"APPROVED FOR RELEASE: 08/22/2000 CIA-RDP86-00513R000411720004-2 22319 Vacuum treatment of open-hearth furnace... S/133/61/000/004/015/015 A054/A127 ings made from vacuumized ShKh15 steel increases by 70%. Rejects of the steel grade 38XMOA38KhMYuA) due to surface rejects could be reduced from 14.0 to 6.45% by vacuum treatment of the steel in the ladle. No flake formation could be noticed in 37XC(37KhS) steel, which also was vacuum-treated. At the Chelyabinskiy metallurgicheskiy zavod (Chelyabinsk Metallurgical Plant), vacuumized siphon pouring was applied in the casting of steel ingots of the 18XHBA (18KhNVA) steel grade, weighing 1,15 kg. Improved magnostructure and reduced reject rates due to intercrystalline cracks have been achieved. X Card 2/2 DENISOV, K.N., kand.tekhn.nauk; D'YAKONOV, V.D., kand.geogr. nauk Machine algorithms for the calculation of equatorial coordinates of sun and stars on electronic digital computers used in navigation. Trudy TSNIIMF 8 no.47:74-81 '63. (MIRA 16:12) D'YAKONOV, V.I., student; TSFAS, B.S., dotsent, nauchnyy rukovoditel' raboty Theory of a rural lever-type well. Sbor.dokl.Stud.nauch.ob-va Fak.mekh.sel'.Kuib.sel'khoz.inst.no. 1:42-44 '62. (MIRA 17:5) 1. Kuybyshevskiy sel'skokhozyaystvennyy institut. PETROV, Kuart Mikhaylovich, nauchn. sotr.; D.TAKONOV, Valim Ivanovich, nauchn. sotr.; DAVYESVA, I., red. > [Vacuum is a magician] takuum - volshebnik. Gverdlovsk, Sverdlovskoe knizhnoe izd-vo, 1963. 137 p. (MIKA 17:8) 1. Ural'skiy nauchno-issledovatel'skiy institut chernykh metallov (for Fetrov, D'yakonov). D'YAKONOV, V.I.; POPEL', S.I. Nonmetallic inclusions in vacuum-smelted ball-bearing steel during various methods of introducing chromium. Izv. vys. ucheb. zav.; chern. met. 7 no.10:17-21 '64. (MIRA 17:11) 1. Ural'skiy politekhnicheskiy institut i Ural'skiy institut chernykh metallov. D'YAKONOV, V., inzh. Trigger pulse generator. Radio no.10:56-57 0 '65. (MIRA 18:12) D'YAGONOV, V., Mat. Gen., TURKIN, F., Eng. Col., NIKIFOROV, N., Col, and STOLBOSHINSKIY, A. Col. Authors of the book "Kurs Artillerii" (Artillery Course) SO: N: Krasna Zvezda, No 96(7931) Abstract in USAF "Treasure Island", on file in Library of Congress, Air Information Vivision, Report No 91260. - 1. D'YAHOHOV, V. [F] - 2. USSR (600) - 4. Rautical Astronomy - 7. Calculation of local time angles of a heavenly body in determining a location from several near meridian altitudes., Mor. flot, 12, 1052. 9. Monthly List of Russian Accessions, Library of Congress, February 1953, Unclassified. D'YAKONOV, V. F. "Influence of Computational Errors of Computed Heights on the L cation of the Ship To Be Determined From the Method of Position Lines" Uch. zap. Vyssh. ankt. mor. uchilishcha, No 4, 1953, 47-67 Analysis of the height value, computed from approximate coordinates of the ship, leads to conclusion that the table No 27 of the new edition of Navigational Tables (MT-43) is the Most convenient and accurate. A polemic with P. F. Skorodumov is added, dealing with his work "The Choice of Number of Places of Logarithmic Tables' Used for Computation of Heights of Celestial Bodies," in which he advises five-place logarithms for the said computation, while the author considers four-place logarithms sufficient. (RZhAstr, No 10, 1955) SO: Sum-No. 787, 12 Jan 56 D'YAKONOV, V., dotsent. Sextant with optical reading and star finder (from "Ezhemesiachnyi zhurnal tochnoi mekhaniki i optiki" no.2, 1954) (MIRA 10:11) 1. Kafedra morekhodnoy astronomii Leningradskogo Vysshego inzhenernogo morskogo uchilishcha. (Germany, East--Nautical instruments) D'YAKONOV, V.K.: DOROSHENKO, N.L.: KOMPANEYETS, A.A.: TSARENKO, A.P., redaktor: VERINA, G.P., tekhnicheskiy redaktor. [Organizing the work of locomotive crews using job designation time schedules on the Southwestern Railroad Line] Opyt organisatsii raboty lokomotivnykh brigad po imennym raspisaniiam na IUgo-Zapadnoi doroge. Moskva, Gos. transp. zhel-dor. izd-vo, 1954. 75 p. (MIRA 7:12) (Railroads--Train dispatching) (Locomotives) D'YAKONOV, V.F.; KULIKOV, D.K., redaktor; VOLCHOK, K.M., tekhnicheskiy redaktor [Determining ship's position by the sun; with an investigation of accuracy] Opredelenie mesta sudna po solntsu; s issledovaniem tochnosti. Leningrad, Gos. izd-vo vodnogo transporta, Leningrad-skoe otd-nie, 1954. 173 p. (Navigation) D'YAKONOV, V., dotsent. New dometic instruments for precise time-keeping. Mor.flot 15 no.4: 8-10 Ap '55. (MIRA 8:5) DYAKONOV, V.F. BASHTANNIK, Kirill Georgiyevich [deceased]; D. YAKONOV, W. B., nauchnyy redaktor; SAVCHENKO, K.H., nauchnyy redaktor; IVAHOV, K.A., redaktor izdatel stva; TIKHONOVA, Ye.A., tekhnicheskiy redaktor [Nautical astronomy] Morekhodnaia astronomiia. Moskva, Izd-vo "Morskoi transport," 1956. 318 p. (MLRA 10:4) (Nautical astronomy) DYAKONOU, C.F. RACHKOV, Anatoliy Antonovich; D'YAKONOV, V.F., otvetstvennyy red.; KUZNETSOV, A.D., red.; DROZHZHINA, L.P., tekhn.red. [Principles of nautical astronomy] Osnovy morekhodnoi astronomii. Izd.2-oe, perer.i dop. Leningrad, Izd-vo "Morskoi transport." 1957. 313 p. (MIRA 11:1) (Nautical astronomy) AUTHOR: Dyakonov, V.F. 33-3-23/32 TITLE: The effect of diurnal aberration on the accuracy of determining latitude from observations of Polaris. (O vliyanii sutochnoy aberratsii na tochnost' opredeleniya shiroty mesta po polyarnoy zvevde) PERIODICAL: "Astronomicheskiy Zhurnal" (Journal of Astronomy), 1957, Vol.34, No.3, pp. 484-487 (U.S.S.R.) ABSTRACT: An analysis is made of the effect of diurnal aberration on the equatorial co-ordinates (c, o) of Polaris and on the accuracy of determinations of latitude of astronomical positions of class II from observations of Polaris. This is contrary to the view of A.V. Butkevich, who expressed the opinion that this is not necessary. On the basis of the analysis, and numerical tables, the author has shown that the effect of diurnal aberration can cause a total error of the order of 0.5" in the latitude (with t < 90°). It is therefore recommended that the effect of diurnal aberration should always be taken into account when determinations of the geographic latitude from the observations on Polaris are carried out. There are 4 tables and 4 refere- SURMITTED: July 20, 1956. AVAILABLE: Library of Congress D'YAKONOV, V., dots. Limits for replacing the parallel of an observed latitude and the meridian of an observed longitude by the celestial line of position. Mor. flot 18 no.1:4-5 Ja '58. (MIRA 11:1) 1. Kafedra morekhodnoy astronomii Leningradskogo Vysshego inzhenernogo morskogo uchilishcha. (Nautical astronomy) D'YAKONOV, Vasiliy Fomich; KUZNETSOV, A.D., red.; DROZHZHINA, L.P., tekhn. red. [Determining a ship's position by the sun with a check for accuracy] Opredelenie mesta sudna po solntsu s issledovaniem tochnosti. Leningrad, Izd-vo "Morskoi transport," 1958. 238 p. (MIRA 11:7) (Navigation) (Nautical astronomy) 20(1,5) PHASE I BOOK EXPLOITATION SOV/2016 D'yakonov, Vasiliy Fomich - Morekhodnaya astronomiya (Hautical Astronomy) Leningrad, Izd-vo "Morskoy transport," 1958. 462 p. 8,000 copies printed. Errata slip inserted. - Specialist Ed.: A.F. Matsyuto; Ed. of Publishing House: Z.S. Frishman, Tech. Ed.: O.I. Kotlyakova. - PURPOSE: This textbook on nautical astronomy is intended for students of navigation at the intermediate level of naval schools. It is approved as such by the MMF (Ministry of the Navy). It may also serve as a practical mamual for navigators of the transport and fishing fleets. - COVERACE: This book on general neutical navigation is divided into three sections. Section I contains information from plane trigonometry and spherical trigonometry pertinent to the science of navigation. Section II deals with the fundamentals of spherical astronomy as well as information on the theory of errors. Section III confines itself to two problems: determining the position of a ship and compass corrections based on the observation of celestial bodies. All sections Card 1/14 | Nautical Astronomy SOV/2016 | | |--|----------------| | contain test problems to be solved by reference to the 1957 Nautical Astronomical Almanac. The author thanks navigation-engineers 1.1. Katin, G.O. Mitsevich, L.S. Golubov, and A.F. Matsyuto for their help. There are 72 Soviet references. | | | TABLE OF CONTENTS: | | | Foreword | 7 | | Introduction | 3 | | | 4 | | SECTION I. | | | FUNDAMENTALS OF SPHERICAL GEOMETRY AND TRIGONOMETRY | | | Ch I. Basic Information on Plane Trigonometry and on the Theory of Logarithms 1. Determination of the trigonometric functions of an acute angle and the basic formulae in plane trigonometry 2. The trigonometric functions of small angles 3. Basic formulae expressing the relationship. | 15
24 | | plane triangle. The solution of right-and oblique-angled triangles— 4. Reverse circular trigonometric functions5. Basic information on the theory of logarithms Card 2/1h | 27
29
30 | | Nautical Astronomy | SOV/2016 | |---|---| | 6. Tables for natural values and the logarithmic tables for trigonometric functions | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | 7. Logarithmic tables for sums and differences | 34
36 | | Ch. II. The Basic Data on Spherical Geometry 8. Basic determinations and principles | - | | 9. The spherical angle and its measurement | 38
40 | | 10. The spherical triangle and the corresponding trihedral ang. Basic properties of a trihedral angle 11. Polar triangles and their properties |
le.
