	of the nozzle	
ch. I	V. Thermodynamic Cycle of a Liquid Propellant Rocke	128
engine	e a monoliant rocket engine	128 128
ĭ8.	Cycle of a figure proposition	
	Ideal cycle Relation between the ideal cycle and the actual pro	-
	Relation between the ideal cycle and the spec- Relation between the work of the cycle and the spec-	132
•	thousat	133
19.		133
19.	Cycle efficiency	
Card	7/24	

APPROVED FOR RELEASE: Tuesday, August 01, 2000 35CIA-RDP86-00513R0012 Liquid Propellant Rocket Engines (Cont.) 134 Combustion efficiency 135 Expansion efficiency Determining the amount of working substance expended on 135 operation of the fuel-feed system 136 Energy and impulse efficiencies 137 20. Thermal efficiency of the ideal cycle Derivation of the equation for thermal efficiency of the 137 Thermal efficiency of the engine cycle under design 139 operating conditions (Complete expansion) Underexpansion and overexpansion in the ZhRD 141 (non-design conditions) Possibility of non-design conditions occurring in 141 Occurrence of non-design conditions with a change in 142 operating altitude Occurrence of non-design conditions with a change in 143 145 thrust Possibility of the occurrence of overexpansion

			的 在 五百年	
•	Idguid l	Propellant Rocket Engines (Cont.)	351	
	ii2.	Thermal efficiency of a ZhRD with a constant nozzle wasign operating conditions Work losses under non-design operating conditions Change in the thermal efficiency of the engine with a constant nozzle during change in the degree of	146 ;	
	23.	possible expansion Regulation of nozzle area Regulation of nozzle area with a change in altitude Regulation of nozzle area with a change in thrust	148 149 149	
	24.	produced by a change in fuel consumption Characteristics of the Zhrd Consumption characteristics Altitude characteristics	150 151 152 154	ò
	Ch. V 25.	Propellants for Liquid Propellant Rocket Engines Requirements of propellants Basic requirements of propellants Design requirements of propellants Operational requirements of propellants	158 159 159 165 167	
	Card 9	- ,		
			Chippenne Took Constant Brown Constant	

		<u> </u>
Liquid Propellant Rocket Engines (Cont.) 351		v
26. Thermochemical Characteristics of Fuels, Oxidizers and	168	
Pronellants	168	•
. Weight ratio of fuel and oxidizer	 -	
Theoretical necessary amount of oxidizer	171	
Coefficient of excess oxidizer	175	
demonstration of propellant by Weight	176	i
27. Heat content of propellant and combustion products	177	
Physical heat content of a substance	177	
Chemical energy and heat of formation	. 178	
Methods of computing total heat content	182	
Calculation of total heat content of propellants,	4	
Calculation of Gotal news consens of 2202	185	
oxidizers and fuels Total heat content of propellant combustion products	189	
Relation between total heat content and calorific	,	
Relation between total near content and carried	190	
value of a propellant	·	
28. Propellants based on nitric acid and other oxygen	200	
compounds of nitrogen	200	
Nitric acid	201.	
Additives to nitric scid	202	
Tetranitromethane as an oxidizer		
Propellant fuels based on nitric acid and self-igniting	202	
propellants	EV6	
Card 10/24		
		1
		·

Identify Propellant Rocket Engines (Cont.) 29. Propellants based on liquid oxygen and hydrogen peroxide Liquid oxygen Propellant fuels based on liquid oxygen Hydrogen peroxide Basic propellants of ZhRD based on hydrogen peroxide Use of hydrogen peroxide for the production of steam 30. Possible ZhRD propellants Propellants with increased heat producing capacity and a high specific weight Propellants possessing better thermodynamic properties of combustion products Possibilities arising from the use of atomic power in rocket engines Ch. VI. Thermodynamic Calculation of the Combustion Chamber 31. Determination of the composition of combustion products of a simple propellant	20 ¹ 4 20 ¹ 5 20 ⁵ 5 20 ⁶ 5 20 ⁷ 6 20 ⁸ 6 20 ⁹ 7 20 ⁹ 7 21 ¹ 4 21 ⁵ 7 22 ¹ 4
of a simple propellant Evolving a system of equations for determining the Evolving a system of equations for determining the composition of combustion products at a given temperature	22 4
Card 11/24	

APPROVED FOR RELEASE: Tuesday, August 01, 2000 35CIA-RDP86-00513R0012 Liquid Propellant Rocket Engines (Cont.) Solving the system of equations for determining the

	Solving the system of equations for any anguets	220
	composition of combustion products Reflect of pressure and temperature on the composition of	229
	combustion products Evolving a system of equations for determing the cosition and temperature of combustion products in the	
com	position and temperature	230
eng	ne chamber of dissociation	231
-	Setting up equations for the resulting of elements	234
	Setting up equations for the equilibrium Suplementary equations for determining the composition	005
	Suplementary equations for products	235
	and temperature of culture of the equation system	236
	Final aspect and solution of the equationing the Solving a system of equations for determining the	
33•	composition of combustion production	240
	containing nitrogen A system of equations for determining the composition	2h0
	of combustion products Sequence in solving a system of equations for determining the composition of combustion products	2박1
34.	of equations for determining the	5 /1/1

Liquid Propellant Rocket Engines (Cont.) 351		
A system of equations for determining the composition of	244	
combination produces	247	<i>,</i> – ·
Sequence in solving the system products the composition of combustion products	249 252	
32. Determining the composition than chember (nozzle inlet)	252	
Determining the endloys of	253	
Analysis of the composition and temperature of combustion	255	
Determining the total near concern of velocity	257	
Determining theoretical specific dimensions	257	
Thermodynamic calculation of a zara as	259	
36. Effect of temperature and pressure in the parameters chamber and ratio of propellant components on the parameters	261	ŕ
of a ZhRD Card 13/24		

