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[Text] ANNOTATION

The authors present materials concerning the investigation of the characteristics of
rotor vibration gyroscopes and methods for balancing them, in addition to formulat-
ing requirements for information extraction and processing devices. They also pre-
sent techniques for synthesizing a regulator for stabilization and correction cir-
cuits for the purpose of obtaining the required characteristics.

- FOREWURD

In recent years, rotor vibration gyroscopes (RVG) have been used more and more fre-
quently in navigation systems. Since they are small in size and low in weight, they
make it possible to miniaturize the sensitive elements of navigation systems and ob-
tain characteristics with a level of accuracy that is no worse than that of gyro-
scopic devices constructed according to the classical method.

In order to obtain the best characteristics of such systems, it is important to de-~
scribe correctly not only the static, but also the dynamic characteristics of RVG's
as components of an automatic control system. 1In turn, when planning RVG's it is
necessary to take the special features of their operation into consideration in the
composition of the specific control system. All of this requires a detailed inves-
tigation of the theory of RVG's and gyroscopic systems in which they are used.

This book consists of five chapters. 1In the first two we discuss the generalized
model on which most existing RVG systems are based. The analysis of the equations
of motion is carried out with the utilization of well-developed operator methods.
The special features of RVG's ag two-dimensional measuring units make it possible to
use a special apparatus that was developed for two-dimensional automatic control
systems [16,17). Such an approach to the analysis of the operation of RVG's makes
it possible to perform operations (i-ectly with their transfer functions. For the
simplest RVG systems, the transfer functions--as approximated in the area of the es-
sential frequencies--are described by simple analytical expressions. For complex
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systems, the analogous frequency characteristics can be constructed quite easily
with the help of a computer. A knowledge of the frequency characteristics makes it
possible to select the instrument's basic parameters in such a manner as to provide
it with the required dynamic characteristics. This is especially important for
RVG's operating in automatic requlation and control systems. For the analysis of
RVG's having rotors with different angular velucities, we propose to use the spec-
tral methods of (Khil's) generalized theory of equations [10,16,27,34].

In the second chapter we discuss the most c¢ommon errors in RVG's with a single drive
motor. The basic attention is devoted to errors related to angular vibrations of
the motor's shaft at a frequency equal to twice its frequency of rotation and to
static disbalance of the rotors.

In the third chapter we present one of the most promising (from the authors' view-
point) layouts for composite RVG's. 1In an example of this layout we investigate the
basic errors in this type of instrument, as well as methods of reducing them.,

The fourth and fifth chapters are devoted to an investigation of the special fea-
tures of the operation of gyroscopically stabilized platforms (GSP) based on RVG's.
The inwvestigation is based on the frequency methods of analyzing and synthesizing
automatic control systems that are widely used in engineering ca.culations. Here
there is a detailed discussion of the technique for selecting the stabilization
channels' basic parameters. There is an analysis of the effect of the non-steady-
state component of an RVG's output signal on the operation of a GSP. Multi-
dimensional stabilization systems are discussed from the viewpoint of the effect on
their operation of the specific cross-couplings between the stabilization channels.

This book lays no claims to being a complete explication of the theory of RVG's and
systems that utilize them. 1In it we do not discuss questions of the optimum synthe-
sis of systems with RVG's, the effect of basic nonlinearities on the operation of
such systems, the theory of systems using composite RVG's that are self-orienting in
the plane of the horizon and the meridian, and others. The investigation of these
questions is necessary for the creation of RVG-based gyroscopic systems operating
effectively in various navigation complexes.

The book is intended for engineers and scientific workers specializing in the field
of the development and use of new gyroscopic instruments.

The authors are deeply grateful to Professor Ye.L. Smirnov, doctor of technical sci-
ences, for his valuable advice and the comments he made during the preparation of
the manuscript for publication.

INTRODUCTION

Modern navigation systems are constructed on the basis of the most recent achieve-
ments of computer technology and, for all practical purposes, carry out completely
those operations that were previously performed by man.

Despite the presence of modern information processing facilities, the accuracy of
navigation systems is determined primarily by the accuracy of the instruments that
they utilize as sources of primary information. A special group among these instru-
ments is composed of gyroscopic instruments and systems. They are used as the basis

2
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for the construction of inertial navigation (ISN) and orientation (ISO) systems that
insure the independent detsrmination of an object's location and its spatial orien-
tation, regardless of the presence of external reference points.

In order to create an ISN, it is necessary to have on board information about the
object's orientation relative to a reference system of coordinates and the instanta-
neous absolute velocities or accelerations disolacing its center of mass. When de-
signing platformless inertial systems (BIS), the sources of such information are
gyroscopic sensors of absolute angular velocities and accelerometers or gyroscopic

- linear acceleration integrators (GILU). In other ISN design variants, the reference
system of coordinates is created directly on board the object with the help of
GSP's. In this case the accelerometers or GILU's are installed either on the GSP or
in the object itself.

Most ¢f the gyroscopic instruments now in use are designed according to the classic
method of a precession gyroscope in a cardan suspension. The basic element of these
instruments is a massive, rapidly spinning rotor, in which an additional one or two
degrees of freedom is provided because of the suspension's framework. An improve-
ment in the accuracy of such gyroscopes is achieved by increasing the rotor's kinet-
ic moment and reducing the disturbing moments. Judging by voluminous data that are
avajlable, the possibilities for improving gyroscopes built according to the classic
method have been exhausted to a considerable degree, and further progress in this
direction would require significant expenditures.

The high degree of saturation of modern transportation facilities with on-hoard
instrument-type equipment makes a matter of concern the question of the miniaturiza-
tion of separate elements of this equipment, with particular emphasis on electro-
mechanical devices, among which are included gyroscopic instruments and systems. At
the same time, a reduction in the size and weight of gyroscopic instruments designed
according to the classical method entails considerable design and technological dif-
ficulties, as well as a reduction in the kinetic moment, which leads to a lowering
of their accuracy. All of this has forced the developers of ISO's and ISN's to look
for new ways tc create gyroscopic instruments that, along with high accuracy, would
be small in size and cost comparatively little.

At the present time we have seen several fundamentally new trends in the creation of
- gyroscopic instruments capable of competing successfully with gyroscopes constructed
according to the classic method [19]. One of the most highly developed directions
is the construction of rotor vibration gyroscopes. The term "vibration gvroscope"
(VG) is understood to mean a device containing special elements that, given absolute
angular velocities of the gyroscope's base, perform induced oscillations. It can be
said that any vibration gyroscope can modulate a constant input angular velocity by
transforming it into an amplitude-modulated gyroscopic moment. If the frequency of
the change in the gyroscopic moment coincides with the natural frequency of the me-
chanical system transforming this moment into angular deflections of the sensitive
elements, resonance occurs in the instrument that makes it possible to increase its
transmission factor by several orders of magnitude. In connection with this the
value of the kinetic moment still does not play an eseential role, which means that
high sensitivity can be achieved along with miniaturization of the instrument.

The suspension of a VG's sensitive elements is usually made of elastic elements,
which eliminates such an important source of errors as the "dry" friction that
- 3
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occurs in the ball-bearing supports of gyroscopes constructed according to the clas-

- sic method. The presence of an amplitude-modulated output signal makes it possible,
with the help of well-developed radio engineering methods, to avoid the effects of a
number of sources of random interference in the information extraction and process-
ing system.

The first serious attempts to create vibration gyroscopes resulted in the realiza-
tion of designs of so-called oscillator VG's, among which the tuning-fork gyrosopce
[3,4] is included. Oscillator VG's lack rotating masses, and in order to create
Coriolis acceleration in the presence of absolute angular velocities of the base,
forced vibrations of special elastic elements (tuning fork blads, strings, rods and
so forth) are used. The Coriolis forces' amplitude-modulated moment acts on an
elastic suspension that is tuned to resonance on a carrier frequency in order to in-
crease the instrument's transmission factor.