41 | | 12. Basic properties of the sides and angles of a spherical tri | 42 iangle 44 | | Ch. III. Spherical Trigonometry | | | 13. Basic formulae of spherical trigonometry 14. Right spherical triangles and their solution 15. Quadrant spherical triangles and their solution 16. Solution of oblique-angle spherical triangles 17. Elementary spherical triangles and their solution | 46
51
54
55
59 | | Cond Z/ 11 | | Nautical Astronomy SOV/2016 SECTION II. FUNDAMENTALS OF SPHERICAL ASTRONOMY Ch. IV. Determining the position of celestial bodies on the auxiliary celestial sphere 18. The celestial sphere. The basic points, circles, and directions of the celestial sphere 62 19. Basic systems of spherical coordinates of celestial bodies on a celestial sphere; principle of sidereal time 67 20. Construction of a celestial sphere and the graphical solution of problems on a sphere 75 21. The polar or parallactic triangle of a celestial body and its solution by the basic and transformed formulas of spherical astronomy 77 Ch. V. The Visible Diurnal Motion of Celestial Bodies 22. The visible diurnal motion of celestial bodies and its explanation 85 23. Specific features in the visible diurnal motion of celestial bodies for an observer on the equator and on the pole 89 24. Basic problems related to the diurnal motion of the celestial bodies Card 4/14 | Nautic | al Astronomy | | |-------------|---|-----| | 25. | S0V/2016 | | | - | celestial body, due to the diurnal revolution of the | | | 20. | Explanation of the visible diurnal motion of celestial bodies
by the Earth's rotation around its axis. Proof of the Earth's
rotation | 96 | | Ch. VI. | The Annual Motion of Sun | 100 | | 27. | Phenomena confirming the annual motion of the Sun among | | | 28 | fixed stars | | | 20. | Determining the path of the Sun in relation to the equator. The course of the Sun along the | 105 | | 27 3 | The ecliptic gradem of a series arong the ecliptic | 106 | | | The manner of measuring the longitude, right ascension and | 112 | | | and ac or the computation of c | | | | Astronomical phenomena related to the visible diurnal and annual motion of the Sun, for observers located at various latitudes on the Earth's surface | 113 | | Card 5/ | | 117 | | | | | | Nuntical Astronomy SOV/2016 | | |--|--------------------------| | 32. An explanation of seasonal changes 33. The annual parallax and the aberration of light as proof of the Earth's revolution around the Sun | 124 | | 34. The principle of Kepler's laws and of Newton's law of universal gravitation | 128 | | 35. The principle of precession and mutation | 133
135 | | Ch. VII. The Proper Motion of Moon and Planets 36. An explanation of the proper motion of the Moon 37. Phases of the Moon. Age of the Moon 38. Principle of solar and lunar eclipses 39. Proper motions of planets | 142
146
149
152 | | Ch. VIII. The Measurement of Time 40. General considerations on measuring time 41. The sidereal day. Sidereal time. Basic formula for sidereal time | 157 | | 42. The true solar day. True actual solar time 43. The mean Sun. The mean day. Mean solar time. The time equation | 159
162 | | Card 6/14 | 164 | | Neutic | al Astronomy SOV/2016 | | |---|--|------------| | ħħ° | System of thronology. The principle of the Julian (old style) | | | 45. | Time on different meridians. Conversion of time from one | 168 | | 46. | Zonal time, Ship's time and decree time. Switching from least | 171 | | 47. | The International Date Line - the time decrease | 175 | | 40. | Relation between the sidereal and the mean values of time | 179
180 | | - | Instruments used on ship for measuring time: chronometer, clock, and strop-watches | 183 | | | The correction of the chronometer and clock. Estimation of Greenwich Frandard Time | - | | 51. | The rate of chromometer and clock. The diurnal rate and its determination | 193 | | 52. | The effect of temperature, atmospheric pressure hundelter and | 199 | | | The sold of the rate of a chronometer | 200 | | | AND COLOURS THE CHIODOMETER OF TONING I | 205 | | <i>></i> • • • • • • • • • • • • • • • • • • • | The maritime astronomical almanac, its arrangement and use | 210 | | ard 7/] | լե | | | Nautica | 1 Astronomy SOV/2016 | | |-------------------|---|--------------------------| | 55.
56.
57. | Study of the Sky. The Star Globe The sky. Brightness and designation of stars. Constellations Description of the sky and means for finding constellation and stars Purpose and arrangement of a star globe Basic problems that can be solved by means of a star globe | 227
229
233
236 | | Ch. X. | Sextant. Measurement and Correction of the Altitudes of Celestial Bodies | | | 59.
60. | The principle and description of a navigation sextant A brief description of the basic parts of a navigation sextant | 240 | | | provided with the reading barrel "SN-7Shp" | 253 | | 62. | Troparting Sexual 100 mappy and | 258 | | 63. | Handling and care of a sextant Sextant with level and centralizer - "IAS-1" | 259 | | 64. | Measuring the altitudes of celestial bodies above the visible horizon with the "SN-ZShP"sextant | 263 | | 65. | Specific features in the measurement of meridional altitudes of celestial bodies | 274 | | 66. | Specific features in the measurement of altitudes of celestial | 278 | | | bodies over the zenith | 27 8 | | Card A/ | ግዜ | | | Nautica | al Astronomy SOV/2016 | | |------------|--|---------------------------------| | 67. | and the state of the Measuring the Single electrical rects on | | | 70.