· ·	Liquid Propellant Rocket Engines (Cont.)	351	
	Tidara 110horna	261	
	Effect of temperature	262	
•	Effect of pressure in the components ratio	265	
į	37. Experimental coefficients of an engine and analysis	266	
	37. Experimental coefficient		
•	of actual specific thrust	266	
	Specific thrust coefficient Experimental determination of chamber and nozzle	267	
	coefficients Heat analysis of the engine with consideration for		
	Heat analysis of the engine with	270	•
	experimental coefficients	271	
	38. Examples of combustion and exhaust analysis Thermodynamic calculation of a ZhRD using nitrogen-	271	
	containing fuels Analysis of the composition of combustion products of a fuel not containing nitrogen	287	•
	of a fuel not containing mission		
	a the Madd	292	
	Ch. VII. Cooling of the ZhRD	292	
	39. Basic principles from a course in heat transfer	. 292	
	Took transfer	· 29 3	
	Heat transfer by conduction Heat transfer by convection	294	
	Card 14/24		
		straggiste in typication script in the	general and

mrt d	Propellant Rocket Engines (Cont.) 351	
dara	heat trensfer coefficient	296
	Formulae for calculating the heat transfer coefficient	300
	West transfer by radiation	303
	Heat transfer by radiation in gases	304
40.	Heat transfer in the ZhRD Physical picture of the heat transfer process in the ZhRD Physical picture of the heat transfer in the ZhRD	305
	Physical picture of the heat transfer in the ZhRD Characteristics of heat transfer in the ZhRD	305
	Characteristics of heat transfer in the Zhab Characteristics of heat transfer in the Zhab Dependence of Tg.s. [wall temperature on gas side] on the	
•	Dependence of Tg.s. Little state of Identify	307
	Effect of surface boiling of the coolant liquid on the	308
	value of $T_{g.s.}$ on the heat conductivity of the Dependence of $T_{g.s.}$	
	Dependence of Tg.s. on the new contract	200
• ,•		30
***	Dependence of Tg.s. on the thickness of the	20
		30
	Ja The combination chember on one	30
	value of Tg.s. and q Coverall heat flow	50
	Effect of temperature in the combustion chamber on the	
	Effect of temberature in and services	31
	·value of Tg.s. 15/24	

APPI Liquid	ROVED FOR RELEASE: Tuesday, August 01, 2000 Propellant Rocket Engines (Cont.)	GIA-RDP86-00513R0012
	Effect of engine operating conditions on Tg.s.	310 311
41.	Analysis of external cooling	311
	External cooling systems Sequence in the analysis of external cooling of the engine chamber	313
	Determining the convective specific nest flow in the	314
	chamber wall Determining the radiant specific heat flow and the overall heat flow in the chamber wall	319
	Checking for the required amount of coolant liquid an Determining its heating in each sector Determining the coefficient of heat transfer from the	
	liquid-coolant wall to the coolant liquid of 1.c.w.;	
•	Determining the temperature of the liquid coolant wal	1
	m_	عجد
	Checking the conformity between the assumed and compu	322.
) _t o	Tg.s. Shapes of cooling channels in the engine chamber	322
42.	Annular channels	323

	PART SPACE TO SERVICE SPACE	激素
	-	(HESS) (H
	32 ¹ 4	
Helical channels 43. Example of external cooling analysis of the engine chember 44. Other methods of cooling the ZhRD	326 337 337	
Combed cooling Protecting chamber walls against burn-out by means of lining or by heat accumulation	342	
PART II. LIQUID ROCKET ENGINE DESIGN	nhQ	
Ch. VIII. Engine Chamber Design 45. Combustion process in a ZhRD combustion chamber Special features of the combustion process in the ZhRD	348 348 348 350	
Diagram of the combustion process 46. Determining the volume of the ZhRD combustion chamber Determining the volume of the combustion chamber The procedure of the procedure remains in it	351 351	
according to the length of time the property according Determining the volume of the combustion chamber according to reduced length of chamber Card 17/24	353	

35 ⁴ 355 356 356 361 366 366 366 366	
355 356 356 361 366 366	
356 356 361 366 366 366	
356 356 361 366 366 366	
356 361 366 366 366	
361 366 366 366	
366 366 366	•
366 366	•
366	
366 367	
367	
370	*
371	-
373	
374	
376	
380	
3 -	
381	
3	
_	
*	
	377 380 381

Iquid Propellant Rocket Engines	(Cont.) 351	L
		381
The mixing process and its	requirements	382
		يا حر
Types of ZhRD chamber heads Arrangement of injectors a	nd other devices in the	285
Arrangement of injectors -		385 386 389
chamber head	aña a	500
Sequence in the design of h	shamher design	30
51. General problems in engine	CHAMBEL WON-B-	39
Materials used in chamber of Operating conditions affect	ing the material or	39
showher walls	•	39
a chember des	ign	39
Promiles of sequence in the	TUTOET, GERTON	39
52. Starting and stopping the	ZhRD ZhRD	39
· · · · · · · · · · · · · · · · · · ·	TING BULL BUODES	<i></i>
Classification of the ZhRD	according to mode of	39
Classification of the		39
operation		.39
Ignition methods		
Stopping the engine Vibratory combustion in th	_ 7hpn	39

Card 19/24

APPROVED FOR RELEASE: Tuesday, August 01, 2000 CIA-RDP86-00513R0012 351 Liquid Propellant Rocket Engines (Cont.)

Th. IX. Feed Systems in Liquid Propellant Rocket Engines 53. Feed system types Basic elements of the feed system Pump feed system Pressure tank and other expellant feed systems 54. Design of tanks Types of tanks and their requirements Geometric shape of tanks and their arrangement Internal mechanisms of tanks Calculation of tank volume Calculation of tanks for strength Materials requirements of tanks 55. Calculation of pressure-tank dimensions and gas supply in the pressure-feed system Temperature variation of the compressed gas in the	uqui	11090	
Types of tanks and their requirements Geometric shape of tanks and their arrangement Internal mechanisms of tanks Calculation of tank volume Calculation of tanks for strength Materials requirements of tanks 55. Calculation of pressure-tank dimensions and gas supply in the pressure-feed system Temperature variation of the compressed gas in the	n. 3	Feed system types Basic elements of the feed system	404 404 405 406 407
Calculation of pressure-tank volume and gas supply	55.	Design of tanks Types of tanks and their requirements Ceometric shape of tanks and their arrangement Internal mechanisms of tanks Calculation of tank volume Calculation of tanks for strength Materials requirements of tanks Calculation of pressure-tank dimensions and gas supply the pressure-feed system Temperature variation of the compressed gas in the process of feeding Calculation of pressure-tank volume and gas supply Calculation of pressure-tanks for strength	407 408 411 413 416 417 419 420 421 423 424

		नग्रह्मानस्य विद्या	ensure quies
- 56.	Analysis of solid and liquid pressurization gas generators Properties of solid propellants used in the PAD (Solid Propellant Gas Generator). Supercritical and subcritical PAD Designing the PAD pAD for starting Designing the liquid gas-generator Pressure reducing valves Design and operation of the reducing valve Inverse-action reducing valves Characteristics of the inverse-action reducing valves Characteristics of the direct-action reducing valves Sequence in the design of reducing valves Determining throttling section dimensions Determining spring tension Q1 and Q2 and the membrane surface area Fm	426 426 428 430 433 434 436 436 437 438 445 447 446 447	
Card	21/24		
		eccennon no concenns	0 5
			Managedanger

