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THE INFLUENCE OF ELASTIC SHEAR STRAINS ON
THE CONDUCTIVITY AND THERMO-ELECTRIC
FORCE OF CUBIC METALS

by J. SMIT

Philips Rescarch Laboratories N.V. Philips’ Glocilampenfabrieken Eindhoven-Nederland

Synopsis

Elastic shoar strains cause a change in the shape of the Fermi surface
of metals. The influence that such a change has upon the electrical conducti-
vity and the thermo c.m.f. has been calculated for monovalent f.c.c, metals,
and the results of it have been compared with the experimental values for
Cu, Ag and Au. The conclusion can be drawn that the Fermi surface of
gold touches the Brillouin zonc boundary, whereas that of copper does
not, whilst silver is an intermediate case. The theoretical results account
also qualitatively for the experimental values of the trivalent Al

1. Introduction. Even in cubic monovalent metals the Fermi
- surface in wavevector space for the conduction electrons is not
spherical. For sodium it is generally assumed that the deviations
from the spherical shape arc negligible, but for the noble metals this
is probably not the case. The clectrical conductivity is isotropic for
cubic crystals, but if it could be made anisotropic by artificial means,
it might be possible to obtain information about the anistropy of the
Fermi surface. This can indeed be done by applying elastic shear
strain.
~ The linear dependence of the resistance on the strain can be
described by a fourth-order tensor, since it relates two second order
tensors. In the case where the codrdinate axes coincide with the
cubic axes of the crystal one obtains:

AQxx/QO = QOAGxx = Q184 + a12('9yy + Ezz) (1)
AQxy/QO = QOAGxa = 2a44€x;v

and similar expressions for the other directions. Here g4 is the
resistance in the undeformed state, and o, the conductivity. The
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constants a; arc analogous to the clastic constants, and thercfore
the same abbreviations are used. The three combinations of intercst
arc ay; + 2ay,, a;; — @, and 2a,,. The first quantity gives the
change under hydrostatic pressure and the last two the changes
under shear strains, leaving the volume constant. For isotropic
materials the last two quantities are equal: ¢, — a;; = 2a,,. The
theory for a;; + 2u,, has been given by Mot t?). Under hydro-
static pressure the clastic constants increase due to the anharmonic
term in the potential energy, which also gives rise to the thermal
cxpansion. Thus the amplitude of the lattice vibrations is decrcased,
giving a smaller resistance and a;, + 2a,, > 0. The theory accounts
satisfactorily for the cxperimental values. Here we shall be con-
cerned only with a;; — a;, and 2ay,.

Another property strongly depending on the conduction clectrons
near the IFermi surfacc is the absolute thermo-electric power,
being also a second-order tensor and thus isotropic for cubic crystals.
The changes under the application of strain are given by equations
analogous to (1):

'dg,n = ﬁllsxz + ﬂlZ(eyy + En) (2)

Ae, = 28,48y
f;; being the components of a fourth-order tensor, giving the change
in the thermo e.m.f. ¢; In this casc the f§; arc not dimensionless
quantities, as in (1). We did not divide by the values for zero strain,
as this quantity may be cither positive or negative, as well as zero.
The clement g, gives rise to cffects as observed by Perrier?
(transverse currents in a twisted tube in which a longitudinal
temperature gradient exists), though the mechanism is quite differ-
ent for ferromagnetic metals, It will be shown below that the f's
are closclyv related to the a's, and that both can give us qualitative
information as to the shape of the Fermi surface.

2. Derivation of basic formulae. The clectrical current density is
given by
ji = — 2e/h(2n)* [ [ [ 1% CE(K)/2k; [(K) dR.dk,dk,, (3)
where —e is the electronic charge, f(k) is the probability that an
clectron is in the state characterized by the wave vector k, and I (k)
the cnergy of that state. In the presence of an clectrical ficldstrength
F and a temperature gradient, for f(k) we can take

1K) = fo(E) + dfofdL (eF+ (E—)/T. vT + V). MKk),  (4)
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with A(k) satisfyin-g the integral equation
WK E (k) = f{?\( ) — A(K)} P(kk) 9E[ok,) 71 dS"  (5)

fo(E) is the Perml—DlraC' function fo(E) = (exp. (£ — &)/RT + 1)~
and [ the thermodynamic potential of the electrons. B(kk') is,
apart from a humerical factor, the transition probability. In (5) it
is assumed that the energy is conserved during a transition (7" > 0 b))
the integration has to be taken over the Fermi-surface ink’ space.
The initroduction of the vector field A(K) is in general not equivalent
to that of a relaxation time 7(k). The use of this last quantity means
that A(k) = z(k) (1/%) Vi E(k), but for the general case of nomn-
spherical Fermi surface: and a transition probability which docs not
depend solely upon the angle between k and k', (k) will not always
be parallel to 7, E(k), and the use of (k) is not correct.
The conductivity is given by
(05 = 282[R(2m)° . [ cos (n, §) },(K) dS (6)