Oscillator VG's have a whole series of advantages: small size and low energy con-
sumption, high reliability with a fundamentally achievable high sensitivity to abso-
lute angular velocities of the base, and so on. However, the transmission factor of
oscillator VG's is very sensitive to even insignificant changes in the instrument's
parameters. The high sensitivity of oscillator VG's is achieved by tuning the elas-
tic system's natural oscillations into resonance, with the minimum possible damping
factor. Keeping this performance stable requires that the frequency of the elastic
system's natural oscillations and the frequency of the forced vibrations be kept
constant during operation, which is hardly achievable at the present time without
the use of complicated and cumbersome special equipment. The result of the effect
of these facts is that instruments built according to the plan of oscillator VG's
are in extremely limited practical use.

Dynamically tuned RVG's are, to a considerable degree, free of the basic flaw inher-
ent in oscillator VG's. In them, the amplitude-modulated gyroscopic moment is cre-
ated irecause of one or several rotating bodies. In connection with this, the posi-
tional moments, which try to bring the system into a position of equilibrium, are
determined not only by static rigidity, but also by dynamic rigidity (or the so-
called centrifugal-pendulum rigidity). An RVG's parameters are usually selected so
that in the resonance operating mode, the static rigidity is much less than the dy-
namic. In connection with this, a change in the elastic system's characteristics
changes only the static rigidity and has an insignificant effect on the system's to-
tal rigidity. However, a change in the drive motor's frequency of rotation, which
causes a change in the frequency of the gyroscopic moment acting on the elastic sys-
tem, results in a corresponding change in the dynamic rigidity, which means a change
in the elastic system's total rigidity. Detuning from resoance obviously has a con-
siderably smaller effect in this case than under analogous conditions for oscillator
VG's, the rigidity of the elastic suspension of which does not depend on the fre-
quency of the inducing force. Therefore, the most recent developments and successes
in the field of the creation of VG's are basically related to the realization of
various plans for dynamically tuned RVG's [15].

The theoretical principles of the operation of RVG's have been created primarily
through the efforts of Soviet and American scientists. Among the numerous investi-
gations, the basic ones are the works of Ye.L. Smirnov and L.I. Brozgul' (3,4) and
A.I. Sukov, (Dzh. N'vuton), E. Howe, R. Craig and P. Savet [20,33,42,46]. These
works (with the exception of [42]) are devoted to the theory of single- and
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double-rotor RVG's, which are the easiest to realize. However, the systems dis-
cussed in them do not give a complete picture of the potential capabilities of
RVG's.

The existence of basic RVG defects, which are related to angular vibrations in the
supports of the drive motor's shaft at a frequency twice that of the frequency of
rotation, as well as static disbalance of the rotors under conditions of linear ac-
celeration of the base, forces us to look for ways of reducing these defects.
Tightening of the tolerances in the production process for the separate elements

and assemblies of an instrument leads to the same problems encountered by the devel-
opers of gyroscopes built according to the traditional method. Therefore, some in-
vestigators are looking into the possibility of improving RVG accuracy by creating
multirotor VG's [42] and VG's having different angular velocities of the rotors.

A great deal of interest is being shown in systems of composite RVG's, which make it
possible to combine a two-component measurer of absolute anqular velocities and lin-
ear accelerations of the base in a single instrument (43,48]. The theory of multi-
rotor VG's, allowing for the possibility of imparting different angular velocities
to the rotors, as well as composite RVG's, is not yet sufficiently developed.

- Previously, the development and use of RVG's was held back by technological problems
that were difficult to solve. The present state of the technology is such that we
can speak as boldly about RVG's as about today's gyroscopes. Their widespread use
will make it possible to create a new generation of gyroscopic instruments and sys-—
tems distinguished by high accuracy, small size and relatively low cost.

5
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CLASSIFICATION AND MATHEMATICAL MODEL OF ROTOR VIBRATION GYROSCOPES

1.1. Equations of Motion of a Generalized Rotor Vibration Gyroscope Model

Figure 1. Layout of generalized RVG

model.

Key: 1.
2.
3.

rotor NRj,

VR,
NR

PD,

which is attached to inner rotor VR;, has moments of inertia JE;), gli)

Y REW

In accordance with the data in the intro-
duction, in the general case we will under-
stand an RVG to be a system consisting of n
material bodies that are connected to each
other sequentially and have different mo-
ments of inertia relative to their main ax-
es, which are rotating around a common axis
at different rates of speed. Relative to
each othex, these bodies must have degrees
of freedom of angular displacement around
axes lying in a plane that is perpendicular
to the axis of rotation. The system must
also contain units that measure the bodies'
angular rotations relative to each other or
to the housing. A functional diagram of
such a generalized RVG model is depicted in
Figure 1, while the system of coordinates
is shown in Figure 2.

Let us derive the equations of motion of
the generalized RVG model, and introduce
the concept of a stage of the generalized
model. We will understand a stage of the
generalized model to mean the drive motor's
rotor PD;, which has axial moment of iner-
tia J(1)"and equatorial moment of inertia
J81) and rotates at a relative velocity of
®i; inner rotor VRj, which is attached to
1t, has moments of inertia Jéé), Jés) and

Jéé) (sic] and rotates at an angle y; rela-

tive to an axis that is perpendicular to
the axis of rotation of rotor PDy; outer

YN

and Jéé) and rotates at =2n angle 6; relative to an axis that is perpendicular to the

plane in which the axis of rotation of rotor PD; and the axis of rctation of VR

6
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Figure 2. Systems of coordinates.

relative to rotor PDj are located. Subscript "i" indicates that the structural ele-

ments and their parameters belong to the i-th stage. Thus, the proposed generalized .

RYG model can be regarded as a set of elementary stages in which the stator (PD) of

the preceding stage is coupled rigidly with the NR of the following one. We will

_ stipulate that the numbering of the stages begins with the stage that is farthest
from the base.

In formulating the eguations of motion, let us introduce the following basic assump-
tion: we will assume the angles of rotation of NR; and VR; relative to the base to
be quite small. This, naturally, means that the relative angles ¥i and 8; are also
required to be small. Considering the diversity of methods for taking readings from
an RVG, wel will formulate the generalized model's equations of motion in the iner-
tial system of coordinates 0jXYZ. In order to do this in accordance with Figure 2,
we will introduce angles oy, Bi+ Yi of rotation of NR% in the inertial system of

reference, having related system of coordinates O(i)XHi)Yéi)zéi) to NR; and system

O(i)xéi)Yéi)zéi) to VRj. In order to determine the characteristic features of mo-

ticn of motion of the RVG elements and obtain visible results, we will limit our-
selves to a discussion of linearized equations of motion only and take into consid-
eration only terms of the first order of smallness when the PD is in a steady-state
operating mode.

The equations of motion of the generalized model's first stage were derived in [8].