	· <u>'</u> ·			
•	: Menta	Propellant Rocket Engines (Cont.)	351	
		•	449	
•	58. 50.	Post Post ing of properties compone	ents 451	
	<i>)</i> ,-	Diagram of a centrifugal pump and too	ducing valve design analysis ding of propellant components destrifugal pump and its basic destrifugal pump and position destricted developed by the pump design destricted	
		Velocity diagram at impeller intake, as	nd position 454	
		ae tha hìades	gn analysis t components and its basic ed ntake, and position utlet the pump efficiency mp rm of the pump on pressure of the liquid at pump, and determining the analysis t components 451 451 459 461 463 466 467 467 467 467 467 467 467 467 467	
		Velocity diagram at impeller outlet	ነራን	449 451 451 459 461 463 466 467 467 467 467 467
		Theoretical head developed by the pump	new 463	
		Hydraulic losses and hydraulic elittle		
	_	Power and efficiency of the pump	e pump 467	
	60.	The phenomenon of cavitation pressu	re of the liquid at	
		necessary pressure in the tank		
	(2	Design of pumps used in the ZhRD		
	OT.	Sequence in centrifugal pump design	4/O . 1/27	
		Example of centrifugal pump design		
	62.	Design of gear pumps Turbines, turbopump assemblies, and s	,	•
•	gen	erators for the ZhRD	: "	
	Card'	22/24		
			THE RESERVE OF THE PROPERTY OF THE RESERVE OF THE R	1

	ereje stam			245-2-2-2
				S. P. S. Marine
•	Liquid	Propellant Rocket Engines (Cont.) 351		
•		Single-stage impulse turbine	495	
• .		Impulse turbine with two velocity stages	4 9 8	
		Turbopump unit of the A-4 rocket engine	499	•
		Turbopump units for aircraft ZhRD	501	·
		Pumps for the R-3395 and R-3390 engines	506	
		Steam-gas generators of the ZhRD	512	
		Sequence in the design of a turbo-pump unit and of a		
		steam gas generator	523	
	63.	Elements of the ZhRD feed system	525	
	•	Tank elements	526	
		Cutoff and reverse values	527	
		Other elements	530	
		Determination of hydraulic losses in the ZhRD feed system Determination of hydraulic losses in the cooling circuit	533	
		of the engine chamber	533	
		Determination of hydraulic losses in the conduits and	755	
		fittings	537	
	Ch. Y	. Description of Systems of Some Existing Liquid		
		Engines	541	
	65.	Diagram of the A-4 rocket engine	541	ì
	Card	Readying the engine for starting	541 542	
		-1		
_				. 0 - WAC TO

CONTRACTOR OF THE PARTY OF THE	era samare	Market Francisco	<u> </u>	建筑类配置
	Liquid	Propellant Rocket Engines (Cont.) 351		
	•	Starting the engine and its entry into the main stage	544	
-		In-flight operation and stopping the engine	545	
	66.	Engine diagrams of some defensive missiles	546	
		The "Wasserfall" engine	546	
		The "Schmetterling" engine	548	
		The "Tayfum"unguided defensive missile	550	ł
	67.	Diagrams of aircraft rocket engines for various purposes	550	
		The "Walter" engine .	550	
		An aircraft superperformance engine	553	
		A flying-bomb engine	556	
		The "Shmidding" engine	557	
		The assisted take-off unit "Super Sprite"	557	
		,	•	
	Append	ixes:		
-	1.	Table of common logarithms of equilibrium constants	560	
	•	Fauilibrium constants	564	
	3.	Total heat content of combustion products of ZhRD propellants	566	
	4.	Table of entropies of combustion products of ZhRD propellants	568	
	Biblio		<i>57</i> 0.	
		ended references	571	
	AVATIA	BLE: Library of Congress		Ť
	Card	24/ 24		
		IS/gmp		
	•	8-20-58		
		U-2U-7U		
				and the same
			3. 12. 12. 13. 13. 13. 14. 14. 14. 14. 14. 14. 14. 14. 14. 14	
		A CONTRACTOR OF STANDARD STANDARD CONTRACTOR OF STANDARD	<u></u> <u>코</u>	<u> </u>

1 25586-66 EWT(1)/EWP(m)/EMA(d)/EMA(h)/ETC(m)-6/EMA() ACC. NR: AM6007342 Monograph	88
P. nichkin, Ivan Aleksandrovich; Lyakhov, Andrey Boriso	vich B+/
Princi, les of gas dynamics and its application to the tunnels (Osnovy gazovoy dinamiki i ikh prilozheniye aerodinamicheskikh trub) Kiev, Izd-vo Kievsk. univ., 3600 copies printed.	design of supersonic wind
TOPIC TAGS: aerodynamics, gas dynamics, shock wave, or sonic wind tunnel, shock wave reflection, velocity many terms of the state of th	
PURPOSE AND COVERAGE: This book is intended for enging of high-speed aerodynamics and also for senior stude education. It contains an account of the theory of motion of an ideal gas and application of this theory of the senior of the senior students. It provides the senior students are senior wind tunnels. It provides the senior students are senior wind tunnels.	one-dimensional, steady
motion of an ideal gas and application of this theorem namic properites of supersonic wind tunnels. It proment of the gas dynamic problems related to wind two known textbooks on gas dynamics. It is divided into with the theoretical aspects of gas motion, the gas tunnels, and calculations of gas dynamic characterical	esents a more detailed treat- nnels than is found in the o three main sections dealing dynamics of supersonic wind
Card 1/3	2
	CONTRACTOR DESIGNATION OF THE PROPERTY OF THE

	<u>.</u>				٠.
L 25586-66	ومهما والمحافظ والمعافظ والمنافي والمرابي والمراب والمستنافي فيتجامل ومهاور والرابي	يتهديها ومراجع ومنهم ومنهم ومراجع المراجع المر	11.7 m 11.7 m 11.7 m	2	
ACC NR: AM6007342					
15. Entropy jump 16. Reflection of ob 17. Shock waves in a	lique enocke //	t supply 88			
18. Shock waves in a 19. Measurement of f	low velocities 90				
Section II. Gas Dynam	nics of Supersonic Wi	ud idinera	i di Li		
Introduction 98					
1. Basic components 2. Classification of 8	of a wind tunnel f wind tunnels 10 as dynamic character:	lstics of supers	onic wind tun	nels 114	
Bibliography 140					
Appendix 141	Green 1. E		2014		(is)
SUB CODE: 20/ SUBM	DATE: 11Nov65/ ORI	G REF: 004/ 07	H REF: UU1/		•
Card 3/3dda					
the same of the sa					45.

ORLOV, Boris Viktorovich, doktor tekhm. nauk, prof.; MAZING, Georgiy Yur'yevich, kand. tekhn. nauk, dots.; PANICHKIN, I.A., doktor tekhn. nauk, retsenzent; SHELUKHIN, G.G., doktor tekhn. nauk, retsenzent; GOROKHOV, M.S., doktor tekhn. nauk, retsenzent; KOTEL NIKOV, A.V., kand. tekhn. nauk, red.