Fermi

where for dfy/dE has been taken —4§(E — ¢), this being valid for not

too high temperatures. After multiplying ( ) by the resistance tensor
0, we find

. 1 oT o d]‘o 1 9¢
F=1p0.+ —.—o. — SpBEYdE — — (7
=Tt T o QW/ (E—0) 2= -SulE) : o, (7)
with
SHE) = 2e*[h*(2=)°. [cos (n, 1) (k) dS (8)
where the integration in (8) has to be taken over the surface with
constant energy E. Comparing (8) with (6) it follows that oy = S,(0)
Makinguse of the wellknown series expansion for integrals contammg
dfo/dE, one finds for the absolute thermo-electric force tensor
ey = —lT[3e. 0y (@Sy(E)/AE) sy 9)

In order to determine the change of (9) under clastic strain we
make use of the gencralized equations (1):
Oy = Qo(‘szﬂ‘ aijklekl) Sij(E) = SO(E) (621' - aijkl(E) &)
and by means of (9) find ‘ o
O ;[ 0eyy = Bijm = kT [3e (dou(E)jdE )E:é’ (10)
3. The change of the Fermi surface wnder shear strain. One of
the most characteristic features of the influence of elastic shear strain
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is the change in the shape of the non-spherical parts of the Fermi
surfacc. This is most casily scen in the one-dimensional case (Iig. 1).
A strain &, of the specimen corresponds to a strain —e, of the k
space. We shall use the ncarly-free-clectron approximation. The
cnergy gap is 2V, V4 being the Fourier component of the periodic
potential corresponding to the repetency vector g of the zone
boundary. Morcover we assume that electrons near onc particular
cnergy gap arc only affected by that gap. Strains which leave
the volume constant do not alter &. In fig. 1 there is an extension

18,
7y
i,/ 4
I,iL —
Al T
| S S
AT £,
/AII |
GIrS
I
4] i ) 4
0 —k R
Tig. I. Onc-dimensional encrgy curve for ncarly free clectrons. The change

in it due to strain 1s dashed.

(e,, = € >> 0) in the drawn dircction, and compression in dircctions
perpendicular to it (g, = ¢,, = — &/2). The change in V, is immate-
rial, since V, is small compared with I, in this approximation.
Morcover it is constant for the “deformicrbare” potential of
Bloch a.0., as uscd in the theory of the interactions between the
latticc vibrations and the conduction clectrons. Bardeen?) has
shown that this is a good approximation for monovalent metals.
But also for the rigid ions of Nordheim the change in the cner-
gy gap will be small as compared with that of E4 Conscquently we
shall ignore it. The point 4 in the first Brillouin zone gocs over
into A', much ncarer to the boundary and having a smaller slope
dE idk. \We can say that the clectron is less free than in A, as a conse-
qquence of the increased lattice parameter in that direction. This fact
increases the resistance in this direction. Since it corresponds to
it — )5 OF 2y, these quantitics should be positive. In the casc of
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Eyp = &y, = &, = ¢ > O the same picture of fig. 1 applies, but then ¢
is no longer constant, and A’ will be lower than A. These effects
are therefore more important for purely shape changes than for
volume changes. It is easily seen that much the same applies for
holes within the first Brillouin zone. The contrary is true in.a
point B of the second Brillouin zone, where B’ is nearer to the
free clectron parabola than B, leading to negative o, — a;, or
2044 1t may be stressed that for free electrons these effects vanish,
and that the largest changes may be expected for points very near a
Brillouin zone boundary, which for f.c.c. monovalent metals lie in
the (111) dircctions. Extension & thercin and cqual compression
perpendicular to it, leaving the volume constant, gives in the (111)
direction a relative change in resistance of 2ae. From these
very simple considerations one should expect for the monovalent
f.c.c. metals 2a,, > a;; —a,, > 0, and for those of higher valency
with electrons in the second zone 2044 << @y — ay, << 0. These quali-
tative results are now in striking agreement with the experimental
values published by Druyvestein %) for the noble metals Cu,
Ag and Au and for the trivalent Al Moreover it is seen that a will be
larger, the higher the Ferm1i surface as long as it does not touch
the zone boundary. According to (10) then g,; — B,, or 28,, will be
positive. Following the same reasoning as before we get 28,, > § u—
— B1, > 0. But the contrary applies for holes within the first Bril-
louin zone, since these holes will become more “froe” for higher
energy. It will be shown that this is also in accordance with the
experiments, and therefore it secms worth-while to investigate this
aspect of the problem more quantitatively.