71. | artificial horizon Correction of star altitudes measured above the visible sea horizon Adjustment of star altitudes by means of general correction tables Adjustment of star altitudes measured above the shore line or above the water line of an auxiliary ship Correction of star altitudes measured over the zenith Correction of star altitudes measured with a navigation sextant by | 280
283
299
304
307 | | | an artificial horizon, and with a sextant with an artificial horizon Particular features in the correction of low altitudes of celestial bodies | 309
310 | | 14+ | Brief Information on the Theory of Errors Observation errors. Systematic and incidental errors. The main features of incidental errors The evaluation of accuracy in equally exact measurements. Mean square error. Limiting error | 312
314 | | Card 9/ | 14 | <i>)</i> ±4 | | Nautical Astronomy | 3 0V /2016 | | |--|--|---| | 77. Accuracy in the sea horizon 78. Test determina | e for evaluating the accuracy of various functions alues see measurement of star altitudes over the visible attion of the mean square error in the altitude of a star above the visible sea horizon 320 | • | | | SECTION III. | | | DETERMIN | ING THE COMPASS CORRECTION AND THE POSITION OF A SHIP AT SEA | | | 80. Determination of 81. Determination of 82. Determination of 83. Determination of 83. Determination of 83. | erations regarding the correction of a compass | | | Card 10/ 14 | | | | Nautica | l Astronomy SO | W/2016 | |----------|--|-------------------------------------| | Ch. XII | General Considerations in Determining the Geogr
Coordinates of a Ship at Sea | aphical | | 84. | Relation between the position of an observer on the and the position of his zenith on the celestial specoordinates | here. The zenith's | | 85. | Principles of the separate determination of the la
tude of a ship's position | | | 86. | A combined method for determining the latitude and ship's position. The most favorable conditions for | r a combined | | | determination of the latitude and longitude of a p | oint 346 | | Ch. XIV. | Determining the Location of a Ship at Sea Accord | ing to Equal | | 87. | Graphic solution of the problem by two altitudes of principle of astrographs | | | | Principle of the method of determing the location equal altitude lines. Various methods of plotting | 348
of a ship by
the position | | 89. | of an altitudinal line on a Mercator map
Plotting equal altitude lines on the map from the | oint of issue. | | | The elements of the altitude line of position | 356 | | Card 11/ | 14 | | | 00 | SOV/2016 | | |--------------|--|-------------| | 90. | Basic means of computing the necessary altitudes and azimuths and | | | 91. | their
comparative evaluation | 357 | | , | Analysis of the formulas for signs and establishing the identity of the azimuthal quarter | 2/2 | | 92. | | 363 | | 93. | A general case of determining a ship's position by observetions | 364 | | Ol. | or two stars, with reduction of altitudes to a single zenith | 367 | | 94. | Determining a ship's position by observing three stars. The | 7-1 | | 95. | error triangle. Determining the probable position of a ship | 371 | | <i>))</i> • | A general case of determining a ship's position by observing
the Sun at different times | 0 | | 96. | Analyzing the accuracy of determining the ship-at-sea position | 378 | | | by the altitude lines | 384 | | | | 704 | | . XV. | Methods of Separate Latitude and Longitude Determination of the Ship-at-Sea Position | | | 97. | Determining the latitude of a position by the meridional altitude | | | | of a star | *OF | | 98. | Determining the latitude of a position by near-meridional altitudes | 3 95 | | | of stars | 398 | | Nautical | L Astronom; SOV/2016 | | |----------|--|-----| | | Observation limits for near-meridional altitudes | 405 | | 100. | Determining the latitude of the ship's position by the altitude of the North Star | 407 | | 101. | Determining the longitude of a position by the altitude of stars | 410 | | Ch. XVI. | Particular Cases of Combined Determination of Latitude and Longitude of the Ship-at-Sea Position | | | 102. | A particular case for determining the position of a ship by two | | | | stars, one of which is the North Star A particular case for determining the position of a ship by observing the Sun at different times when one of the Sun's alti- tudes is the meridional altitude: a) morning - noon, b) noon- | 414 | | | evening | 417 | | 104. | Determining the position of a ship by simultaneously observing Sun and Moon | 420 | | 105. | Determining the position of a ship observing the Sun, star, or planet at different times | 423 | | 106. | Determining the position of a ship by the altitude line of a star, and the direction of land object, or by radio direction finding | 425 | | Card 13/ | 14 . | | | Nautic | al Astronomy | | | |----------|---|-------------------|----------| | 3.0= | SOV/2016 | | | | 107. | Determining the position of a ship in the tropics with altitud | e s | . | | 108. | The meaning of a single line of position | 426 | | | Ch. XV | I. Principles of the Structure of the Solar System and of the Universe | 430 | | | 709. | B881C information on the | | | | 111 | The world as conceived by the ancients | 432 | | | 112. | The concept of the structure of the Universe | 442 | | | 113. | The concept of the structure and evolution of the Universe The basic cosmogonic hypotheses on the formation of the solar system | 445 | | | Suppleme | ent I | 447 | , | | Suppleme | ent II | 453 | | | Suppleme | ent III | 454 | | | AVATLABI | E: Library of Congress | 456 | | | Card 14/ | | | | | | | MM/mas
8-11-59 | | | | | // | | D'YAKONOV, V., dots. Pocket sextant. Mor.flot 19 no.1:44-45 Ja 159. (MIRA 12:3) 1. Kafedra morekhodnov astronomii Leningradskogo vysshego inzhenernogo morskogo uchilishcha im. admirala Makarova. (Sextant) D'YAKONOV, V., dotsent Yugoslave tables of altitude and azimuth of celestial bodies. Mor.flot. 20 no.8:42-43 Ag '60. (MIRA 13:8) 1. Leningradskoye vyssheye inzhenernoye morskoye uchilishche im. admirala Makarova. (Iugoslavia--Nautical astronomy) D'YAKONOV, V.F., dotsent Devices for direct determination of the latitude and longitude of the observer. Biul.tekh.-ekon.inform.Tekh.upr.Min.mor.flota 5 no.:: 79-86 '60. (MIRA 15:1) 1. Leningradskoye vyssheye inzhenernoye morskoye uchilishche im. admirala Makarova. (Nautical astronomy) D'YAKONOV, V.F., dotsent, kand.geograf.nauk Direct computation of geographical coordinates of the position of a ship by the observation of two stars. Sudovozhdenie no.2:19-26 '62. (MIRA 17:4) l. Kafedra astronomii Leningradskogo vysshego inzhenernogo morskogo uchilishcha im. admirala Makarova. D'YAKONOV, V.F. Precomputation of local hour angles and the inclination of the sun and stars for any moment of the day during the current year. Inform; sbor. TSNIMF no.74: Sudovokh. i sviks! no.19: 52-71 '62. (MIRA 16:6) (Nautical astronomy) GOLUBEV, Genrikh Aleksandrovich; D'YAKONOV, Vasiliy Fomich; KRASAVTSEV, Boris Ivanovich; MURMANSKIY. Feliks Nikolayevich; NASIAY, Napoleon Napoleonovich; YERMAKOV, G., kand. fiz.-matem.nauk, retsenzent; ZHEREBTSOV, M.N., prepodavatel', retsenzent; RYBALTOVSKIY, N.Yu., prof., red.; FRISHMAN, Z.S., red.izd-va; STUL'CHIKOVA, N.P., tekhn. red. [Problems in nautical astronomy] Zadachnik po morekhodnoi astronomii. Leningrad, Izd-vo "Morskoi transport," 1963. 287 p. (MIRA 17:3) 1. Arkhangel'skoye morekhodnoye uchilishche (for Zherebtsov). D'YAKONOV, Vasiliy Fomich; MATSYUTO, A.F., kapitan dal'nego plavaniya, red. [Nautical astronomy] Morekhodnaia astronomiia. Izd.2., perer. i dop. Leningrad, Izd-vo "Morskoi transport," 1963. 