> [Thermodynamic and ballistic bases for the design of solid-propellant rocket engines] Termodinamicheskie i ballisticheskie osnovy proektirovaniia raketnykh dvigatelei na tverdom toplive. Moskva, Mashinostroenie, 1964. 406 p. (MIRA 17:11)

ANTSYPEROV, M.S., kand.fiz.-mat.nauk; VUKALOVICH, M.P., prof., doktor tekhn.nauk, laureat Leninskoy premii; KRIPETS, R.S., inzh.; LAZAHEV, L.P., prof., doktor tekhn.nauk; MAZYRIH, I.V., inzh.; NIKITIN, N.N., kand.fiz.-mat.nauk; OCHKIN, A.V., inzh.; PANICHKIN, I.A., prof., doktor tekhn.nauk; PETUKHOV, B.S., prof., doktor tekhn.nauk; PODVIDZ, L.C., kand.tekhn.nauk; SIMONOV, A.F., inzh.; SMIRYAGIN, A.P., kand.tekhn.nauk; TOKMAKOV, G.A., kand.tekhn.nauk; FAYNZIL BER, B.M., prof., doktor tekhn.nauk; KHALIZEV, G.P., kand. tekhn.nauk; CHESACHENKO, V.F., kand.tekhn.nauk; YAN'SHIN, B.I., kand. tekhn. nauk; ACHERKAN, N.S., prof., doktor tekhn. nauk, red.; KUDRYAVTSEV, V A., prof., doktor tekhn.nauk, red.; PONOMAREV, S.D., prof., doktor tekhn.nauk, laurest Leninskoy premii; red.; SATEL, E.A., prof., doktor tekhn.nauk, red.; SERENSEN, S.V., akademik, red.; RESHETOV, D.N., prof., doktor tekhn.nauk, red.; KARGANOV, V.G., inzh., red.graficheskikh materialov; GIL DENBERG, M.I., red.izd-va; SOKOLOVA, T.F., tekhn.red.

[Manual of a mechanical engineer in six volumes] Spravochnik mashinostroitelia v shesti tomakh. Red.sovet N.S.Acherkan i dr. Izd.3., ispr. i dop. Moskva, Gos.nauchno-tekhn.izd-vo mashinostroitelit-ry. Vol.2. 1960. 740 p. (MIRA 14:1)

1. AH USSR (for Serensen).
(Mechanical engineering) (Machinery-Construction)

GUTTSAYT, Z.I.; KRAVCHENKO, V.A.; NIKITIN, N.S.; PANICHEVA, A.G. Prinimali uchastiye: GOL'DSHTEYN, R.I.; PANKRATOVA, O.M.; SAGAKSKAYA, V.G. KORYAGIN, I.D., kand.ekonom.nauk, red.

[Petroleum industry of the capitalist countries of Western Europe, the Near, Middle, and Far East, Canada, and Latin America] Neftianaia promyshlennost' kapitalisticheskikh stran Zapadnoi Evropy, Blizhnego i Srednego Vostoka, Dal'nego Vostoka, Kanady i Latinskoi Ameriki; kratkii obzor statisticheskikh dannykh. Pod red. I.D.Koriagina. Moskva, 1959. 302 p. (MIRA 13:11)

1. Moscow. Gosudarstvennyy nauchno-issledovatel skiy institut nauchnoy i tekhnicheskoy informatsii.

(Petroleum industry)

PANICHKIN, I-A.

10(2); 28(1); 29(1) PHASE I BOOK EXPLOITATION SOV/1603

Moscow. Vyssheye tekhnicheskoye uchilishche imeni Baumana

- Nekotoryye voprosy mekhaniki; sbornik statey (Some Problems in Mechanics; Collection of Articles) Moscow, Oborongiz, 1958. 197 p. (Series: <u>Its</u> [Trudy] vyp. 88) Number of copies printed not given.
- Ed. (Title page): V.I. Feodos'yev, Doctor of Technical Sciences, Professor; Ed. (Inside book): A.S. Ginevskiy, Candidate of Technical Sciences; Ed. of Publishing House: L. Ye Serebrennik; Technical Sciences; Ed. of Publishing House: A.S. Zaymovskaya, Tech. Ed.: L.A. Garnukhina; Managing Ed.: A.S. Zaymovskaya, Engineer.
- PURPOSE: This collection is intended for scientific workers,
 Aspirants and students of advanced courses who are interested
 in problems of aero- and gas dynamics and in the theory of
 directional control of aircraft.
- COVERAGE: The collection contains reports on various problems in applied mechanics. A large portion of the articles is Card 1/8

Some Problems in Mechanics (Cont.)

sov/1603

devoted to aerodynamic and gas dynamic investigations. the first article of the collection, the author, Professor K.P. Stanyukovich, considers the laws of motion of a gas-droplet medium - in particular, the laws of motion of a mechanical mixture of a liquid and a gas with liberation of energy. His conclusions are applicable to the investigation of the motion of a burning fluid jet. The two reports by N.F. Krasnov deal with the aerodynamics of bodies of revolution. first, he develops briefly the method of characteristics as applied to the calculation of nonsymmetrical flow about bodies of revolution. In his second report, which treats the base drag of bodies of revolution moving at both subsonic and supersonic speeds, he presents an approximate formula derived for the calculation of the base-drag coefficient in the case of turbulent flow about a body at supersonic speed. V. F. Mikhaylina presents in her report the approximate formulas she obtained for determining the distance between an isolated compression shock and the vertex of a blunt-nosed body of arbitrary form in supersonic flow, and also for determining the velocity and pressure near the critical point. Professor Panichkin presents in his report the partial and general solutions of the differential equation used in the investigation

card 2/8

Some Problems in Mechanics (Cont.)