Using these equations, and allowing for the presence of the gyroscopic moments gen-

erated by rotor PD in the subsequent stages' equations of motion, we write the equa-
tions of motion of the generalized RVG model in the following form:

(1= 1dycos 20 ) oy — Idhsin 29, 5, =
= QR‘;”‘LH Cos v (‘:': - (D‘.): - R‘;H& (‘:-‘2 - d):) -
— 2 @sin 2y = 3cos 2y) (= D) = udhcos o =
;.ggﬁ,mnyl+~JQ“c05yl+awg’ﬁnyp+‘wgt+

— R‘;L‘*:"}))._x _ .'?;i "'{! {r)'_\ 20S '2‘(; -— ’.'Z»_\ sin 2?1);
(7" = Iy cos 2y, ] By — I8 sin 2, 2, =
= — r—"Ri”‘l’l 3in yy (‘.{2 - d31)2 - Rsnél ('}: - (bl) —

- .« . .
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-
~ — 20 (@i cos 2y, — B, 5in W) (92— D ) — wdk sin g~
-+ L(B Slcos v — W& sin v — M5 cos Vi +
Vg — R yias — RV, ﬁ»sm 29 — 2,005 29,):
D~ 9y = )
8, =—a,sin bl —51(305'{! -+ (Y” -0 ¥+
= Bacos (ys — Dy) + @y sin (72 — D))
\pl = — @,C0S? v =- By Sin — (2 — DO, —
— Basin (y; — @) — @y cos (y: — D)
e -+ 1‘c"1’ cos ”ml — & sin 2y, B'n — HaiBa=
= 2R\ COS V1% — RY By —
— 203 (2 10 25 = B €05 2y1) 00 — pE s, cOS 5 —
-+ ug" B, siny, — E"’ COS 74 — Mg" sin y, —
_ = M = R aBan — RIM (wyocos 290 = 0z0 §i0 29,);

{ ( N ' N
(& — 124 cos 2yl Ba — 160 50 29, 20 — Ha i@ty =

. .
= ’—2Rl P SiN w5 — \,}|a10’)'—

— 28 (2208 29, — Basin 20.) ¢y — T sin . —
— ug'8.cos v, — M siny, — MY cos g, —
= M5V — RV a%acy — R4 (wy, 510 29 — wzo COS )
'.{'n = — W, n

()n = ":"n siny, — ﬁn CoS y, — ey -+
+ oy, LOs oy — wy, SN md;
‘i;n = C.ln cosy, - Bn sinvy, -+ L“oen +
+- wy, Sin wyl - {- z, COS wyl,
where

(n) = __(llu) (‘u': l‘ l(u) + I(lt l))

i (/(m g/n") i l(n)

(.||~=‘T i

Ri”) = (l('l) _ I('l) (ll)
2

RE™ o= 130+ 14

3{n-1 - equatorial moment of inertia of rotor PD of the (n - 1)-th stage; H
= J(n‘l)yn_l = kinetic moment of rotor ED of the (n - 1)-th stage; u n

ments of viscous friction along the axes of suspension of the n-th stage;

(n)
M

3
moments acting on the axes of suspension of the n-th stage.
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It is obvious that in the first part of equations (1.l) there must be terms allowing
for the disturbing moments, the elastic moments in the suspension axes and the reac-
tion moments superimposed from the (n - 1)-th stage onto the n-th stage. In the
simplest case, the moments of the elastic forces are described by the expressions

AW“” == 2.")‘114, 1\4(") = Cln)Om (1.2)

{n L(n . e . .
where C ) hé ) - torsional rigidity of the elastic moments along the axes of sus-

pension of the n-th stage.

The reaction moments on the n-th stage are composed of the inertial and gyroscopic
. moments generated by the (n - 1)-th stage's VR, as well as the moments of the elas-
tic forces and forces of viscous friction along the suspension axes of the
(n - 1)-th stage. Using Euler's method, let us derive the expressions for the reac-
tion moments, which have the following form when the equations are written in the
inertial system of coordinates:

QM = — T Ry — (1557 4 T = 1Y) Yy —
(n—1y ;- - i .
- I‘leu )(an—l sin 2\’:1—1 }“‘ ﬂu—l Cos 2'\’u—l) -
n—1 - n— . N ]
— (l(,\"u )-i- 1(5‘ b — /“ “) Yi— l(au 1 COS QYH—l - 'Ll*\Sln Q'Y,,__|)——
- ‘)Im—“C';—I COS u [ ‘)}'-U ) ){)n—-l COS Y, -y -
-+ ‘7“‘ n= ”\# oy sinyuoy — ()Ciﬂ—”O“_l €OS Yn—y -i-

. (n—1) (n=1y "2 e .
4208 My siny, oy — 20N — 12, ) Vi oala—y €OS V-1

‘_)_Mf."’ _ 1(" DG +( [ln=0 - o l‘,n—-ll) ﬂ’n«~|Bn~l b
+ I‘n‘—.“ (ﬂn 1 COS ZYIL | M B““l sty "Y” _4')
— (I(n—” /(?‘” — /(“ l)) Yau— l(un—l sin 2\," -1 -l_
b By €08 29 ) — 20457 Uy IO Yuy —
(n=1)3 l

— % (ll-—-l)uu_l sin Vit — ‘)“ n—i COS Yp—y -

- (n—1) T
— QCgl “Un—l sin Y-t — QCC ‘P'l—l COS Yyt —

—2 (!k”aﬁ“ — I‘Z’:s_l))\.’rzl—lou—l S0 Yy )

Thus, when expressions (1.2) and (1.3) are taken into consideration, equations (1.1)
are a linearized, generalized mathematical model of the RVG represented by the func-
tional diagram in Figure 1.

Equations (l.l) contain the absolute coordinates of rotation of the rotors in iner-
tial space and the relative coordinates of their rotation in the suspension axes.
Let us eliminate the relative coordinates from the equations of motion. In order to
do this, we will determine the solution of the three kinematic equations for each
stage. The first equation has the obvious solution

Dy oy = J Vadt =3, ¢,, (1.4)
- where ?p = initial phase of rotation of the NR.

In order to solve the two remaining equations, let us write them in complex form:

i‘u-l '}" [:Yn»lxuvl = ;n-le =tn-tf + ;ng—[‘}"-l‘» (1.5)
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X = i . = + i i 1
where An-l en_l + wn-l’ Xp-1 Bn-l 1cxn_l, while angle ¢n 1s assumed to be zero.
It is obvious that the solution of equation (1.5) has the form

Xn,_l _ x‘,)l_le-—n’,,_ll ——in_lc—w"_l‘ - Enc*—i\’“_lt ' (1.6)
0 0 .0 s . .
where An-l = Gn_l + lwn_l = vector of the initial angles of rotation in the suspen-

sion of the (n - 1)-th stage.

Henceforth, in order to shorten and simplify the computations we will make use of
the complex coordinates we have introduced in order to write the equations of motion
of the generalized RVG model. First, let us write in compiex form the expressions

- for the moments of the elastic forces acting along the suspension axes and the reac-
tion moments of the (n - 1)-th stage on the n-th stage. Considering (1.2) and
(1.6), the vector of the moment of the elastic forces is determined by the expres-

sion
- MW = — CE) - Cua + K ACae™ ' — 1IAC, €7t _ (1.7
- - iy :
- Cuxu -t + ACan-He ‘ '
_ where
. clm cim cin) cim
M =M M, € = —CQi—‘L AC, = =2,
while the vector of the reactive moment is
i 1 n—n cpln—1) * -
M s — e T 1T 0m) = pacy) %o —
— (/\)%“_”'\.’ﬁ—l — i'er—l}lrl—l + Cn—l) in +
| )i . -=1)° e
- [— = Vo o — (T Y0s = Aptacy) 7 —
: (RY:_‘).Y?R—I - [.\.’ll—lApn—-l - Acn—l) il‘l] 3‘2?"-11 +
+ (R Yumr + faet) Yaot
-+ (Rlll-li’i—l - i\.’lz—lll:x—l +Cn—l)§n—l + (1.8)
B +{— (‘.R{'._I)i'n—l -+ A}-lu—l) 7'(:.1—-1 -+
(RN, = (Yaot Ay — ACa_y) To_i]e¥nat —
l "— v . —_ C -~
*Tl(n ot + iy — i) ey —
- (Rgn_l)\"}:—l - i'\;n—-lpn-—l +Cn—l) x?l—l -

| n— ‘.Tl' sp{nn—1) " Toe
— [ R b G o — ) T

: 'YY' (R}II_I):j);-:—l - [\;n—-lA}lq_l —_— Acn~l) Xﬂ._,]emi’n-xf .