587 p. (MIRA 17:4) Application of Newton's method to the solution of astronomical problems of two altitutes. Sudovozhdenie no.3:29-34 '63. (MRR 17.5) 1. Kaf dra morekhodney actronomia Lemingradokogo wysatego inzherovnego morskogo uchilashcha imeni admirala Makarova. D'YAKONOV, V.F., dotsent, inzhener-kapitan zapasa How to use the M.A.E. [marine astronomical yearbook] interpolation tables in calculating hour angles and the declination of celestial bodies. Mor.sbor. 46 no.5:58-60 My '63. (MIRA 16:4) (Nautical astronomy) D'YAKONOV, V.F., dotsent, kand. geograf. nauk 1. Kafedra morekhodnoy astronomii Leuingradskogo vysshego inzhenernogo morskogo uchilishcha imeni admirala Makarova. ACC NR: AT6029318 SOURCE CODE: UR/0000/66/000/000/0213/0220 AUTHOR: D'yakonov, V. G.; Usmanov, A. G. ORG: none TITLE: Boiling heat transfer on a surface with direct high frequency heating SOURCE: Moscow. Energeticheskiy institut. Teploobmon v elementakh energeticheskikh ustanovok (Heat exchange in power installation units). Moscow, Izd-vo Nauka, 1966, TOPIC TAGS: turbulent heat transfer, heat transfer coefficient, alternating electromagnetic field ABSTRACT: With the application of conventional heating methods (direct current, alternating 50 cycle current, steam heating) the temperature of the outside surface of the tube, which is necessary for calculation of the heat transfer coefficient, is calculated by the equations: $$0 = \frac{qd_{w}}{4\lambda} \left[\frac{d_{w}}{d_{w}} + 0; \frac{2 \ln \frac{d_{w}}{d_{w}} \cdot 0 \sqrt{1}}{\left(\frac{d_{w}}{d_{w}} \cdot 0 \sqrt{1} - 1\right)} \right]$$ (i) (2) Card 1/2 #### "APPROVED FOR RELEASE: 08/22/2000 CIA-RDP86-00513R000411720004-2 ACC NR: AT6029318 Here, t is the temperature of the inner surface; tout is the temperature of the outer surface; θ is the temperature difference between the inner and outer surfaces; q is the specific heat/flux; λ is the heat conductivity of the flow; d_{out} and d_{in} are the outside and inside diameters of the tube. However, calculation of the value of f by Equation (2) leads to a large error, in some cases up to 17.5%. This leads to an error in the calculation of the heat transfer coefficient $\alpha = \frac{q}{\Delta t} = \frac{q}{t_{poil}t_{ep} m},\tag{3}$ With the aim of reducing these errors, experiments were carried out using a high frequency generator, Type GL-15, with a vibrational power of 8.5 kilowatts, and a working frequency of 650 kilocycles. Tests were made with a variety of liquids: benzene, ethanol, methanol, carbon tetrachloride, acetone, and double-distilled water. Detailed results are given in tabular form. The results demonstrate the effect of a rapidly alternating electromagnetic field on the intensity of heat transfer in the boiling of various liquids. It can be assumed that this effect can be explained by the interaction of the molecules of the boiling liquid with the high frequency electromagnetic field, leading to an increase in the number of active vapor formation centers. Orig. art. has: 10 formulas, 3 figures and 2 tables. SUB CODE: 20/ SUBM DATE: O5Apr66/ ORIG REF: OO4/ OTH REF: OO1 Card. 2/2 S/137/60/000/012/001/041 A006/A001 Translation from: Referativnyy zhurnal, Metallurgiya, 1960, No. 12, p. 60, # 28441 AUTHORS: D'yakonov, V.I., Petrov, K.M. TITLE: Vacuum Treatment of Structural Steels PERIODICAL: Byul. nauchno tekhn. inform. Ural'skiy n.-i. in-t chern. metallov, 1959, No. 7, pp. 8 - 14 TEXT: The $38 \times MHOA(38 \times MMVAA)$, $12 \times 244 A$ ($12 \times M2AA$), 11×15 ($5 \times M2AA$) and band steels were subjected to vacuum treatment. Seven heats were produced in a 250-kg furnace and the same number in a 130-kg induction furnace. Heats of the first group were vacuum treated during syphon-teeming process, heats of the second group were treated in the ladle prior to teeming. The teeming temperature was $1,600-1,610^{\circ}C$. Vacuum treatment in the ladle was performed for 15-30 minutes at a residual pressure as high as 15-30 mm Hg. The mechanical properties of Cr-Ni steel were not improved. Only a slight increase in a_k of Card 1/2 Vacuum Treatment of Structural Steels S/137/60/000/012/001/041 A006/A001 12Kh2N⁴A and band steel was observed. The content of non-metallic impurities decreased only in band and ball-bearing steel. In all steels [H] decreased by about $1-1.5 \, \mathrm{cm}^2/100 \, \mathrm{g}$, and [N] remained unchanged. The macro and microstructure were satisfactory. Ye.K. Translator's note: This is the full translation of the original Russian abstract. Card 2/2 PETROV, K.M.; DYAKONOV, V.I.; FADEYEV, I.G.; SEMENENKO, P.P.;
KRYUKOV, L.G.; Prinimali uchastiye: PASTUKHOV, A.I.; SHISHKINA, N.I.; PAZDNIKOVA, T.S.; CHIRKOVA, S.N.; KAREL'SKAYA, T.A.,; LOPTEV, A.A.; DZEMYAN, S.K.; ISUPOV, V.F.; BELYAKOV, A.I.; GUDOV, V.I.; SUKHMAN, L.Ya.; SLESAREV, S.G.; GOLOVANOV, M.M.; GLAGOLENKO, V.V.; ISUPOVA, T.A.; ZYABLITSEVA, M.A.; KAMENSKAYA, G.A.; POMUKHIN, M.G.; UTKINA, V.A.; MANEVICH, L.G. Vacuum treatment of alloyed open hearth steel. Stal' 22 no.2:113-117 F '62. (MIRA 15:2) 1. Ural'skiy nauchno-issledovatel'skiy institut chernykh metallov (for Pastukhov, Shishkina, Pazdnikova, Chirkova, Karel'skaya, Loptev, Dzemyan). 2. Metallurgicheskiy kombinat im. A.K. Serova (for Isupov, Belyakov, Gudov, Sukhman, Slesarev, Golovanov, Glagolenko, Isupova, Zyablitseva, Kamenskaya). 3. 6-y Gosudarstvennyy podshipnikovyy zavod (for Pomukhin, Utkina, Manevich). (Steel--Metallurgy) DIYAKONOV, V.Y.; On MI, M.J. Affect of the rise length of actoring transformer steel in various and the moment of introducing a deckinizer on the content of non-metallic including. Fig. 5 to memoral trud. Ural. politekh. inst. no.124±18-23 t63 (MIRA 17:8) L 39764-65 ENT(m)/ENA(d)/ENP(t)/ENP(z)/ENP(b) IJP(c) JD/JG ACCESSION NR: AP4047334 S/0148/64/000/010/0017/0021 AUTHOR: D'yankonov, V. I.; Popel', S. I. TITLE: Nonmetallic inclusions in vacuumed ball-bearing steel with different methods of chromium alloying SOURCE: IVUZ. Chernaya metallurgiya, no. 10, 1964, 17-21 TOPIC TAGS: vacuum treatment, nonmetallic inclusion, carbon steel, chromium additive, quartz, tungsten additive, ball bearing steel, chromium alloying ABSTRACT: Vacuum treatment of ball-bearing steel greatly improves quality but the problem of lowering the number of inclusions has been inadequately studied. Therefore, the authors undertook a study of the effects of vacuum refining carbon steel on inclusions and on their composition by using the method of Cr inoculation. The charge was composed of 150 g sponge iron with 0.05% C, 0.007% Si, 0.006% Mn, 0.005% S and 0.008% P, and 5 g crushed electrode. Metallic chromium (99.5% Cr) was added in batches of 0.5, 1 and 1.5%. Specimens were treated in a Card1/2 #### "APPROVED FOR RELEASE: 08/22/2000 L 39764-65 ACCESSION NR: AP4047334 high-frequency vacuum furnace at 1585 C. After the completion of boiling Cr was introduced and the specimens subjected to furnace cooling. The second method consisting in charging Cr together with the iron into a cold furnace produced 50% less inclusions in the degassed Cr specimens. The content of wustite was 6-7%, quartz 53% and chromite and chromium oxide 60% lower. Cr added to degassed metal produced 0.050 to 0.082% (weight of steel) oxides. An increase in the amount of Cr did not change the number of inclusions. Orig. art. has: 3 ASSOCIATION: Ural'skiy politekhnicheskiy institut (Urals Polytechnic Institute); Ural'skiy institut chernykh metallov (Urals Institute of Ferrous Metals) SUBMITTED: 01Apr63 ENCL: 00 SUB CODE: MM NR REF SOV: 012 OTHER: 001 pure metal (Cr) 18 Card 2/2 (M*) FREYDIN, L.M.; GRITSENKO, M.I.; PETROV, K.M., inzh.; D'YAKONOV, W.I., inzh. New developments in research. Stal' 24 no.74596 J1 '64. (MIRA 18:1) VLASOV, N. .., D'YAKONOV, V.I. Chromium reduction from chromium-containing furnace patching materials. Ogneupory 30 no.10:21-23 '65. (MIRA 18:10) 1. Uraliskiy nauchno-issledovateliskiy institut chernykh metallov. D'YAKONOV, V.K., polkovnik meditsinskoy sluzhby; ROMASH, V.M., podpolkovnik meditsinskoy sluzhby; BYKHALOV, L.P., mayor meditsinskoy sluzhby Biomycin in treating pustular diseases of the skin; abstract. Voen.-med.zhur. no.3:77-78 Mr '61. (MIRA 14:7) (SKIN-DISEASES) (AUREOMYCIN) D'IANTONOU, VN. KRIVONOS, Petr Fedorovich; D'YAKOHOV, V.K., red.; POLOTAY, A.M., red. [Railroad transportation as an important branch of the national economy of the Soviet Union; on the All-Union Railroad Worker's Day] Zheleznodorozhnyi transport kak vazhneishaia otrasl' narodnogo khoziaistva Soiuza SSR (ko Vsesoiuznomu dniu zheleznodorozhnika). Kiev. Ob-vo po rasprostraneniiu polit. i nauchnykh znanii USSR, 1957. 13 p. (MIRA 11:2) D'YAKONOV, V.K IGNAT'YNV, Aleksandr Fedorovich; D'YAKONOV, V.K., otvetstvennyy red.; TSYPIAKOV, N.V., otvetstvennyy red. [New types of cars for Soviet railroads] Novye tipy vagonov na zheleznykh dorogakh SSSR. Kiev, 1957. 38 p. (MIRA 11:4) (Railroads--Cars) D YAKONOU V. K. LOGVINENKO, Ivan Petrovich [Lohvynenko, I.P.]; GORILOVSKIY, Mikhail Iosifovich [Horilovs'kyi, M.I.]; D'YAKONOV, V.K., red.; LISENKO, F.K. [Lysenko, F.K.], red. [Electrification of Ukrainian railroads] Elektryfikatsiia zaliznyts' Ukrainy. Kyiv, 1958. 