sov/1603

of the flow about bodies of revolution at high subsonic speeds. Kovalev's article is concerned with the investigation of the damping moment associated with the banking of an aerodynamic surface in a supersonic gas flow. He proposes a method for calculating an arbitrary damping moment for wings of rectangular, triangular, and trapezoidal forms. Yesiyev's article is concerned with the damping moment produced by the gas flow from a jet engine nozzle opposing the rotation of the vehicle (if the axis of rotation is not parallel to the nozzle axis). Pobedonostsev and Stanyukovich investigate in their article the problem of optimum ratios of the stages of a multistage rocket. In another report, Stanyukovich generalizes Tsiolkovskiy's ratio in the relativistic sense. The last three articles of the collection are devoted to problems of directional control of aircraft and the theory of automatic control. Shumilov investigates an unsealed control mechanism with cam transmission. Samoylov considers another variety of a control mechanism based on the use of a so-called stream tube. In the last report,

card 3/8

Some Problems in Mechanics (Cont.) SOV/1603	
Mimslavlev investigates the motion characteristics of one of the automatic control systems used, especially in aircraft and in ship's steering gears.	
TABLE OF CONTENTS:	
Preface	3
Stanyukovich, K.P., Doctor of Physical and Mathematical Sciences, Professor. Some Problems of the Aerodynamics of a Fluid Jet in Free Flight 1. Motion of a jet in a vacuum 2. Some remarks on the motion of a jet in a resisting medium 3. Basic laws of motion of a gas in the presence of internal energy sources 4. Basic laws of motion of a mechanical mixture of a liquid and a gas 5. Basic laws of motion of a mechanical mixture of a liquid and a gas with liberation of energy	5 5 12 21 35 47
Card 4/8	

CHI INDIANA NA CANANA MANANA M	
Some Problems in Mechanics (Cont.) SOV/1603	
Some Troblems at Machaical Sciences, Docent.	On the
Krasnov, N.F., Candidate of Technical Sciences, Docent. Method of Characteristics and Its Aplication to the Calculation of the Pressure Distribution About Pointhe Calculation Moving at Supersonic Speed at an	nted
the Calculation of the Pressure Distribution Speed at an Bodies of Revolution Moving at Supersonic Speed at an	55
America of Attack	55 55 56 60
7 Aggetted SVMDOLS	56
2. Characteristic equation 3. Conditions of conformity 3. Conditions of conformity	60
3. Conditions of comformity 4. Calculation of the flow about a body of revolution at an angle of attack	67
A Flunt-nosed Body of	
Mikhaylina, V.F., Engineer. A Middle Revolution With an Arbitrary Generatrix in Supersonic	76
Flow a the distance between the	•
1. Determination of the distance some a flow compression shock and the body in a flow the compression shock and the body in a flow compression shock and the bod	76
2. Velocity and pressure distribution near the surface of the body of revolution near the critical point	90
Card 5/8	
	imaka maka maka
	क्षेत्रपानके जिल्ले कर स्वत्रकारको - १०००

Some Problems in Mechanics (Cont.) SOV/1603		2.0
Krasnov, N.F., Candidate of Technical Sciences, Docent. On the Problem of Base Drag of Bodies of Revolution 1. Accepted symbols 2. Base drag at subsonic speeds 3. Base drag at supersonic speeds	95 95 96 97	
Panichkin, I.A., Doctor of Technical Sciences, Professor. Solution of a Differential Equation With Partial Derivatives	103	
Kovalev, Ya. G., Candidate of Physical and Mathematical Sciences, Docent. Damping Moment in Roll of a Wing Area in a Supersonic Gas Flow	108 108	
2. Distribution of the plant of performs along a triangular wing which performs rolling motion 3. Damping moment in roll of a triangular wing	109 114 116	
3. Damping moment in roll of a rectangular wing 4. Damping moment in roll of a triangular and 5. Damping moment in roll of a triangular and trapezoidal wing in inverse flow	119	·
Card 6/8		
		,

Some Problems in Mechanics (Cont.) SOV/1603	
Yesiyev, M.K., Engineer. On the Problem of Determining the Gas Dynamic Damping Moment 1. Description of the test setup 2. Sequence of the test procedure	121 123 135
Pobedonostsev, Yu. A., Doctor of Technical Sciences, and K. P. Stanyukovich, Doctor of Physical and Mathe- matical Sciences, Professor. On the Calculation of the Optimum Ratio of the Stages of a Multistage Rocket	144
Stanyukovich, K.P., Doctor of Physical and Mathematical Sciences, Professor. Relativistic Generalization of Tsiol'kovskiy's Formula	156
Shumilov, I.M., Candidate of Technical Sciences. Unsealed Pneumatic Control Mechanism With Cam Distribution 1. Basic system of differential equations 2. Initial conditions	162 162 165
Card 7/8	

Somo I	mohlama du M. J. a	
DOME I	roblems in Mechanics (Cont.) SOV/1	.603
3∙	Motions for small displacements and	
	pressure grong	168
ተ∙ ⊑	Analysis of the effect of leakage	172
9•	Control mechanism with additional inputs	176
Samoyl	ov, V. Ye., Candidate of Tebhnical Sciences.	
DATABLE	LUV OI an Electronnoumetto Commons about	179
-L. •	Equation of motion of a semiconechantem	180
2.	on the ellect. of friction on the stability	100
	oi a servomechanism	182
3•	Effect of the parameters of a servo-	
4.	mechanism on its stability Stability of a mechanism	182
• •	Stability of a mechanism taking into account	t
	the nonlinearity of the characteristics of the amplifier and relay	
5.	Amplification factor of a sermechanism	186
-		192
Mirosla	avley, Ye. N., Candidate of Physical and	
AT OTTETH	vival ociences. On the Problem of the	
stabil:	ty of a Nonlinear System	193
AVAILAE	BLE: Library of Congress	193
	TC/_4	
Card 8/	78 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	

APPROVED FOR RELEASE: Tuesday, August 01, 2000 CIA-RDP86-00513R0012390

RAKHMATULIN, Khalil Akhmedovich; SAGOMONYAN, Artur Yakovlevich; BUNIMOVICH, Abram Isaakovich; ZVEREV, Igor' Nikolayevich. PUTYATE, V.I., dots., retsenzent; PANICHKIN, I.A., prof., retsenzent; GINEVSKIY, A.S., kand. tekhn. nauk, red.

[Gas dynamics] Gazovala dinamika. Moskva, Vysshala shkola, 1965. 722 p. (MIRA 18:10)

UTKINA, N.; PANICHKIN, Yu.

Eclampsia in the first half of pregancy in partial hydatid mole. Zdrav.Bel. 7 no.11:55-56 N '61. (MIRA 15:11)

1. Iz Pogost-Zagorodskoy uchastkovoy bol'nitsy (glavnyy vrach S.P.Loginov).

(PUERPERAL CONVULSIONS) (PREGNANCY, MOLAR)

SKOROKHOD, V.V.; PANICHKINA, V.V.

Electric conductivity of porous sintered materials made of coppor fiber. Porosh. met. 5 no.3:58-61 Mr 165.

(MIRA 18:5)

1. natitut problem materialovedeniya AN UkrSSR.

PANICHKIN, S.Ye.; IONATOV, N.N.; RARANOV, T.M.