Let us write, in system (1.1), the equations of motion of each stage in complex form
and, considering expressions (1.7) and (1.8), in operator form we will obtain
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In the first approximation the absolute angular velocity ?n for each stage is, obvi-
ously, expressed easily from the kinematic equations in terms of the PD's relative
angular velocities with the help of the following equality:

k

Yu——k=_2 (f)n_‘ — Wy, (l.lO)
=1

= where wy = angular velocity of the PD mounted on the nonrotating base.

Equations (1.9) are gquite convenient for investigating the motion of the RVG's ele-

- ments in inertial space. However, they do not reflect all of the characteristics of
the RVG as a measuring instrument, since readings are usually made in the system of
coordinates that is linked with the base. Therefore, it is necessary to have the
possibility of writing the equations of motion in a measuring system of coordinates.
Depending on the type and structural features of the RVG, the measurement can be
made in a system of coordinates that is rotating and immobile relative to the base.
In connection with this, it is possible to measure the angles of rotation of the in-
strument's elements relative to the base and to each other. In the case of measure-
ment of the angles of rotation relative to the base, with due consideration for the
assumptions we have made, the transition to the measuring system of coordinates can
be made with the help of the expression

T Tne™ — j w dt, (1.11)

where Xﬁ = vector of the angle of rotation 9f the n-th stage's NR relative to the
base in the nonrotating measuring system; Ay = the same, in the system rotating
along with the rotor.

When measuring the relative angles of rotation of the rotors of the 2-th and k-th
stages, it is possible to use a system of coordinates that is immobile relative to
the base, as well as one that is rotating together with the rotor of either the 2&-th
or k-th stage. In the first case, in order to convert to the measuring system of
coordinates it is possible to use the relationship

A= — 1+ Tre (1.12)
In the second and third cases the conversion formulas take on the following forms,
respectively:
ﬂk=(—"21 -+ )Ek)e—w‘[ ; (1.13)
o= (—t+ e ™. (1.14)

Within the framework of the assumptions we have made, the derived equations of mo-

_ tion of the generalized RVG model describe the operation of all types of gyroscopes
with kinematics corresponding to the system depicted in Figure 1. From them, we de-
rive the equations of motion of practically all mechanical gyroscopes constructed
according to the classic method as a special case.

1.2. Classification of Layouts of Rotor Vibration Gyroscopes

In anv branch of science and technology, the problem of classification and develop-
ment of a unified terminology is one of the most important ones. Its solution makes
it possible to review completed investigations, generalize their results, and plan

the path of further development work.
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The term "rotor vibration gyroscopes” limits substantially the class of gyroscopic
instruments undar discussion by indicating their structural features and the fea-
tures of their component elements' motion. At the present time, however, a general-
ly accepted classification of RVG's themselves does not exist, for all practical
purposes. An attempt to create one was made in [4]. There, the basis used for the
classification of RVG's was the nature of the rotor's motion in a nonrotating system
of coordinates. In that work, however, the authors do not allow for several struc-
tural features of possible RVG layouts, such as the number of rotors and drive mo-
tors, as well as methods for reading the signal from an RVG's rotor. Using the mod-
el described in Section 1.1, we will attempt to create a classification that will
reflect, as completely as possible, all the characteristic features of instruments
constructed according to RVG principles.

The broadest concept in this classification should obviously be that of "rotor gyro-
scopes" (RG), which we will take to mean any mechanical gyroscopes containing a ro-
tating rotor. RG's can be divided into two large groups: rotor vibration gyro-
scopes and precession rotor gyroscopes (PRG), which include practically all the pos-
sible types of gyroscopes constructed according to the traditional plan for a gyro-
scope in a cardan suspension. The gradation of RVG's should be done on different
levels, each of which defines the characteristic features of the plan of the instru-
ment's structure.

Cn the first level we will differentiate RVG's according to the number of PD's or--
using radic enginéering terminology--modulation frequency "generators" they have.
When an RVG has a single PD, the useful signal can have a modulation frequency that
equals the PD's angular velocity or a multiple of it. We will call these RVG's
modulation rotor gyroscopes (MRG), understanding the word "modulation" to mean the
cresence of only a single modulation of the useful signal. RVG's having two or more
PD's will be called heterodyne rotor gyroscopes (GRG). The presence of several PD's
results in a situation where a GRG's useful signal follows not only on the PD's ro-
tation frequencies and multiples of them, but also on composite frequencies. Since
in this case there is a direct analogy with the basic elements of heterodyne instru-
ments, the use of the corresponding terminology is logical.

On the second level we will divide RVG's according to the number of separate, rotat-
ing rotor bodies, excluding the rotor of the PD, which is mounted directly on the
base. Correspondingly, let us introduce the following terms: single-rotor modula-
tion gyroscope (OMG), two-rotor modulation gyroscopes (DMG) and so on and, analo-
gously, two-rotor heterodyne gyroscope (DGG), three-rotor heterodyne gyroscope (TGG)
and so on. The concept of a single-rotor heterodyne gyroscope obviously does not
make physical sense. Given an equal number of rotors, multirotor GRG's can be dif-

. ferentiated structurally by the number of rotors in each of the stages that is coup-
l=2d with a specific PC.

_ Following (4], on the third level we classify RVG's according to the position of
their suspension axes relative to the base. Here there are three possible cases.

in the first case, the sucpension axes rotate relative to the base jointly with the
PC's shaft. Such RVG's we will call RVG's with rotating suspension (VP), assuming
that each rotor has three degrees of freedom. 1In the second case, the suspension
axes remain immobile relative to the base. This is an RVG with nonrotating suspen-
sion (NP). Finally, it is possible to have a situation where part of the suspension
axes remain immobile and part of them rotate relative to the base along with the
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- PD's shaft. Such suspension we will call composite, and the instruments belong to

- the group of RVG's with composite suspension (KP). In the general case, an NP can
have three degrees of freedom, while a KP GRG can have a different number of degrees
of freedom for each of the stages.

On the fourth (and last) level, we will classify RVG's according to the systems for
taking readings that are used in them. As has already been said, for multirotor
RVG's readings can be taken by several methods: in different coordinate systems,
between different bodies and so forth. We will use a frequency feature, which makes
it possible to generalize signal reading methods to scme degree. It follows direct-
ly from the equations of motion that it is possible to read a useful signal on a ze-~
ro carrier frequency (permanent deviation of the rotor in the measuring system of
coordinates), on the PD's frequencies of rotation and multiples of them for MRG's,
and on composite frequencies for GRG's. It is also possible to have composite sig-
nal reading when readings are taken for a single instrument by several methods at
the same time. Thus, when determining the affiliation of an RVG with a certain
group, we should give the characteristics of its system for taking readings with re-
spect to the frequency on which further discrimination of the useful signal takes
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Figure 3. Classification diagram for rotor vibration gyroscopes.
Key:
1. RG 9. TGG
2. PRG 10. NP
3. RVG 11. vpP
4. MRG 12. kP
5. GRG 13. Doubled frequency of rotation of rotor
5. OMG 14. Frequency of rotation of PD
7. DMG 15. zero frequency
3. DGG 16. Composite frequency
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Figure 3 is a diagram that illustrates the proposed classification. It should be
mentioned here that all types of RVG's coming under this classification are de-
scribed by equations of motion (1.9), and that their layouts can be derived from the
layout of the generalized RVG model presented in Figure 1.