35 p. (Tovarystvo dlia poshyrennia politychnykh i naukovykh znan' Ukrains'koi RSR. Ser. 4, no.1) [In Ukrainian] (MIRA 11:6) (Ukraine--Railroads-Electrification) MONAKHOV, K.K.; D'YAKONOV, V.L. Electrodes for multichannel registration of biocurrents of the brain. Zhur.nevr. i psikh. 59 no.8:1010-1014 '59. (MIRA 12:12) 1. Laboratoriya elektroentsefalografii (zav. - prof. M.H. Livanov) Instituta vysshey nervnoy deyatel'nosti AN SSSR i kafedra psikhiatrii (zav. - prof. A.V. Snezhnevskiy) TSentral'nogo instituta usovershenstvovaniya vrachey, Moskva. (BRAIN physiol.) L 38552-65 ACCESSION NR: AP5005401 \$/0239/65/051/002/0278/0280 delekhova, A. M.; D'yakonov, V. L. A simple micromanipulator for inserting electrodes into the Piniologicneskiy zhurnal SSSR, v. 51, mg. , 278-280 The animal, brain, nerve cell, minorating and it maying. wate, electrode holder 1.4 Tt A simple ministure micromanipulator has been tiveloped e in trating single nerve cell activity to an antractor of the mismoelectrodes in such a way that here are the comments the rell and at the same time to be Communiquiator (50 mm Fish, 1995) and 1995 officely of a trome, a lange some, own to House a colder. and a dial for nitrons. The parts are main of home. . . The minutes and palator is secured to the conwhich manners and can be used with one or more which wast, Samo 1/2 ACTESSION NR: AP5005401 latter case all electrodes must be inserted at the same time until a perfected. The electrode is help in late at any riven to be electrode holder nod with adjusting screws on wax. The industry has proven convenient and simple to see in the convenie ADBUCIATION: Laboratoriya elektrofiziologii Instituta vysahey nervoly legatelinosti i negrofiziologii AN SSSR, Moscow (Electrophysiology Laboratory of the Institute of Higher Nervous activity and Neurophysiology AN SSSR) SUBMITTED: 30Sep63 ENCL: 00 SUB CODE: LS NR REF SOV: 001 OTHER: 006 Cord 2/2 Divinction, V. M. Mor., ZIS (-1965-) "A Machine Tool for Slotting Sharers," Stanki I Instrument, 16, Nos. 10-11, 1945 ER-52059019 D'YAKONOV, V. M. Siukeevskie caverns. Prioroda 41, No 6, 1952. ## Dimmondy, v. H. V. M. D'weltonov, and H. I. Kurnakov, <u>Makturn i ilda kulltura v Jornaturila uclarizada</u> (Gochurer, and Their Cultiwation Indoors) (Fro. 1912 of the "Version of Labibotran hullturn rasteniz" (In Aid to Plant-Growing Hobbylets) Labingrad University Front. The booklet gives a description of the significance of cactures as descriptive and cultural plants, and includes a brief shotch of the geographical distribution of cactures and a classification of the principal groups and generals. The castur Carillias. The booklet is imborded for gardening hobbyicts. SO: Sovetshive Inici (Sorlet Dooks), No. 186, 1953, Leccour, (U-6173) AUTHOR: D'yakonov, V.M. Engineer SOV-117-58-4-4/21 TITLE 3 The Manufacture of Cutting Tools (Izgotovleniye rezhuenchego in strumenta) PERIODICAL: Mashinostroitel: 1958, Nr 4, pp 12-17 (USSR) ABSTRACT 3 The tool shop of the Automobile Plant imen: I.A. Likhachev produces 80% of the Plant's requirements for cutting tools. The article presents the following information on the work methods: technology and devices being used at present in this tool shop: a special cutting stamp (Figure 1) for cutting tool blanks; the new shape of carbide tool ends (Figure 2) and the technology of attaching the carbide tips; new thin carbide tips (Table 3). etc. Modernization of the vertical milling machines of the shop is described in general terms. A special high-efficiency grinding machine for relieving multiple hobs, designed at the tool shop, is described and illustrated by diagram. This grander differs from the conventional relieving grinders by the absence of the lead screw. The spindle is moved in axial direction by a cam. There is almost no wear in comparison with that of the lead screws. A particular feature of the grinder is that it reduces the accumulated pitch error, which could not be achieved in any other known machine design. There are 7 diagrams and Card 1/2 SOV-117-58-4-4/21 The Manufacture of Cutting Tools and 5 tables. 1. Cutting tools---Production Card 2/2 TIKHONOV, A.N.; IVANOV, A.G.; TROYTSKAYA, V.A.; D'YAKONOV, V.N. On the relation of terrestrial currents and earthquakes. Trudy Geof.inst. no.25:181-191 '54. (MIRA 7:12) (Seismology) (Magnetism, Terrestrial) DIYAYONOV, V.N., Cand Tech Sci -- (diss) "Study of stresses in links of link gears with clearances in ball-and-socket joints with the basective of increasing the reliability of its operation." Tos, 1956, 19 pp with sketches (Min of mailways USSR. Mos Order of Lenin and order of Labor Red Fanner Inst of Engineers of Railrand Transport im I.V. Stalin) 150 copies (FL, 27-58, 109) - 100 - BAULIN, I.S., inzh.; D'YAKONOV, V.N., kand, tekhn.nauk.; USKOVA, O.N., kand. tekhn.nauk.; SHUR, Ye.A., inzh.; KONYYKHOV, A.D., inzh.; AFANAS'YEV, L.U., inzh.; EVLIKANOV, A.V., inzh. Investigating the mechanism of rail contact-fatigue damages (defects 82 and 64). Vest. TSNII MPS 21 no.4:27-30 '62. (NIRA 15:6) (Railroads--Rails--Defects) D'YAKONOV, V.N., kand.tekhn.nauk; RUBIN, G.V., kand.tekhn.nauk; KISEL'NIKOVA, O.V., kand.tekhn.nauk Electric furnace bath for isothermal hardening. Trudy MIIT no.160:27-30 '62. (MIRA 16:2) (Furnaces, Heat treating) KONYUKHOV, A.D.; D'YAKONOV, V.N. Testing the bearing strength of a rail steel under repeated impact stress.
Zav.lab. 29 no.8:984-986 63. (MIRA 16:9) 1. Vsesoyuznyy nauchno-issledovatel'skiy institut zholeznodo-rozhnogo transporta. (Steel-Testing) D'YAKONOV, V.N., kand. tekhn. nauk; KOLOTUSHKIN, S.A., inzh. Ultrasonic testing of rails removed from the track. Put' i put. khoz. 8 no.9:32-33 '64. (MIRA 17:11) BAULIN, I.S., insh.; D'YAKONOV, V.N., kand. tekhn. nauk Improving the quality of standard make rails manufactured from Martin steel. Trudy TSNII MPS no.292:166-183 165. (MIRA 18:10) DYAKONOV, V.P. Evaluating the effects of dissolved gases on the compressibility factor of reservoir waters as exemplified by fields of the Saratov and Volgograd regions. Nauch.-tekh. sbor. po dob. nefti. no.20:12-17 '63. (MIRA 17:6) AUTHORS: Kletskin, G. I.; Sobol', N. L.; D'yakonov, V. Ye.; Rabinovich, V. D., and Yan Zhu-Yao TITLE: Study of processes in cupola furnaces in which part of the coke is replaced by natural gas PERIODICAL: Liteynoye proizvodstvo, no. 1, 1961, 19-25 TEXT: Although several Soviet plants use natural gas for firing furnaces, there is still a number of problems connected with the replacement of coke by gas. In cooperation with the Mosgazoproyekt Institute the Stankolit Plant put a coke-gas fired 10 - 12 t/h capacity cupola furnace into service last year, which is equipped for tests. As to the design of gasfired furnaces, the general opinion is that when fired only by natural gas, fired furnaces, the general opinion is that when fired only by natural gas, the cupola design must be changed radically and should be given a shape resembling a shaft or air furnace. When both coke and gas are applied, however, its design has to undergo only slight modifications and, if necessary, the furnace can be fired by coke only. Special features of the furnace converted for coke and gas firing (Fig. 1) are the two collectors which feed Card 1/12 Study of processes in cupola furnaces... air to the tuyeres and the burners, respectively. The tuyeres are moreover arranged only in one row in connection with the considerably reduced amounts of coke and air used. In order to establish the optimum height of the burner assembly, twelve burners were mounted in the test-cupola in three rows, the first at a height of 770, the second at 1,070 and the third at 1,370 mm from the axis of tuyères. At the simultaneous combustion of gas and coke the regulation and distribution of the blast between tuyeres and burners is very important. With the collectors (4, 5 in Fig. 1) which operate in combination with independent fans, the required constant gas-coke ratio in the cupola can be set and maintained. Complete burning of the gas outside the shaft is obtained by a special tunnel-antechamber for the discharge of the gas-air mixture from the burners. The most suitable burner for cupolas fired with mixed fuels is the double-circuit type, in which the gas and the air can be pre-mixed and the outlet cross section is such that the speed of the outflowing