Mew developments in the processing of fine tableware. Stek.i ker.
13 no.6:24-25 Je '56.
(Grinding and polishing) (Pottery)

PANICHKINA, E. (Khar'kov)

Acetylene from a spark, Izobr. i rats. no.12:3 '63.
(MIRA 17:2)

1. Spetsial'nyy korrespondent zhurnala "Izobretatel' i ratsionalizator".

PANICHKINA, E. (Khar'kov)

Acetylene from a spark. Izobr. i rats. no.12:3 163. (MIRA 17:2)

1. Spetsial'nyy korrespondent zhurnala "Izobretatel' i ratsionalizator".

RAUTENSHTEYN, Ya.I.; KLEPIKOVA, F.S.; ZHUNAYEVA, V.V.; PANICHKINA, T.B.

Characteristics of the lysogenic culture of Actinomyces spheroides strain 35 producing novobiccin and its temperate actinophage. Mikrobiologiia 34 no.5:828-834 S-0 '65.

(MIRA 18:10)

1. Vsesoyuznyy nauchno-issledovatel'skiy institut antibiotikov Ministerstva zdravockhraneniya SSSR, i Institut mikrobiologii AN SSSR.

PANICHKINA, V.V.; UVAPOVA, I.V.

Determining the specific surface of finely dispersed nickel and bungsten powders. Foresh. met. 5 no.9:19-22 S'65.

(MIRA 12:9)

1. Institut problem materialovedeniya AN UkrSSR.

ANDRIYEVSKIY, R.A., kand.tekhn.nauk; PANICHKINA, V.V., inzh.;
FEDORCHENKO, I.M., akademik

Sintering of ceramic metal iron in hydrogen with small additions of hydrogen chloride. Metallowed. i term. obr. met. no.77.48-52
Jl '61.

1. Institut metallokeramiki i spetsial'nykh splavov AN USSR.
2. AN USSR (for Fedorchenko).

(Sintering)

(Ceramic metals)

ACC NR: AP7008397 SOURCE CODE: UR/0226/67/000/002/0001/0005

AUTHOR: Panichkina V. V.

ORG: Institute of the Problems of the Science of Materials (Institut problem materialovedeniya AN UkrSSR)

TITLE: On the activated sintering of tungsten with small additions of nickel

SOURCE: Poroshkovaya metallurgiya, no. 2, 1967, 1-5

TOPIC TAGS: powder metal, powder metal sintering, tungsten ______, nickel alloy, no line the powder metal powder metal sintering, tungsten ______, powder metal sintering, powde

ABSTRACT: Compacted specimens of tungsten with small (up to 0.5%) additions of nickel, prepared by mechanical mixing of tungsten and nickel powders with sebsequent reduction of nickel with addition of 5 vol% ethyl alcohol, or by vacuum impregnation of presintered pure tungsten with an agueous solution of nickel nitrate and subsequent annealing in a hydrogen atmosphere at 600°C for 2 hr, were sintered in a hydrogen atmosphere at a temperature of up to 1200°C. Compacted specimens from mixed powders had a porosity of 40—41%, while the impregnated specimen's porosity was 38%. The porosity remained unchanged with sintering at temperatures below 900°C, but decreased

Card 1/2

UDC: none

APPROVED FOR RELEASE: Tuesday, August 01, 2000 CIA-RDP86-00513R0012390

ACC NR: AP7008397

with sintering at 950-1200°C. Sintered specimens with 0.25 and 0.55 Ni had a porosity of 13%, regardless of the method of preparing the compacts. However, the impregnated specimens exhibited a higher rate of shrinkage than the specimens from mixed powders. In all investigated specimens, the grain boundaries had a thin layer of a solid solution of tungsten in nickel with the highest tungsten content possible for solid solution. Thus, it can be concluded that at 1200°C, nickel energetically diffuses along the surface of tungsten particles and along grain boundaries, while tungsten penetrates into nickel. combined process appears to result in the formation of the second phase, a saturated solid solution of tungsten in nickel. A significant decrease in the sintering temperature and a higher shrinkage rate in sintering tungsten with nickel can be ascribed to an increasing number of defects in the base-metal (tungsten) structure, possibly caused by preferencial diffusion of tungsten into nickel. In any case, the mechanism of activated sintering of tungsten cannot be explained by diffusion processes and requires further research. I. Ya. Dzykovic and G. N. Gordman (IES im. Ye. O. Paton) participated in the work. Orig. art. has: 5 figures. LMSJ

SUB CODE: 11/ SUBM DATE: 14Ju166

Card 2/2

L 2380-66 EVP()/ENT(n)/ENP(t)/ENP(z)/ENP(b)	Tup(e) - Mid/in/m//10	
ACCESSION MR: AP502	22541 BWP(k)	IJP(c) MJW/JD/HW/JG UR/0226/65/000/009/0019/0022	
AUTHOR: Panichkina	V.V.; Uvarova, I.V.	57 13	
TITIE: Determination sten powders	on of the specific surface of f	inely dispersed nickel and tung-	
SOURCE: Poroshkovay	a metallurgiya, no. 9, 1965, 1	0_22	
	metallu gy, tungsten, nickel		
ABSTRACT: A procedu	re ta divelend for data-	상태가 공연물기 전기 기급을 하는 경우 그 그녀는 것	
from an aqueous solu	tion. Commo red was word as	n respect to adsorption of dyes	
agreement with other			

Orig. art. has: 1 t	able and 2 graphs.	ten powder after reduction.	
Orig. art. has: 1 t	able and 2 graphs.	ten powder after reduction. 77.53 19 N Ukr69A (Institute of Problems	
Orig. art. has: 1 t	able and 2 graphs.	ten powder after reduction.	
Orig. art. has: 1 t	able and 2 graphs.	ten powder after reduction.	
Orig. art. has: 1 to ASSOCIATION: Institt in the Science of Mac	able and 2 graphs.	ten powder after reduction.	
Orig. art. has: 1 to ASSOCIATION: Institute in the Science of Marketine and Association of the Science	able and 2 graphs.	ten powder after reduction.	

243.98

18/1142

S/129/6E/000/007/013/016 E073/E535

AUTHORS :

Andriyevskay, R.A. Panichkana V.V. Engineer and Fedorochenko, I.M. Candidate of Technical Sciences, Academician AS Okrssn

TITLE:

Sintering of Iron Powder in Hydrogen with Additions of Hydrogen Unioride

PERIODICAL: Metallovedeniye : termicheskaya obrabotka metallov.

Data on the influence of various methods of activated sintering on the magnetic properties of sintered briquestes and also on their specific surface (s) and carbon content are quoted from earliest work of the authors (Ref. 1: Metallowedeniye & termicheskaya obrabetka metallov No.12, 1960). It was found that introduction of hydrogen chloride into the sintering atmosphere has the mest favourable influence on the magnetic properties of the sintered iron and this is attributed to smoothing the relief of the pores and refining the admixtures. The experiments were carried out with an iron powder of the following composition: 0.06% (0.3% Mn. 0.4% Si, 0.009% p. Card 1/5

21,198

Sintering of Iron Powder an .