As an example, let us examine several types of MRG's. Widely known layouts of OMG's
with VP are obtained from an examination on only the first stage of the generalized
model, which corresponds to the layout of a DMG with orthogonal positioning of the
rotors' suspension axes. If, in connection with this, the VR's moments of inertia
equal zero, we obtain the plan of an OMG, the suspension of which to the shaft of
the PD has two degrees of freedom. In order to obtain an OMG with one degree of
freedom of the rotor's suspension from the shaft, in the preceding plan it is neces-
sary to change the rigidity along one of the suspension axes to infinity. Two
stages of the generalized model make it possible to obtain the plan of a four-rotor
modulated gyroscope (ChMG) with VP and with KP, in which the suspension of each ro-
tor has only one degree of freedom. 1In the first case, the frequency of rotation of
PD1 should be set equal to zero (&l = 0). In connection with this, any angle be-
tween the axes of the suspension of the second and third (reading from the PD's
shaft) rotors can be given. In the second case it is necessary to set the frequency
of rotation of PD2 equal to zero (wg = 0). Layouts of TMG's with VP and with KP are
derived from the corresponding ChMG plans. In connection with this, depending on
which rotor is eliminated from the discussion, the suspension of the next (reading
from the base) rotor will have two degrees of freedom with respect to the preceding
one. Assuming that the rigidity along one of this rotor's suspension axes equals
infinity, we obtain a TMG with one-stage suspension of the rotors. Finally, by
eliminating yet another rotor from the discussion, we can obtain a DMG in which the
suspension of each rotor has two degrees of freedom. The special features of the
operation of some of these systems will be investigated in the following sections.

1.3. Equations of Motion of Rotor Vibration Gyroscopes

From the discussion of the generalized RVG model it follows that it can be used as a
basis for constructing various (multistage) RVG layouts. At the present time, how-
ever, multistage RVG's are of theoretical intersst only, since their realization en-
tails the solution of an entire complex of problems. Therefore, from now on we will
limit ourselves to the investigatior of only those of them that are obtained on the
basis of two stages of the generalized model.

As derived from eguations (l1.9) with due consideration for equality (1.10), the
equations of motion of the two stages take on the following form:
] -

- 1 WPSTERL RN Y
TR MW (o402 (D) -+ w,)) k
AR AR e ) 3,
4 ‘V“w - i (‘i’l 4 (0())) (?8 =12 (Dt we) +
}»Tﬂ”4-ﬁﬁﬁ”e"d”*“”"
- | T —tlwgt
_ vy — . v.e o
W B T AW o+ 1)
| T =i (D wy) !
— - 1.8 = .
‘\W/l (/J b 02 (ll)l -} mu)) i (1.15)
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Let us first turn to the equations of motion of layouts with single modulation of
the signal. There are two varieties of such layouts, namely when the modulation is
provided by the second stage's drive motor PD2 and when it is provided by the first
stage's drive motor PDl. Let us examine these two cases in sequence.

= 1(2) =
=1} )

in the first case, in equations (1.15) it is necessary to set &1 =0, 1(2) =
= 0. In connection with this, the first and second stages' suspension axes are ar-
bitrarily oriented relative to each other in the plane of rotation. 1In order to al-
low for this orientation, we will introduce angle ¢33, which characterizes the rota-
tion of the first stage's suspension axis relative to the second, from an initial
position where the suspension axes of the corresponding rotors in each stage coin-
cide, in the direction of rotatign at velocity wg. In equations (1.15), it is then
necessary to set, additionally, $3t = ¢15. Thus, the eguations of motion of a four-
rotor VG with single modulation realized by the rotation of PD2 have the form:

[ 1
W@ M T AW (o i2wy)
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\ =
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7 Te il 00 g (D i, —iwel.
+ W (p -k i2w0) o0 e MY - MV PreTih
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V. % T awg (P -+ i20,) X
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Three-, two- and single-rotor MRG's are special cases of this layout. 1In order to
obtain the equations of motion for a three-rotor MRG in which each subsequent rotor
has only cne degree of freedom relative to the preceding one, it is sufficient to
set 1(2) = I(Z) = 1(2) = 0 and Péz) + @ in equations (1.16). If the suspension of

the third (counting from the instrument's base) rotor has two degrees of freedom in
the plane of rotation relative to the second rotor, in equations (1.16) we should
set Iéé) = Ié%) = ( ) = 0. If the second rotor has two degrees of freedom relative
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to the first, we should set 1(2) = 1(2) = Iég) = 0, and if the first rotor has two

degrees of freedom relative to the PD s shaft, we should set Iéé) = Iég) = Iég) = 0.

A two-rotor MRG with one degree of freedom of the suspension of each rotor is well
known [3] and is a setup that has already been realized in practice. Its equation
corresponds to the first equation in (1.16), for X, = @ and ¢15 = O:

1

- ! ¢ =20t 70 J A itwe
- el AR ATem e
- Wi (p X A\V'; (» +i20y) X = A *

(1.17)
+ W w+Wi(p+ i2u)we™™ LD M e 0w,
where
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A =R + ipyog 4 Cy;
Ay = R{"w + idpwy + AC;
W (p) = — iR s b b o (R e - C);
Wi (p) = — iR wy — Apy — % (R{Vu — idpiwy 4+ AC)).

The equation of motion of the most widely used type of twop-rotor MRG--the so-called

(Khaui) gyroscoge—-ls obtained by substituting into formula (1.17) the equalities
(1) = (1) , = 1(l), C =C , u. = u_.
ZB JB JH o 3 (o

Finally, the equation of motion of a single-rotor VG, which is sometimes called a
(Seyvet) gvroscope, allowing for the flexural as well as the torsional rigidity of
the torsion bars, is obtained by substituting the equality I(l) = 1(l) = I(l) =0
into (l.17). XB YB

The equations of motion of a four-rotor VG with single modulation realized with PD1
are obtained from (1.15) by substituting the equalities Wg = 0, ¢37 = 0, and has the

form I | -~ e—,_(h t _‘ }-;, \
W’x (p) " AW’:( lle ) AA —
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If the f%fft sta?e has a single rotor, in equations (1. 183 it ig necessary to set

(L) If, in connection with this, c2) 2 2 0, from (1.18)
XB YB Z2B B C

we will obtain the equations of motion of an OMG with NP, or a so-called precession-
vibration astatic gyroscope (PVAG) [16], allowing for the finite rigidity of the

shaft of the gyroscope's rotor. The equations of motion of a gyrotachometer with a
rotor having unequal equatorial moments of inertia also follow from e?uatlons (1.18)

{45]. 1In order to derive these equations it is sufficient to set I
= 1(2) = I(l) = I(l) - I(l) = I(l) = 1(2) = 0.

It is interesting to note that equations (1.18) also describe the motion of a bi-
axial gyrostabilized platform when its suspension axes are in a position that is

close to orthogonal and the sensitive elements are two- or one-rotor (Iéé) = I}%) =
(l)

ZB = 0) RVG's with single modulation. In connection with this, the relationship

céz) = céz) = 0 must be fulfilled.

The equations of motion of an RVG with single modulation realized by PD2 are non-
stationary and have periodically changing coefficients. The nonstationary nature of
the equations for this type of gyroscope is caused by the choice of the inertial
reading system when describing their motion, and can be eliminated with the help of
- the method proposed in ({16]. Actually, let us examine equations (1.16). They con-

tain four unknowns: Xy, X2/ xle wot, ¥ xze -2Wot,| 7o each of these equations we will
apply operator e~i290t and then the operation of complex conjugation to the left
and right sides of the ensuing equations. As a result, we obtain two equations:

i e it eti20

Wi (p -+ i20,) 1i AR
AR LW (o ) yae 20 4
-{»—W?f' ») ;-eitrp,. +M(l)‘c—i2mgl+7W:‘l)‘ei<p.,e—-iu.l;

emfvu -

= AjMjeT o

| T —idgt | -

W} (p - i2u,) ke T R T e BT (1.19)

) = AT R L W (o i2w) we T -
+ W (p)o+ Bkl
LW (p A Q) e TR0 p BIRY T
F W (p)x e T M e it

which, together with equations (1.16), form a system of four algebraic equations
relative to the four indicated unknowns. Having solved system of equations (1.16)
and (1.19) for x1 and X,, we obtain stationary equations of motion for a four-rotor
VG with single modulation from PD2, in the form

‘—/,1 = ﬁ {[AIWH (p)— A x‘e“'p”Wm(P) -+ BiW . (p) 4-

+ Bl W (D) A+ (AW (p) —
~ WL (I T+ [—A =W, (p) +
-+ A;W/IJ (mn+ Ble-—r’?w.- Wi (p) + B;WH (P)] x?.e—“w'[ +-
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+ (= AW (p) + AW ()R + WE ()W () +
+WE (DWW ()6 + W (p+ i20) Wi (p) +
1 W (p+ i20) Wi (p)l @'e 7 W,y (p) MY +
T+ Wis (p) M2 W (p) e M
- + Wi ()0 T e Wi (p) M) 4 Wia (p) e

t

+.