air-gas mixture is more than 40 - 50 m/sec. During smelting in the cupola furnace the parameters of gas and air consumption for tuyeres and burners change constantly. The control panel (Fig. 4) has push buttons controlling the slidevalve mechanisms (16, Fig. 4), the push button for stopping the cupola operation in case of danger (17, Fig. 4), a button for au- Card 2/12 Study of processes in cupola furnaces... dible and one for light signals (18, 20, Fig. 4), a safety-release button (19, Fig. 4). In order to maintain a constant gas pressure before the burners and to ensure the combustion of gas at a given ratio to air, two jetregulators from the Khar'kovskiy zavod Teploavtomat (Khar'kov Teploavtomat Plant) are mounted, one controlling the gas pressure (8, Fig. 4), the other the gas-air ratio (9, Fig. 4). The controlling pulse is given to the pressure regulator when the gas pressure before the burners attains 0.27 atmospheres. The change in pressure before the burners is compensated by a valve (operated by a CK-80-15 = SK-80-15 servo-motor), moving before the burners in the required direction to equalize the gas pressure. The gas-air ratio regulator receives pulses of pressure drops from a diaphragm which controls the gas and air consumption (differential type AN3M (DPFM) pressure gauge). Air consumption of the tuyeres and burners is controlled by an 5-610 (E-610), gas consumption by an 9-612 (E-612) device. In order to prevent gas-explosions, a NK-100 (PK-100) safety valve, designed by the Mosgazproyekt, is mounted in the gas conduit; it is equipped with an electromagnet whose head is connected to the air-collector of the burners through a pulse pipe. When the air-pressure drops below a certain value, the gas supply is switched off automatically. When the gas pressure drops below 0.15 atm, the CNAC-1.5 Card 3/12 Study of processes in cupola furnaces... (SPDS-1.5) gas-pressure indicator (12, Fig. 4), starts operating and the gas-supply is stopped. The operation of all these devices is signaled by a flashlight (20) and a howler (13). The air-collectors are provided with valves to prevent their destruction in case of explosion. The smelting process, the quality of metal smelted in a mixed-fuel cupola and the composition of the combustion products were studied with various rows of burners (I, II, III) and also with different combinations, respectively: at the same time I-II, II-III, I-III and all three. The other conditions of the process (composition of the charge, for C4 24-44 (SCh 24-44)iron, firing conditions and temperature, etc.) were identical in all tests. It was found that by charging 100 kg coke and 30 m3 gas into the furnace for 1 ton iron, 875,000 kcal heat was introduced, as against 992,000 kcal of heat used for the same amount of iron in furnaces fired by coke only. This can be explained by the fact that less heat is spent on slag formation due to the decrease in the amount of flux applied and to the improvement of heat transfer to the charge in the cupola furnaces, partly fired by gas. An analysis of the gas composition in coke-fired and coke-gas fired cupolas showed that the CO2/CO ratio is higher in the latter type of furnaces. It was found that by mounting the burners higher in the furnace shaft the CO2 content of furnace Card 4/12 Study of processes in cupola furnaces... gases increases while the CO content decreases. The hydrogen content also increases in furnaces with mixed fuels (it is 2 - 2.5 %, three times more than when firing with coke alone). The higher the burners are placed, the higher the hydrogen content. Figure 7 presents the temperature conditions of mixed-fuel cupolas and shows that they are 150 - 300°C higher than those in coke fired furnaces. At a level of 3 m from the tuyere the temperature of separating gases attains 950°C in the coke-gas furnace, (when row I of burners is operating), while the corresponding temperature for coke-fired furnaces is 650 - 700°C. Thus, the smelting of the metal charge begins at higher levels in the coke-gas fired furnace. As to the behavior of carbon, silicum and magnesium, no change is found in iron smelted in mixed-fuel cupolas, while the sulphur content decreases by 0.01 - 0.02 %. When the burners of the upper row are used, iron shows an increased tendency to form cementite and shrinkage cavities, while its fluidity seems to decrease. Moreover, iron produced in mixed-fuel furnaces has a higher hardness (by 10 - 15 Brinell grades) while the mechanical properties do not change. The lining of mixed-fuel furnaces requires more frequent repairs since it burns higher up. The coating consists of 35 % sand, 25 % refractory clay and 40 % waste of fireclay bricks. Especially the coating of gas-burner tunnels has to be Card 5/12 Study of processes in cupola furnaces... in perfect condition, because the regularity of the goemetrical form of the tunnel greatly affects the intensity of gas combustion. Coating with fireclay blocks was too expensive, a refractory mass is therefore used. The operation conditions of the mixed-fuel cupola are given in Table 6. The coke bed is 1,400 mm high. When the normal operation conditions are attained, further operation is controlled automatically. The experience of 14 months of operation has shown that the mixed-fuel cupola works satisfactorily with 10 % coke for 300 nm³/hour gas at an air consumption of 5,000 nm³/hour, producing 10 tons of iron per hour at a temperature of 1,430°C in the chute. The output of the mixed-fuel cupola is increased by 20 - 25 % as compared with coke-fired cupolas. There are 6 tables and 13 figures. Card 6/12 #### "APPROVED FOR RELEASE: 08/22/2000 ### CIA-RDP86-00513R000411720004-2 S/128/61/000/001/004/009 A054/A133 Study of processes in cupola furnaces... Figure 1: (continued) Mixed-fuel cupola furnace - 1 collector; - 2 stand pipe; - 3 burner; - 4, 5 air collectors; - 6 tuyère; - 7 tunnel; - 8 rectangular-section container. Horizontal legend: 1 - Air for tuyères. 2 - Air for burners Card 8/12 Study of processes in cupola furnaces... S/128/61/000/001/004/009 A054/A133 Figure 4: Control devices and automatic system of the coke-gas fired furnace 1 - millivoltmeter; 2,3 - diaphragm pursure gauge; 4-millivoltmeter; 5 (not given); 6, 10 - air consumption gauge; 7 - gasometer; 8, 9 - automatic jet regulators; 11 - safety valve; 12 - contacts indicating the gas pressure drop; 13 - howler; 14 - operating mechanism; 15 - servomotor, 16 - mechanism of slide valves; 17 - push button for stopping furnace operation; 18 - sound signal; 19 - safety switch off device; 20 - lamp. Vertical legend: to the power line of fan · Card 9/12 Study of processes in cupola furnaces... S/128/61/000/001/004/009 A054/A133 Figure 7: Temperature of furnace gases Horizontal legend: Conventional cupola, I-II-III row of burners in the coke-gas fired cupola Vertical legend: Temperature of furnace gases Card 10/12 Study of processes in cupola furnaces... S/128/61/000/001/004/009 A054/A133 | Table 1 | ż | Technical | characteristics
| of | the | test | cupola | |---------|---|-----------|-----------------|----|-----|------|--------| | | | | | | | | | | Designation | Specification | | | |---|--------------------|------------|-----| | Internal diameter of the furnace shaft | ⁻ 1,300 | mm | | | Number of tuyere rows | 1 | | | | Number of tuyeres in the row | 8 | | | | Ratio of tuyere-section surface to the surface | | | | | of shaft section | 10 | % | , | | Number of burner rows | 3 | ' . | | | Total number of burners | 12 | | | | Distance between bottom and tuyere axis | 850 | mm | | | Distance between the tryere axis and the lowest | 3- | | | | row of burners | 770 | mm · | | | Distance between the burner rows | 300 | | | | | ,,,,, | | . 1 | | Distance between the upper edge of tuyeres and | 3,935 | mm | V | | the sill of charging door | 1.100 | | | Card 11/12 # "APPROVED FOR RELEASE: 08/22/2000 ### CIA-RDP86-00513R000411720004-2 S/128/61/000/001/004/009 A054/A133 Study of processes in cupola furnaces... | Table 6: Operation conditions of cupola fired with coke and gas | | | | | | | | | | |---|-------------------------------|-------------------------|-----------------------------|--------------------------|---------------------|---------------------------------------|--|--|--| | Time from the begin- | water column | Consump- | Pressure mm water column | Consump-
tion