#/129/61/000/007/013/016 E073/E535

97.7% Fe tota The magnetic properties were measured by a ballsatic method, the specific surface was measured by the permeability method. The change in the specific surface, the coercive force and the UTS as a function of the volume concentration of the hydrogen chloride in the hydrogen were measured using the same methods as were used in the earlier work (Ref. 1), Fig. 2 shows the change in the specific surface of the specimen, s, m^2/g . during sintering as a function of the volume concentration of HCl (porosity of the pressed specimens about 30%) specific surface of the non-sintered specimens 0.17 m²/g, sintering at 1200°C for 15 min). Fig.3 shows the coercive force, Ho. Oe, of briquettes as a function of the volume concentration, %, of the HCl in the sintering atmosphere, sintering at 1200°C; curve I -15 min, initial porosity 30%, curve 2 = 15 min, initial porosity 23%, curve 3 - 3-4 hours, initial porosity 10%, the change in the strength, o kg/mm2 of rolled strip specimens $(7 \times 1 \times 60 \text{ mm})$ as a function of the HCl concentration in the sintering atmosphere for an initial porosity of 30%, a sintering temperature of 1200°C and a sintering time of 30 min. The

Sintering of Iron Powder in ...

24198 5/129/61/000/007/013/016 E073/E535

presence of hydrogen chloride in the sintering atmosphere leads to the formation of iron chlorides on the active sections of the pore surface (mounds) and to their evaporation. The noves are smoothened out, reducing the specific surface and also the secreive force, the magnitude of which depends not only on the quantity of inclusions (pores) but also on their shape. strength increases due to a drop in the role of stress concentratora, Hydragen thiorade brings about more intensive refining of the tron specimens, mangatiese and silicon form easily evaporating this markets. The retining also improves the magnetic characters satisas. The optimum concentration of hydrogen chieride during if the hCl concen-Santering in a continuous gas flow is 5-10 . tration is higher, recesses torm on the surface of the specimen due to entensive eresson of the man by hydragen chloride vanours. Due to their high corosive effect, the hill vapours have to be removed by intensive blowing of hydrogen at the end of the sinter If this is done for a duration of about 18 nin (total duration of the sintering process 90 min; the specimens will have the same resistance to atmospheriz corresion as specimens Usually, a single pressing and sintering sintered in hydrogen. Gard 3/5

APPROVED FOR RELEASE: Tuesday, August 01, 2000

CIA-RDP86-00513R0012390

24198 ~7129/61/000/007/013/010 E073/035

Sintering of Iron Powder in , ...

is not sufficient to obtain sintered iron components with properties approaching the properties of components and, therefore, the specimens are usually twice pressed and sintered. The influence of preliminar, sintering on the properties of the components after accessing and sintering was investigated and the results are tabulated. In improvement in the properties on sintering in so the side actionsphere was observed only after sintering times exleading 10 to 15 min. since shorter times are not sufficient for the reaction to proceed to any appreciable awares, on smoreyement in the properties by 25 to 40% can be achieved. The properties of the final product will be the better the higher the properties of the specimens after the first sintering. By using an atmosphere of E, + 10% Hel in the preliminary sintering (15.95 min at \$100°C to 1250°C), properties equalling those of cast, electrical steel 3 (E) can be achieved after final pressing to a density of 7.7-7.6 and sintering at 1200°C for 4 hours, where here 4 figures, 2 tables and 6 references, 3 Soviet and 3 non-borret, the English-language reference reads as follows; Steinitz, A., Journal ampliphys v 20. 3949).. Card 4/5

"APPROVED FOR RELEASE: Tuesday, August 01, 2000 CIA

CIA-RDP86-00513R001239

PANICHKINA, Z. V.

Panichkina, Z. V. "The connection between visibility distance and dust and condensation centers", Trudy Tashk. geofiz. o servatorii, Issue W, 1949, p. 62-65.

SO: U-4392, 19 August 53, (Letopis 'Zhurnal 'nykh Statey, No 21, 1949).

PAN (C.) //
QERGELY, K.; KASSAY, D.; PANICS, M.

Timely treatment of atelectasis in the premature. Gyernekgyogyassat
4 no.9:263-269 Sept 1953. (CIML 25:5)

1. Doctors.

VAYSER, V.L.; RYABOV, V.D.; PANIDI, I.S.

Ammonolysis of 1,1-di(chlorophenyl)-ethane. Dokl. AN SSSR 140
no.1:118-121 S-0 '61. (MIRA 14:9)

1. Institut neftekhimicheskoy i gazovoy promyshlennosti im. I.M. Gubkina. Predstavleno akademikom A.V.Topchiyevym. (Ethane) (Ammonolysis)

APPROVED FOR RELEASE: Tuesday, August 01, 2000 CIA-RDP86-00513R0012390

ACCESSION NR: AT4008697

5/2982/63/000/044/0033/0038

AUTHOR: Paushkin, Ya. M.; Panidi, I. S.

TITLE: Synthesis of boron-nitrogen-containing compounds from boric acid

SOURCE: Moscow. Institut neftekhimicheskoy i gazovoy promy*shlennosti. Trudy*, no. 44, 1963. Neftekhimiya, pererabotka nefti i gaza, 33-38

TOPIC TAGS: nitrogen containing organoboron compound, boric acid, boric acid. nitrogen derivative, boric acid derivative, boric acid arylamino derivative, boric acid alkylamino derivative, boronic acid anilino- polymer with urea

ABSTRACT: A new class of compounds containing the boron-nitrogen bond, the arylamino-boric acids, has been synthesized by direct condensation of boric acid with arylamines. The course of this reaction was found to depend primarily on the temperature at which zinc chloride is added to the mixture of boric acid and amine, as well as on the quantity of the condensation agent (aniline, p-toluidine, o-toluidine, or p-anisidine). Temperatures ranging from 130-170C were tested to determine which particular arylamino-boric acid would result and whether the end-product would be an adhesive resin. Aliphatic amines did not react, but alkylamino-boric acids could be obtained by an exchange reaction with an arylamino-boric acid. This reaction is very exothermic and, with methylamine, takes

Cord 1/2

APPROVED FOR RELEASE: Tuesday, August 01, 2000

CIA-RDP86-00513R00123

ACCESSION NR: AT4008697

place at the relatively low temperature of -15C. The experiment was also conducted with urea and the aliphatic diamines ethylenediamine and hexamethylenediamine. The polymers of the boric acid derivatives were fractionated by treatment with acetone and the resultant high-molecular components were found to be soluble while the low-molecular ones were not. These findings are significant because of the need for materials which can withstand high temperatures and organic solvents. Orig. art. has: 3 tables, 2 figures, and 5

ASSOCIATION: Institut neftekhimicheskoy i gazovoy promy*shlennosti, Moscow (Institute of Petroleum Chemistry and the Gas Industry)

SUBMITTED: 00

DATE ACQ: 16Jan64

ENCL: 00

SUB CODE: CH

NO REF SOV: 000

OTHER: 004

PAUSHKIN, Ya.M.; PANIDI, I.S.