: + Wi (p) MaPe™ ™ + Wi (p) M::we_m'l};
T= VI(T) {[AW2 (p) — A1e* W5 (p) + BWn(p) +
4- Bl Wy (0) A + [AWas (p) — AsWae (p)] A2 +
+[— AT W (p) + AW (p) + Bie ™"

v W (p) + BiWa (9 Bie™ 4 [— AW (p) +
AW ()R e L W (0 W (9) + WE (p) W ()] 0 +
F AW (0 + i200) + Wes () + Wi (p -+ 1200 Way ()] 07e ™ +
b W (p) M W (p) MO "™ Wy (p) e 0 Me ™" +
1 Wag(p) 6O TN e ! - W () M o W (p) T e

+ Wa (p) MPe™"% 4 Wy () MPTe™ )
where
Vi = Vxl—(ﬁ W () — pW: (D) Wia(p) — Te‘;—‘:’('_;)wm(p) -
— W (p) e Wi (p;

W, (5) = ! | !
WP = G20 Wilo) Wi (p+ i2wy) W3 (0 + i2y)

pefffﬂn

P -+ 20,

] .
AW, (p -+ i20,) ™

W (D)W (p -+ i200) [

e"i'-'Wn 1 —i2p,,
" A\V"r(p-&-i?wu)J _[ APEEAD } )
RN {

5 - . e oo 1
W 20 W (p o 1200) — s [Au?' » " (P)] :
. :

1 p— My I
AW (p -+ i20,) 2 AW (0 + 12%)] Wy (0 -+ i20))

p W W (o i20) B
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- o o s e e

—WZ‘W Wi (p b 20) W (0 4 i20y),

V(o)
Wi (p) =
12( -+ 1%:“)- ‘VI (@ + i20)) N 3 (P + i20y)

+ AWV (DWE (p+ 200) W (p 1 i20,) -
+[ L }W’T'(p+i2¢u5) L

AWy (p) AW”(”) AW (p+i20y) Pk i20,

+

4 e 1 W (p - i2wy) I
AW (p) AW, (p) W: (71 i2,) P+ 2w
+ Wi (p)
(p+« W Wl (p 1wy AW (p ok iZeg)
—oWTE (D)W (p 4 i20) WS (0 + i200);

pei20: Wi (p) W5 (p + i2u)) _ 1 =10
P+ 20, W3 (p -t i2wy) AW, (0) + AW, (p)J

Wis(p) =

| . it | |
< -
[ AW, (p -+ 20, ! Mf/l' (P +i2w)) } (P -+ (2wy)* AlV: (¢ + 120}) -4
—ilPyg

+ W 2 (P 20)WT (0 + izoy) +

’Pya 1 ¥ — . ] N
+ [ AW, (o) LY 2P je W (o 200 W (p 4 i20,) +

—
e =W 1 | \

+ S o ——s
(PR Wa(o) AW (p+i20) W (01 20,
+—2 _wrpwr 0 1 _ emtn ]
‘ P iluwy ! (MW (p+ 2w, N (p + i2ay) F Alf?;(p T i2ay) ;

Wii(p) = pW T () W (p + i200) W7 (p + i2ug) e~ -
- [ : R ik Wi )
- WA Rw)T AWy (p-Fi2e) | AW (pF i2ay) J AW (p - i20,)

A L’—' “Ou | “/-} (ﬂ -f- 12(1)) it -, .
RS 20, W, () W L i20,) — @W!(p+ i2w) %

- Wy P -F i2wy) - P ! e g
_ o) (n 4 20 )2 AW (P 1 i2ay) -+ AV (0 i2a) X

W’I}‘ ») ) =i | W+ -+ |‘7m)
WEw 2w P+ 2w WL () qp Lt i20y)
p W (p) l
(P4 200t W (p 4 i20y) W) (p+ i20,)
e W (p - i2) I JETEI
Pk 20, AW, (p) AW (p+i2m) | AW (o i2m,,)J

W (p) =
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£ pW T (W (p+ 20) W (p-F i20) +

i pet0s W3 (p) | " e 201 N
B W1 2007 W (p 4 i2eg) | AW (p+i20) AW (p-}i20,)
1 V(e + 2wy !

e E e, T AV, () WS (p+i20)
— pWT (P)Wi (p+ i200) Wi (p + i200);

W () = 1 I ! !
=)= e ¥k W (o +i2w) Wi (P i20)

o W W pFizey)

Wi (p-+ 2wy) »

VN AW} (p -+ i20,)
Whetiw) — , Wi@WE(ptize)
AW, (p) Pt i20, W (¢ -F i2oy)
Wi (04 i20) Wi (p - i2ey) ! N
- 7, (7) T 207 AW, (p)

1 | .
TAW] (o -k i2eg) Wi (ot i20y)

o201 1 fV,‘_,‘ (T i20,) p e
i WerlP) = 5 mny W) W (ot iawy) | G Ba
W (p) I | e ]
< - N " -1 ) N
AW (o i2w) | AW (p-Fi20) AW (p+i20,)

+ pe” T WT ()W (p -+ 200 Wi (p + i200) —
— pe™ O WS () WT (p 4 i200) W (p -+ i200) +

pe—“‘ﬂu | W_,— (p)

T raay W3 (p+ i2wy) AW} (p+ i20)

| \V.:,".(p +- 1 2wy) 1 : Pt .
t o, T W [ ey S e |
p 0 W AW (p+i2wy) M (p ot i2ug)

&“Q‘Ou ~

Wi(p) = AT W3 (p -+ i200) WI* (p + i2w) —

1 1 R | |
T e AW, (5) AW (p T+ ite,) [w; ey T

b RN p‘,-i?Wn: w; (p)ﬁ"/f (o + i2,) n
YAW; (p 4 i2ay) p+i2e;  WI(p-ti2w,)
=290,

+ Z\V’l——(p) W3 (p -+ i200) W (p -+ i20,) 4

1 [}
RRTETTAL [wz TETTN

L T Y
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+ e"z‘&’u 1 . 1
. AW (p-Fi20) | Va0 Wi(p+i20,) +

pe-i20u W3 (p) WI°* (p + i2w,)
p+i2w,  AWY (p+i20)

The stationary equation of motion of a two-rotor MRG can be derived either directly
from (1.20) or by applying an analogous method to equation (1.17).