m3/h | Pres- | Consump-
tion
m ³ /h | | | | | 0 - 20
20 - 30
30 and more | 250-300
500-600
700-800 | 2,500
3,500
5,000 | -
900-1,000
950-1,050 | -
3,000
3,000 | -
2,700
2,700 | -
300
300 | | | | The pressure should be raised until the pointer of the gage does not move from 0. Card 12/12 KLETCHIN, D.I., kand. tekhn. nauk; SUKHARCHUK, Yu.T., kand. tekhn. nauk; BLAGONEAVOV, B.P., inzh.; SOBOL; N.L., inzh.; L'YAKONOV, V.Ye., inzh.; RABINOVICH, V.D., inzh. Melting cast iron in a coke-oven gas-fired cupola, Lit.proizv. no.12:1-4 D 165. (MRA 18:12) # "APPROVED FOR RELEASE: 08/22/2000 CIA-RI CIA-RDP86-00513R000411720004-2 L 26089-66 EWA(1-)/EWT(1) UR/0120/66/000/002/0090/0092 SOURCE CODE: ACC NR: AP6013504 AUTHOR: D'yakonov, V. P. ORG: none TITLE: A transistorized step-wave voltage generator SOURCE: Pribory i tekhnika eksperimenta, no. 2, 1966, 90-92 TOPIC TAGS: transistorized oscillator, electronic circuit, transistor ABSTRACT: Circuits are proposed for a step-wave voltage generator based on two transistors working in avalanche breakdown conditions. The basic version of the generator circuit is shown in the figure by the unbroken lines. Capacitor \mathcal{C}_1 is charged through resistor $R_{_{m{C}}}$ until the breakdown voltage for transistor T_{1} is reached, when a voltage discharge takes place through the transistor to capacitor \mathcal{C}_2 generating a voltage step on the second capacitor. Discharge of capacitor \mathcal{C}_1 is completed when the voltage across the collector-emitter section of T_1 falls below the threshold voltage of this transistor. A series of discharges of this type causes a stepwise increase in the voltage across C_2 which eventually reaches the breakdown voltage of transistor T_2 . Capacitor C_2 then discharges until the threshold voltage for T_2 is reached and the process repeats itself. This means that the voltage step-wave begins at the threshold value for T_2 instead of at zero, which reduces its amplitude. This may be avoid-UDC: 621.373.5 Card 1/3 "APPROVED FOR RELEASE: 08/22/2000 CIA-RDP86-00513R000411720004-2 #### "APPROVED FOR RELEASE: 08/22/2000 #### CIA-RDP86-00513R000411720004-2 ACC NR: AP6013504 ad by using the modified circuit shown by the dotted lines in the figure. The diodes isolate the negative pulse formed during discharge of C2, and the transformer then feeds this pulse to the base circuit of T2 thus triggering this transistor and instantaneously discharging the capacitor to zero voltage. Formulas are given for calculating the amplitude, duration and number of steps. It is shown that voltages with step durations of 2 usec to 20 msec may be generated with amplitudes of up to 50 v and any number of steps. The author is grateful to G. A. Ali-Zade and Yu. S. Kengerlinskiy for discussion of this article and for valuable consultation. Orig. art. has: 3 figures, 1 table, 13 formulas. [14] SUB CODE: 09/ SUBM DATE: 02Mar65/ ORIG REF: 002/ OTH REF: 001/ ATD PRESS: 4254 S/208/62/002/001/004/016 D299/D303 がごろうだ。 AUTHOR: D'yakonov, Ye.G. (Moscow) TITLE: On difference methods for solving boundary-value problems PERIODICAL: Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki, v. 2, no. 1, 1962, 57 - 79 TEXT: A difference scheme, called the fractional-step method, is considered. This method was developed by N.N. Yanenko (Ref. 5: Ob ekonomichnykh neyavnykh skhemakh (Metod drobnykh shagov). Dokl. AS SSSR, 1960, 134, no. 5, 1034-1036). The limits of applicability of the method are defined; a modified version of the method is proposed whereby its range is extended. The equation $$\frac{\partial \mathbf{u}}{\partial \mathbf{t}} = \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + \frac{\partial^2 \mathbf{u}}{\partial \mathbf{y}^2}$$ (1.1) is considered, on the cylinder $Q_{T} = \overline{\Omega} \times [0 < t - T], \quad \overline{\Omega} \{(x, y): 0 < x < 1, 0 < y < 1\},$ Card 177 ുറാം 8/208/62/002/001/004/016 D299/D303 On difference methods for ... with initial condition $$\mathbf{u}/_{\mathbf{t}=\mathbf{0}} = \varphi(\mathbf{x}, \mathbf{y}) \tag{1.2}$$ and boundary condition $$u/_{s} = \psi(x, y, t), (x, y) \in S.$$ (1.3) Let h = 1/N be the step with respect to x and y; τ - the time step. Conditions (1.2) and (1.3) are approximated by $$v_{ij}^{(0)} = \varphi_{ij}, \quad (i,j) \in \overline{\Omega}_h, \tag{1.2'}$$ $$v_{ij}^{(n)} = \psi_{ij}^{(n)}, \ v_{ij}^{(n+1)} = \psi_{ij}^{(n+1)}, \quad (i,j) \in S_h. \tag{1.31}$$ The fractional-step method consists in setting up a system of equations involving the intermediate functions v_{ij}(n+1/2): $$\frac{v_{ij}^{(n+1/i)} - v_{ij}^{(n)}}{\tau} = \sigma \Delta_{x\bar{x}}^2 v_{ij}^{(n+1/i)} + (1 - \sigma) \Delta_{x\bar{x}}^2 v_{ij}^{(n)},$$ $$\frac{v_{ij}^{(n+1)} - v_{ij}^{(n+1/i)}}{\tau} = \sigma \Delta_{y\bar{y}}^2 v_{ij}^{(n+1)} + (1 - \sigma) \Delta_{y\bar{y}}^2 v_{ij}^{(n+1/i)},$$ (1.4) Card 2/7 S/208/62/002/001/004/016 D299/D303 On difference methods for ... where $$\Delta_{x\bar{x}}^2 v_{ij} = \frac{v_{i+1,j} - 2v_{ij} + v_{i-1,j}}{h^i},$$ 0 < o < 1. $$\Delta^{2}_{\nu\bar{\nu}}v_{ij} = \frac{v_{i,j+1} - 2v_{ij} + v_{i,j-1}}{h^{i}},$$ Eq. (1.4) is rewritten in the form $$(E - \sigma \tau \Delta_{x\bar{x}}^2) v_{ij}^{(n+1/i)} = (E + (1 - \sigma) \tau \Delta_{x\bar{x}}^2) v_{ij}^{(n)},$$ (1.5) $$(E - \sigma \tau \Delta_{y\bar{y}}^2) v_{j}^{(n+1)} = (E + (1 - \sigma) \tau \Delta_{y\bar{y}}^2) v_{j}^{(n+1)},$$ where E is the identity operator. System (1.5) is equivalent to $$(E - \sigma \tau \Delta_{x\bar{x}}^{2}) (E - \sigma \tau \Delta_{y\bar{y}}^{2}) v_{ij}^{(n+1)} =$$ (1.7) $$= (E + (1 - \sigma) \tau \Delta_{x\bar{x}}^2) (E + (1 - \sigma) \tau \Delta_{y\bar{y}}^2) v_{ij}^{(n)} + \tau R_{ij}^{(n)},$$ where $R_{ij}^{(n)}$ is given by an expression; Eq. (1.7) was obtained by eliminating $v_{ij}^{(n+1/2)}$. If $R_{ij}^{(n+1/2)}$ vanishes for all (ij), then (1.5) and Card 3/7 S/208/62/002/001/004/016 D299/D303 On difference methods for ... (1.7) are equivalent. If however, $R_{ij} \neq 0$, it can be shown by an example that (1.7), (and hence (1.4) too), does not approximate Eq. (1.1). Thus, one arrives at the following Theorem 1.: For Eq. (1.1) with initial condition (1.2) and boundary condition $u_{|S} = 0$, the fractional-step method is absolutely stable and convergent, with the mean order of convergence $O(\tau)+O(h^2)$; in the case of a nonhomogeneous boundary condition (1.3), the method must not necessarily yield an approximation to Eq. (1.1). The modified method is then set forth. The equation $$\frac{\partial \mathbf{u}}{\partial \mathbf{t}} = \sum_{s=1}^{p} \mathbf{I}_{s} \mathbf{u} + \mathbf{f}$$ (2.1) is considered, with boundary conditions $$(u, \frac{\partial u}{\partial v}, \ldots, \frac{\partial^{m-1} u}{\partial v^{m-1}})_{S} = (0, 0, \ldots, 0)$$ (2.2) Card 4/7 33290 8/208/62/002/001/004/016 D299/D303 (2.4) On difference methods for and initial condition $(2.3)_{1=0} = \varphi(x_1, x_2, \ldots, x_p).$ Here $L_{s}u = \sum_{\alpha=0}^{m} (-1)^{\alpha-1} \frac{\partial^{\alpha}}{\partial x_{s}^{\alpha}} \left(a_{s\alpha}(x_{s}) \frac{\partial^{\alpha} u}{\partial x_{s}^{\alpha}}\right)$ The difference equation corresponding to this problem, is $\frac{v^{(n+s/p)}-v^{[n+(s-1)/p]}}{\tau}=\frac{1}{2}\left(L_s^hv^{(n+s/p)}+L_s^hv^{[n+(s-1)/p]}\right) \qquad (s=1,2,\ldots,p-1),$ (2.4) $\frac{v^{(n+1)}-v^{(n+(s-1)/p)}}{\tau}=\frac{1}{2}(L_p^hv^{(n+1)}+L_p^hv^{(n+(p-1)/p)})+T^h/f^{(n)},$ where L_s is a sum of series terms, and $T^h f$ is a product of series terms. Further, the stability of system (2.4) is considered. One arrives at Theorem 2: The fractional-step method for the system (2.1), (2.2), (2.3) is (under certain conditions) absolutely stable and convergent with mean order of convergence $O(\tau^2) + O(h)$; if the equation has constant coefficients, the order of convergence is Card 5/7 S/208/62/002/001/004/016 D299/D303 On difference methods for ... $0(\tau^2) + 0(h^2)$. The equation ne equation $$\frac{\partial u}{\partial t} = \sum_{s=1}^{p} \frac{\partial}{\partial x_{s}} \left(a_{s}(x_{s}, t) \frac{\partial u}{\partial x_{s}} \right) - \sum_{s=1}^{p} b_{s}(x_{s}, t) u + f, \tag{3.1}$$ $a_{s}(x_{s}, t) > 0; b_{s}(x_{s}, t) \ge 0,$ is then considered, with boundary condition $\mathbf{u}_{\mathbf{S}} = \mathbf{0} \tag{3.2}$ and initial condition (2.3). The corresponding difference equations are set up. The conditions are ascertained for the stability of the difference system.