From (6) and (5) it follows that

Aay; = 26412 (2)° A [ cos (n, ) g;(K) S (11)
oEk) _ [ : ( oL )‘1 :
A G — Ak | Pack) o) A5

' PE \ ! SENT
+ ﬂi(k).A/P(kk’) <é/7> as’'— A /‘/li(k') Pkk’) <,> as’ (12)
. 2 % 2 o
For shape changes under constant volume the first two terms of
(12) are the most interesting. For an isotropic transition probability
the last two terms should vanish. They contain the influence of the
change in the lattice vibrations and depend also on the change in
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the propertics of quantities at the Fermi surfaces, but to a lesser
degree than the first two terms of (12), because of the intcgration.
Also in thy present case of non-isotropic P(kk’) we shall ignore the
last two intcgrals in (12). In the same approximation we shall
assume the coéfficient of 44,(k), i.c. fP(kk') (RE[2k,)~" dS’ to be
isotropic. In general A(k) will not be parallel to p, 7 (k), but in this
approximation the changes in it are parallel. We now get for the
relative change in the conductivity

Ag. Ap.: tE -1 ral
O e “Q:ll . ( / i‘ ds") _A / A dSl‘,
6 M) J ek J chk;

i ]

from which also the change in thermo e.m.f. can be derived. For zero
strain we shall take the free electron value. Calculations are then
made for the f.c.c. monovalent metals by dividing the k spacc into
pvramids formed by the interscctions of the discontinuity plancs
and with their apex in the origin as indicated in fig. 2, and after-

Tig. 2. The partition of the Brillouin zone into pyramids.

wards replacing these pyramids by cones of revolution having the
same solid angle. The points within onc conc are assumed to be
affected only by their own energy gap. lor the f.c.c. lattice there are
8 (111) discontinuity plancs and 6 (100) ones, having cnergy gaps
2V ,,, and 2V o respectively. The cnergy in this approximation is
given by

R [ K T,
Elk) = om 2 V{Z;t—z A S } +|V 2
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and we find for / 9E [0k, dS; in the direction of the axis of the cone
() and perpendicular to it (n ) respectively :

C Dawm i
=5 )

The contr1but1ons for each cone towards the changes in conduct1—
vity and thermo e.m.f. dueto a shape change could now be calculated
and then summed up. The results are plotted in fig. 3 for oy — ay,

hz
dkf and O -~L .
m

mm:

PE , A
O‘Eé akf k dk‘f,

Fanin

T 20 ————
20y
T
1oF
0 ol

8mV

o/ 00 _ g

Fig. 3. The calculated curve Eor aj-nyp {lower curve) as 2uyy (upper curve)
as a function of 8 wmV go/h%e%y and 8 mV,q/#%?%; respectively. The
experimental points arc indicated.

and 2a,, and in fig. 4 for g, — 8, (T = 300°K). .IFor the change in
the thermo-electric force only experimental values for polycrystal-
line samples were known, and thercfore we have to average. The
result is B, — B, = 0,4 (By; — Bi) -+ 1,2 Bus The calculated posi-
tive values are practically only due to £y since By, — Py IS very
small or negative. In plotting the figures it has becn assumed for
simplicity that V,,/g?1, = Viw/gl0e but this is immaterial.

4. Discussion and conclusions. In the table the experimental
valuesof Druyvesteyn4) aregiven for the resistance effect
and those reviewed by Borelius?) for the thermo-electric force

— - B =B [Byr2h )| E. 10

G |0 | 20tay | G0l | k20 By 1OOVIK [ L ACVITK Noovp | 100w faynefoms|
Cu | 2.6| 2.2 0.9 0.4 7.0 . 9.5 2.1 7.4 13,6 1.24 0.35
Ag | 4.0] 3.1 1.2 0.9 10.2 12.9 6.7 6.2 26.4 Q.79 0.37
Au | 6.3 53| 1.8 1.0 16,9 8.0 7.4 0.6 22.9 0.78 0.42
Al | 2.5] 3.5|—2.0] —1.0 1 9.5 —12.9 —10.7 2.2 —34.2 0.70 0.34
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value after expressing them in terms of strains, using the clastic
constants reviewed by Druyvestcyn®).