- 1 0 4 700 ~i2w,t Wa(p) -
1 = (VA R4 Wi () AT o 4 Zallg

It has the form

Wy (p) - it ! ViR

I3 o W in L %% ) W -

t ot 0¢  TWiprmey MOT (1.21)
1

V(D p-itwet
tawTe ey N

| M —-iwyf
BT 2y M

.._h__l._— M* ‘l-ww'}
) + AW ey Mee
where

4 | i )
(P) = W o Wi 120, — AW, (7AW (p T Zay)

W (p) = R{"wi |

| 1
Wi+ 20) AW (p -l'i%u)] +

i o) Apy
+ io0 [ prittmey + wrp ey )

¢ AC,

. 1 _ .
T Wi o+ 2w | AW (p 4 i20,)
W()___mez{ ! _ ! !
MPY=—RUO ey T Wi T ey T
: Ap "
+ 0 [ gy + STy )

_ AC, + C, .
WVip+i20,) AW (ot i2w,) '

Wa(p)=p [ —iR{ui(

i I
Ve ~ WG Emy)
T . W . SR .
WGy — SRy eV (o) +

4+ &1 s 1

Yp Wt i2w) p AW (p+i2e,) )’

‘Vu» (P) == (/7 - 1'211)”) { {_— l.R{“ Wy (

I !
Wilo +i2m) — AW (p+ 12w, ) -

Ay . 0 - :
VI ey T TRy | W (o i2e) -
AC, ! c, I
P 2wy Wit ey T

1.
P20 AW (pF 2w, )’

-------
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Welp) = (o p+i)-

With the help of this method, the equations of motion of an RVG with single modula-
tion realized by PD1l can be reduced to a stationary form only if the following con-
dition is fulfilled:

1 __0
iy = (1.22)

From (1.15) it follows that condition (1.22) takes place only when the following re-
lationships between the MRG's parameters are fulfilled:

AC, =0, M0y JE = (8 — U I8 =0,

The first two of these require that the second stage's suspension be uniformly rigid
and have identical damping coefficients along both axes. The third condition can be
fulfilled either if there is an inverted cardan suspension or if the suspension has
an inner framework with JZ(S) = 0,

Thus, when condition (1.22) is fulfilled, the equations of motion of an RVG with
single modulation by PDl take on the following form:

% = gy 1AW () — AiWia(p) + BV (p) + BIW . (o) 11 +

= AW () + AW () + BW i () + BIWw (o) Ae ™ 4
4 CWos (9) RS o CW i (p) 267 - W1 (p) Wi (p) & +
FW(p o) Wi (p) 0" L W (p) M -
Wi (p) M0 Wy, (p) 1) 4 W (p) M9 e 20
W () B Wi () M Wi () M
+ WH(/)) M e,
1s = oy (1AW (9) = AW () = BV () -+
+ BIWa (I A+ [— AWa (p) + AW (p) -+ BIWea (p) -+
+ BIWa (DB o Cl () B CoWa () A
LW ()W (p) & Wyt (p+ b)) W. +(p ya'e -ibyt +
W (p) T Wi (p) M - Wi () T80
Wy () T LW, (p) AT - Way (p) M e 4
W () T W ) T e,

where the expressions for operators Wkl p) coincide w1th the analogous expressions

presented in equations (1.20) when the equalities wg = ‘bl and ¢;, = 0 are substitut-
- ed into the latter.

: (1.23)

RVG systems with double modulation can be differentiated by the number of rotors in
_ the first and second stages. In addition to a four-rotor setup, it is possible to
have setups with one first-stage rotor, one second-stage rotor and one first- and
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second~stage rotor. The operation of all these systems is described by equations
(1.15) when the appropriate values of the instrument's parameters are substituted
into them.

Equations (1l.15) are nonstationary, with harmonically changing coefficients. In
connection with this, there are two coefficient-changing frequencies: £frequency
2wy, which is the PD2's doubled frequency of rotation, and frequency 2(&1 + wg) s
which is the doubled total frequency of rotation of PDl and PD2. The periodic co-
efficients that change with frequency 2wy can obviously be eliminated by selecting

- the appropriate system of coordinates for writing the equations of motion. Making
use of this fact, let us transform equations (1.15) so that in them we have periodic
coefficients that change with only one frequency. With this purpose in mind, by us-
ing the previously applied method we first eliminate the periodic coefficients in
front of the unknown x; in the first equation (1.15). As a result, we obtain

L W5 (p) A W () AP L W (o) +

=g
W () Fre St ! T
i RV P @y (1.24)
+ /Wﬁ,”e"'“é‘""“”) + 1 (M“"c-'-'t@-wm n

AW (p + i2 (D, -+ @)

T -id t
4 e,

where |
i .
W, (p) = _ — . ;
2 (7) W W (4 i2(@ - w,)) AW, (p) AW (0 +i2 (D + w,)
Wy (p) = 3l - A ;
- i Wip 2 (D, fw)) AW (o2 (D, + )
- o A, L Ar .
- Wsp) - Wiip+ 20 4o @ AVIP+2(@ +w)’
W (p) wee
W, (p) = i (p ()]

_ TWI @, +e) | AW+ i2(@ +ay)

W, (p) = Wtip+ 2@ +o)) | W e4i2@d +o)
¢ Wip+iz(d4w)) | AW (p+ i2(D] + w))

ul

Let us substitute expression (1.24) that was derived for x; into the second equation
of system (1.15):

! e ien Rt i,
N (Pt — 3w T aey b 90§ (p) e 2Pt _

= Aky = AR L L(p) A 4 L (p) A0t
[ ot . ", —tn —(0 1 l.
+ Wy (p)e + W, (p+i20) & e - MY 4 MPe o (1.25)
+ M(p) (ﬁ“’ + M},“e'“‘b‘”"‘") + Ky (p) (Muve-md.m.)t +

+ M,‘,l)’e‘_“"”w'”),
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where
N % PR
Np) = gor — PVP TG — plp+i2( +
+ o) SEEIGEEEAD Wi p + 21+ o0
1 (p)
- 1 s
= — - I 2(®
N{p) AW“wH“%+mm-rMP+ (P, +
W, (o) 1740 i2 (), -
+ ool T () +[p 482 (D,
. W 2 (@ = s
+ o)} Wi +W‘3 ((:))1 + w,)) W; (r+ ‘2((])1 + mu));
. Ws (p) Ws 0 (D
L) =B+ pygipy Vi (D 4 1p +i2(D) +
: + ug LR 0D g7 (4 i2 (@, + w)
s (P)
T _ 3 &75 (p) W- _ D) (D
L(p) =B+ pyy Wi (p) +-[p +i2(D: +

: i2 (M, 4 5. o
+ wy)] wite +W:u ((pq;l ) Wi(p+ 2 (D) + wy));

W3 (p) 9 (4
" == = n 2 (D
M) = b W + e, ray TP TG

Wi (p +i2 (B, + ) .
Tl =yoEv e

W5 (p) ‘0 ((F
'11 = = - ! l2 (D
(P =0p AT Y e [p 4+ i2(D, +

Wsip +i2(D, + )
+w)l W) W, (p) ’

- In order to eliminate from (1.2S) the periodic coefficients that change with fre-
quencies 2 g and 2(9; + Wwg), we will derive two additional equations. In order to
do this, we will apply to both parts of equation (1.25) the operators el4W0t ang

i2(¢; + t . . .
2t (1 uo) and then perform the operation of complex conjugation on the obtained
equations. As a result of these operations, the additional equations will take on

the following form:
- 1 _ . . e it ~e ) - iod
AWy AtV (P i200) 1287 — N (p - i2w) 7,670

=Mﬂymm_mﬁ+tw+wwﬂhﬂw+

+ L7 (p -+ i200) K" L WL (ot i) 6% 20 .
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+A’1'(p+i2wu)(m("'e"g"’" +M},”'e“°""“’"')+
+ B (p + j200) (M0 M el Bemwat

— N (p4 2@ + o)) %2+ N (p+i2(D +
| 5 2D, ¢ —
AW, (p +i20,) ©7

+ wu)) i“’e-ﬂ(dnw.)t _ (1.26)

= ARGt FR0 R L 42 (D) -

.