Synthesis of boron-mitrogen containing compounds on a base of boric acid. Trudy MINKHIGP no.44:33-39 163.

(MIRA 18:5)

MALYSHEVA, N.G.; STARCHIK, L.P.; PANIDI, I.S.; PAUSHKIN, YR.M.

Application of the method of neutron absorptiometry for determining the boron content of organoboron compounds. Zhur. anal. khim. 18 no.11:1367-1369 N 163. (MIRA 17:1)

1. Institut neftekhmicheskoy i gazovoy promyshlennosti imeni I.M. Gubkina, Moskva.

/EWT(n)/EPT(c)/EFR/EMP(j) Pc-li/Pr-li/Ps-li RM/WW 1, 24830-65 8/0020/64/159/003/0612/0614 ACCESSION NR1 AP4041924 AUTHOR: Paushkin, Y. M., Panidi, I. S.; Platonova, L. A.; Nesmayanov, A.N. (Academician) TITLE: Synthesis of semisymmetrical tris-amides of boric acid SOURCE: AN SSSR. Doklady*, v. 159, no. 3, 1964, 612-614 TOPIC TAGS: boric scid, boroorganic compound, boric acid amide ABSTRACT: The authors give the name "semisymmetrical" tris-amides of boric acid to compounds of the type R2N>B-NR2, in which one of the amino groups differs from the two others (accordingly, tris-amides in which all the amino groups are different may be called unsymmetrical tris-amides of boric acid). The authors B $(NR_2)_3 + H_2NR' \rightarrow R'NHB (NR_2)_2 + R_2NH$. used the reaction to synthesize semisymmetrical tris-amides of boric acid, and tabulated their physicochemical properties. Data from the elementary analysis are also tabulated. The relatively low yields of semisymmetrical tris-amides of boric acid are explained by the formation of products of double displacement and of polymers remaining after the vacuum distillation. The procedures used in the preparation of n-propylamino-bis (disthylamino) borine, phenylamino-bis (disthylamino) borine, and Card 1/2

L 8890-65		A comment of the comm
ACCESSION NR: AP4045016 was synthesized for the fir were black or orange powder which was a viscous resin. The acetylforrocene polymer weight of 2405; its yield w	st time. Most of the soluble polymers s, except for the polymer from acctone, Melting points varied from 50 to 500C, melted at 500C and had a molecular as 38Z. Solutions of all the polymers the adhesion to metal, wood, or porcelain 2 tables, 1 figure, and 4 formulas.	
SUBMITTED: 00 AT	TD PRESS: 3109 ENCL: 00 REF SOV: 002 OTHER: 003	
Cord 3/3.		
	NEWSCHEED IN CHARACTER CONTROL OF THE STATE	

PAUSHKIN, Ya.M.; PANIDI, I.S.; PLATONOVA, L.A.

Synthesis of semisymmetrical tris-amides of boric acid.

Dokl. AN SSSR 159 no.3:612-614 N *64 (MIRA 18:1)

1. Institut neftekhimicheskoy i gazovoy promyshlernosti imeni I.M. Gubkina. Predstavleno akademikom A.N. Nesmeyanovym .

CIA-RDP86-00513R001239 "APPROVED FOR RELEASE: Tuesday, August 01, 2000

PANIDI, I.S.; PAUSHKIN, Ya.M.

Simple method of preparing bis (diethylemino) boron chloride and syntheses based on it. Dokl. AN Arm. SSR 41 no. 4:226-229 *65 (MIRA 19:1)

1. Moskovskiy institut neftekhimicheskoy i gazovoy promyshlennosti imeni Gubkina.

PAUSHKIN, Ya.M.; BOCHAROV, B.V.; SMIRNOV, A.P.; VISHNYAKOVA, T.P.; MACHUS, F.F.; PANIDI, I.S.

Production of polyvinyl compounds by means of the reaction of calcium carbide with carbonyl compounds. Plast, massy no. (3-5) (MIRA 17:10)

PANIPEDOV, A.A. (Idritsa).

Combination track sign. Put' f put. khoz. no.5:28 My '57.

1. Zamestitel' nachal'nika Idritskoy distantsii puti Kalininskoy dorogi.

(Railroads-Signaling)

"APPROVED FOR RELEASE: Tuesday, August 01, 2000

CIA-RDP86-00513R001239

PANIGIANTS

RUMANIA/Cultivated Plants - General Problems.

L-1

Abs Jour

: Ref Zhur - Biologiya, No 16, 25 Aug 1957, 69186

Author Inst

Panigiants

Title

: Water Plants -- and Important Source of Industrial Raw

Orig Pub

: Nature (Romin.), 1956, 8, No 1, 108-112

Abstract

: No abstract.

Card 1/1

CIA-RDP86-00513R00123 APPROVED FOR RELEASE: Tuesday, August 01, 2000 ISAGULYANTS, V.I.; PANIDI, Ye.V.

> Alkylation of phenolic ethers with olefins in the presence of cation exchange resins as catalysts. Zhur.prikl.khim. 34 no.7:1578-1582 Л 161. (MIRA 14:7) (Ethers) (Olefins)

21(1), 24(7)

AUTHORS:

Glasko, V.B., Maslov, V.P., Panikar, V.I. and Sokolov, N.D.

TITLE:

On the Type of Correlation Function for the Helium Atom (O vide korrelyatsionnoy funktsii dlya atoma geliya)

PERIODICAL:

Optika i Spektroskopiya, 1959, Vol 6, Nr 5, pp 698-700 (USSR)

ABSTRACT:

In molecular calculations correlation in the motion of electrons is allowed for by introducing into the wave-function an additional factor dependent on inter-electron distance r_{ij} (Ref. 1). In analogy with the first approximation in the helium atom carculations, carried out by Hylleraas (Ref 2), this multiplier can be written for a two-electron system in the form

 $f(r_{12}) = 1 + dr_{12} \tag{1}$

where d is a variational parameter. In the general case the correlation function should depend on three correlation variables and f can be then represented as a series in powers of these variables (Refs 2, 3). When only one correlation variable is used the choice of the function $f(r_{12})$ in the form given by Eq (1) is an arbitrary one. The question arises as to whether this choice is the best possible one. This question is answered by determining the correlation function $f(r_{12})$ for the helium

Card 1/2

and a strain and a first process of the success of