Further, a modified version of the method is proposed which removes any limitations on the sign of b_8 (in Eq. (3.1)). Eq. (2.1) is considered with conditions (2.2) and (2.3). The function u(x, t), is called the generalized solution of Eq. (2.1) provided it satisfies certain conditions. It is proved that the generalized solution exists and can be obtained as the limit of approximations which were obtained by the fractional-step method. The ba- Card 6/7 33290 S/208/62/002/001/004/016 D299/D303 On difference methods for ... sic mathematical apparatus used for this purpose involves difference- "energy inequalities". The proof proceeds by means of several theorems. There are 17 references: 12 Soviet-bloc and 5 non-Soviet-bloc. The 4 most recent references to the English-language publications read as follows: J. Douglas, H. Rachford, On the numerical solution of heat conduction problems in two and three space variables. Trans. Amer. Math. Soc., 1956, 82, no. 2, 421-439; J. Douglas T. Gallie, Variable time steps in the solution of the heat flow equation by a difference equation. Proc. Amer. Math. Soc., 1955, 6, no. 5, 787-793; M. Lees, Energy inequalities for the solution of differential equations. Trans. Amer. Math. Soc., 1960, 94, 58-73; M. Lees, Approximate solutions of parabolic equations. J. Soc. Industr. and Appl. Math., 1959, 7, 167-183. SUBMITTED: September 27, 1961 Card 7/7 16,1500 16,3900 S/020/61/138/002/005/024 C111/C222 AUTHOR 8 ١. D'yakonov, Ye.G. TITLE 8 The method of variable directions in solving simultaneous equations of finite differences PERIODICALs Akademiya nauk SSSR. Doklady, v.138, no.2,1961,271-274 TEXT: The author proves the convergence of the method of variable directions (Ref. 2: D.W. Peaceman, H.H. Rachford, J. Soc.Ind.Appl.Math., 3,28 (1955), Ref. 3: J. Douglas, H.H. Rachford, Trans.Am.Math.Soc.,82, 421 (1956); Ref. 4: G. Birkhoff, R. Varga, Trans.Am.Math.Soc.,92,13 (1959)) for the first boundary value problem in the rectangle for certain selfadjoint elliptic equations of higher than second order. For equations with separable variables the author gives an estimation of the velocity of convergence. $$Lu = \frac{\partial^2}{\partial x^2} \left(a(x) \frac{\partial^2 u}{\partial x^2} \right) + 2 \frac{\partial^2}{\partial x \partial y} \left(b(x, y) \frac{\partial^2 u}{\partial x \partial y} \right) + \frac{\partial^2 u}{\partial y^2} \left(c(y) \frac{\partial^2 u}{\partial y^2} \right) -$$ Card 1/6 S/020/61/138/002/005/024 C111/C222 The method of variable ... $$-\frac{\partial}{\partial x}\left(d(x)\frac{\partial u}{\partial x}\right) - \frac{\partial}{\partial y}\left(e(y)\frac{\partial u}{\partial y}\right) + f(x)u + g(y)u = h(x,y)$$ (1) $$u = 0 ; \frac{2u}{\partial x} = 0$$ (2) $$u = 0; \frac{2u}{\partial y} = 0$$ $$a>0, c>0; b,d,e,f,g>0; b^2 - ac \le 0;$$ $$a,b,c \in C^{(3)}; d,e,\in C^{(2)}; f,g\in C^{(1)}.$$ (2) v_{ij} is defined as v(ih, jh) on the net D_h s $x_i = ih$, $y_j = jh$; h = 1/N0 \lefter i \lefter N , 0 \lefter j \lefter N . It holds $$u_{ij} = 0 \text{ on } S_h$$ (4) For exterior points of the square it holds $u_{ij} = 0$ and for $i, j \in D_h \setminus S_h$ for the determination of u one obtains the system Card 2/6 The method of variable ... S/020/61/138/002/005/024 C111/C222 $$L_{h^{u}_{ij}} = \Delta_{\overline{x}} \left(a_{i} \Delta_{\overline{x}} u_{ij} \right) + 2\Delta_{\overline{x}} \left(b_{ij} \Delta_{xy} u_{ij} \right) + \Delta_{\overline{y}} \left(c_{j} \Delta_{yy} u_{ij} \right) - \Delta_{\overline{y}} \left(a_{j} \Delta_{y} u_{ij} \right) + \Delta_{\overline{y}} \left(a_{i} \Delta_{\overline$$ where $\Delta_{\overline{x}^{u_i}} = \frac{u_i - u_{i-1}}{h}$, $\Delta_{x^{u_i}} = \frac{u_{i+1} - u_i}{h}$. $$L_{x^{u}_{ij}} = \Delta_{\overline{x}\overline{x}} (a_{i}\Delta_{\overline{x}\overline{x}}u_{ij}) - \Delta_{\overline{x}} (a_{i}\Delta_{x}u_{ij}) + f_{i}u_{ij}$$ (6) $$L_{y^{u}_{ij}} = \Delta_{\overline{y}\overline{y}} (c_{j}\Delta_{yy^{u}_{ij}}) - \Delta_{\overline{y}} (e_{j}\Delta_{y^{u}_{ij}}) + g_{j^{u}_{ij}}$$ (7) $$2L_{xy}^{u_{i,j}} = 2\Delta_{\overline{xy}} \left(b_{i,j} \Delta_{xy}^{u_{i,j}}\right) \qquad (8)$$ Analogous to S.D. Conte (Ref. 5 & Pasif. J. Math. 7, no. 4, 1535 (1957)) the author defines the iteration process Card 3/6 23823 S/020/61/138/002/005/024 C111/C222 The method of variable ... $(L_x + \tau_n^E)u_{ij}^{(n+1/2)} = h_{ij} - (L_y + 2L_{xy} - \tau_n^E)u_{ij}^{(n)}$ (9) $$(L_y + \tau_n E) u_{i,j}^{(n+1)} = L_y u_{i,j}^{(n)} + \tau_n E u_{i,j}^{(n+1/2)}$$ (10) where E - unit operator, τ - iteration parameter; $u^{(n)}$, $u^{(n+1)}$ successive iterations, $u^{(n+1/2)^n}$ - intermediate vector. By elimination of $u^{(n+1/2)}$ it follows: $$\left[\tau_{n}^{2}E + \tau_{n}'(L_{x}^{+}L_{y}) + L_{x}L_{y}\right]u^{(n+1)} = h + \left[\tau_{n}^{2}E - 2\tau_{n}L_{xy} + L_{x}L_{y}\right]u^{(n)}$$ (11) and $u = u^{(n)} = e^{(n)}$; $Ae^{(n+1)} = Be^{(n)}$, (12) where $Ae^{(n+1)} = \left[\tau_n^2 E + \tau_n (L_x + L_y) + L_x L_y \right] e^{(n+1)}$; $Be^{(n)} =$ $\begin{bmatrix} \tau^2 \mathbf{E} - 2\tau & \mathbf{L} \\ \mathbf{n} & 4/6 \end{bmatrix} = \begin{bmatrix} \mathbf{n} \\ \mathbf{x} \end{bmatrix} = \begin{bmatrix} \mathbf{n} \\ \mathbf{y} \end{bmatrix}$ s/020/61/138/002/005/024 0111/0222 The method of variable ... It holds $e^{(n)} = 0$ on S. Lemma 1 3 The operators A and B are symmetrical, where $(B\psi, \psi) > 0$ for $\|\psi\| > 0$, where $(\psi, \phi) = \sum_{i=0}^{N} \sum_{j=0}^{N} \psi_{ij} \psi_{ij}^{2}$. Theorem 1 * For a fixed $\tau_n \geqslant 0$ the iteration process (9), (10) converges in the metric $\|\psi\|_B^2 = (B\psi, \psi)$. Theorem 2 : If b = 0, then for a suitable choice of $\{\tau_n\}$, \bowtie ln h ln c iterations according to the method of variable directions suffice for the determination of the solution of (4), (5). The number of arithmetic operations is \bowtie h⁻² ln h ln ϵ . There are 2 Soviet-bloc and 5 non-Soviet-bloc references. The four most recent references to English-language publications read as follows : Card 5/6