Theoretically 2a,, rises as far as the point where the Fermi
surface touches the Brillouin zone boundary (8mV, /#%?,, = 0.2),
after which it drops again. The maximum value is about 2.0.
It cannot yet be concluded whether the Fermi surface touches
the zone boundary or not. FFor 28,, there is a sharp discontinuity at
the critical point. From the lower side of 8mV /%3, the term
goces to infinity, but for values exceeding 0.2, it is finite and nega-
tive; negative because of the occurrence of holes. The calculated dis-
continuity will not occur because of lattice imperfections and the
thermal vibrations of the lattice. At room temperature the mean
amplitude of the ions is 3%, of their distance, so the unsharpness in
the energy is about 69%,. The estimated curve is dashed.

&6,

\
\
/ 2 \
= 9”’"7/11 7? Gy @
A\

0 ay 04z

-5
Fig. 4. The calculated curve for §,-f, as a function of 8 mVy /R,

The experimental points are indicated.

The approximations made to arrive at the valucs of a,,—a,, and
2ayy are very drastic, c.g. the influence of the change in the lattice
vibrations is ignored. The other ignored influences on the transition
probability etc. are of minor importance. It is well known that for
the noble metals Cu, Ag and Au the clastic constants arc not very
much influenced by the Fermi energy. The ions may be consider-
cd as being hard spheres touching cach other. Therefore the change
in lattice vibrations docs not play a part in determining the f’s and
so for these our calculations apply much better. The thermoclectric
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power has been calculated by Mott and Jones ). They
showed that it is negative for nearly free clectrons, and positive for
holes. It is also positive if the relaxation time decreases strongly with
increasing £, as for electrons near a zone boundary. This last effect
may explain the positive thermo e.m.f. of the noble metals. The effect
of all-sided extension (8, + 28,,) is now to make the electrons less
free, so the thermo e.m.f, will increase and B + 28, > 0, in agree-.
ment with the experiments. Since the larger part of a;; 4 2a,, is due:
to the change in the lattice vibrations, it may be expected that the
ratio between the shape-change cffect. and that of the volume-
change effect (e.g. (@) — o )/(ay; + 2a,,)) is much larger for ‘the:
thermo e.m.f. than for the resistance (by a factor 5.4 and 2.2 for Cu
and Ag respec‘tively). For gold we now find an interesting exception:
The difference (8, — B = 0.6) is smaller than for copper and silver
by a factor 10. According to fig. 4 this indicates that gold touches
the Brillouin zone boundary with its Fermi surface in the (111)
direction. The value of 2a,, for copper being rather small, we may
conclude that copper certainly does not touch the zone boundary.
Silver with its larger 2a,,, and still rather large (8, — f ) may be an
intermediate case. Hence copper has the smallest energy gaps, and
gold the largest. This corresponds to what one might expect from
their sequence in the periodic table, for large nuclear charges give
decp potential troughs. In fig. 3 and 4 we plotted the presumable
points for Cu, Ag and Au, but this has only qualitative value. In
order of magnitude the computed effects agree with the effects
observed, better so for the thermo e.m.f. than for the resistance
effect, probably due to the closer approximation.

The considerations of Peierls %) on the “Umklappprocessen’
in the theory of conductivity led to the result that most of the mong-
valent metals should touch the zone boundary with their Fermi
surface. This point-has been greatly clarified by the recent paper of
Klemens?®), who showed that Peierl’s calculation does not hold
and that the problem of touching is still an open question. Our’
result for gold agrees with the conclusion artived at by Koh-
ler1%, who considered the magneto-resistance in high fields; this is
another way of making the resistance anisotropic. Kohler showed.
that this magneto-resistance should be isotropicif the Fermi sur,face_:
does not touch the Brillouin zone boundary and anisotropic if it does-
touch. Experiments 1) showed that for gold it is highly anisotropic.
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For copper and silver no cxperimental values are available.

We have scen that clectrons in the second Brillouin zone have a
negative (a;;—a,,) or 2a,,and this can perhaps account qualitatively
for the experimental values of Al. Also the negative valucof (,—f )
bears this out. The fact that a;; — a,, < 0 indicates that there is
also an overlap of clectrons in the second zone in the (100) direction.
L cigh!?) in his work on the clastic constants of Al arrives at the
same conclusion.

This work was started at theTechnische Hogeschool at Delft under
the auspices of Professor M. J. Druyvestecyn, to whom the
author wishes to express his indebtedness.

Eindhoven, 7 April 1952.
Received 22-4-52.
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