Foa) A et LT ) 12 F w)) A+

Sty
T

F WL (p 4 2@y 4 @) @'eH O LT (p 4 i20) de
+ I midbront + lﬁf)'g—((;"ﬁ.om)t + M‘(p +i2 (‘bl +

. + wo)) Wure-‘:(é.m,u + /V_l,(,”'e'“‘é'“""’) +
-i(d.»,m.n)_

+ M (p + i2(D, + o) MV - MiVe

- By determining ;;e_lzwot from the first equation in system (1.26) and
;;e-lz(Ql * wplt from the second and substituting them into equation (1.25), we ob-
tain

Dy (p) Tr — Dez (p) Raet > — Dy (p) Al =

1 As ;U
= g —_ > - — Ay —
(4 — Swrprmsy v T ]

5 1 Al FUS -idwet
- [”'-’ T AW o+ 20,) N (p+ iewv)] hre

zT.?zV {p) inl)e.-um.t " A;W (p) ;-\.‘i-e-i‘.‘(‘iv.m.:‘_*_

- N*(p+i2(D 4 w)) DONt 2+ )

o Dtz twn ] [~
. —_—
[L(p)+~(p> Sl +w.,»] i [L<p)+

Ty L0 0e 2D A o) T soe i, vwe
- N ) ‘l U, A. e ' (]
l- (p N‘(PT'2(‘D| 4 w,)) } : +

1 L*(p 4 i20) 0% -i2ay
T W ey ety M T
" | L* (p 4 i2m)

RN +
AW (0 F 2w,) N*(p + i2wy) Ae + [W/2 (P -+

Wi*(p) N > )
T wrpTmg Ty O+ (VI i2e) +
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T IWI+ 2oy Ve (p T g ] @emivodt
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~ Ty M2 + ) T55ine ciidiewnr
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1 1
p-Fi20,) N*(p+i2w)
L L
N* (p + 12 (D) + wy))

|
Do {p) =N (P) — zw o7 TWeT

1 N*(p +i2,) .
- Ve (P) = ISP F ey N 20

1 N (p) _
AW, (p 4 12D)) N* (p + 2 (D) + @)

Dy (p) =

Thus, in order to solve system (1.15) it is necessary to solve equation (1.27) with
harmonic coefficients that change with frequency 2451 and then substitute the solu-

tion that has been found with respect to X2 into equation (1.24) and integrate the
derived stationary equation with respect to X1 - )

1.4. signal Reading and Information Processing Systems

One of the most important components of an RVG, and one that has much to do with de-
termining its accuracy and sensitivity, is the system for reading the angle of
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rotation of the RVG's rotors relative to the base or each other and then processing
the obtained information. Depending on the reading method that is used, the useful
information about the angular velocities of the base's rotation relative to the in-
strument’'s axes of sensitivity consists either of constant angular deflections of
the rotors in a system of coordinates that is coupled with the base or of amplitude-
modulated oscillations of the rotors at frequencies that are equal to or multiples
= of the PD's frequencies of rotation or are composite frequencies. For any signal
reading method, however, the range of working angles for the unit that measures a
rotor's angle of rotation should range from approximately 0.01 to tens of angular
- seconds. The measurement of such small angular movements is a quite complicated
technical problem. In principle it can be solved with the help of angle measurers
of different types [38]. 1In connection with this, the general requirements for them
are:
1) nigh static accuracy; that is, the absence at the angle measurer's output of a
zero signal that is synchronous with the useful signal and exceeds a given level;
2) high dynamic accuracy, which means that signal formation must take place with
minimum distortions within the limits of the instrument's band of operating frequen-
cies;
3) high sensitivity and a low sensitivity threshold;
4) minimum reactive effect on the RVG's rotors;
5) sufficiently high output signal power;
6) high reliability and resistance to interference when operating under conditions
determined by the tactical and technical requirements.

Angle measurers can be divided, according to their operating principle, into:

1) passive measurers, requiring an external power source;

2) active measurers, which generate a signal proportional to the value being meas-
ured.

Passive measurers include those of the capacitive and inductive types, while active
ones include those of the induction and piezoelectric types. In order to eliminate
the effect of linear oscillations of the rotors on the instrument's operation and

- provide the waximum possible sensitivity, all of these measurers are built with dif-
ferential circuitry.

Let us examine several features of passive angle measurers. Their operating princi-
Ple is based on the measurement of the change in the reactance of the gap between a
sensitive element and the sensor's elements. In the case of a capacitive measurer,
the sensitive element is one of the capacitor's plates. A second capacitor plate is
mounted on the housing or rotating part of the instrument. When the rotor is de-
flected the size of the gap in the capacitor changes and, consequently, there is a
change in its capacitance. For an inductive measurer, the rotor acts as an armature
that completes the magnetic current of the sensitive coil.

A comparative analysis of capacitive and inductive measurers showed that, all other
conditions being equal, the sharpness of a capacitive measurer's signal is 50-100
times higher than that of an inductive measurer. Some comparative characteristics
of these sensors are given in Table 1. From the table it follows that with respect
to all the basic parameters, a capacitive sensor is considerably better than an in-
ductive one.

Figure 4 is a diagram of a capacitive measurer. Rotor P is located between four
plates O, which-~depending on the choice of the measuring system of coordinates--are
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Table 1.
Tun poTuiKa yraa (2)
NapakTepneTHRn
(l) aul(oc‘ruun(B) unnyx'rllmlun(4)
KpyTusua, B/rpaa (5) 1—10 1072—j0"3
Yposens wyma, uB (6) 0,5—4 s
Fadapur, o'e. (7) 1 3
Macca, o. e. (8) 1 4
Key:
1. Characteristics 5. Transconductance, V/deg
2. Type of angle sensor 6. Noise level, mV
3. Capacitive 7. Size, rel. units
4. Inductive 8., Weight, rel. units
Z attached to the base, or rotate together
0 with the PD's shaft, or are mounted on
7/\ another of the RVG's rotors. The rotor,

C M A together with the plates, forms four capa-
v Q_J,f‘,/ .lE:ZT‘ citances Cj, Cp, C3 and C4. When the rotor
<—;tf—vv—— | ]C oy turns through angle a, capacitances C; and

f_[:/ = C3 will be reduced, while Cp and C4q will
/ *2 increase, and vice versa. Capacitances Cj,
P —_— Cy, C3 and C4 are connected in parallel, in

Figure 4. Diagram of capacitive angle

senscr.

pairs, and can be connected to the arms of
a bridge (Figure S5). If plates C;-C4 are
mounted on the rotating part of an instru-

ment, an inductive or capacitive commutator is used to transmit the signal to the

base.

The former consists of a transformer, one of the windings Ly, Ly (which is

mounted on the PD's shaft) and another winding L3 that is on the instrument's hous-
A capacitive commutator consists of two pairs of concentric rings,

in

one of which in each pair
2d on the housing.
commutator's capacitances

g (Figure 5b).

a)

~Upod

u

5.9
Figure 5. Electrical connection diagrams for capacitive
angle sensors.

These

is mounted on the rotating part, while the other is mount-
rings form capacitances Cg and Cg (Figure 5a).
are connected in series with the capacitances that are

Since the
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changing with angle &, in order to obtain high reading system sensitivity it is ne-
cessary that Cg >> C; + C3 and Cg >> Cy + C4. Variable power voltage upgy, is fed
into one of the bridge's diagonals. In accordance with the recommendations feor this
type of measurer, the power frequency is chosen in the 0.1-1 MHz band. Signal volt-
age Ugjq is read from the bridge's cther diagonal. The signal voltage can be calcu-
lated with the formula

28rup,;u l 28
iy = Te e (.28

8 = 4r®Lf?ee,S,

where L = inductance of the measuring bridge's choke coils (L = Ly = Ly); f = fre-
quency of the power voltage; egg = absolute permittivity of the air gap; S = area of
the capacitors' plates'

ee,S

0 Lio = _E_

A =686—4d

dn = initial size of the gap between the capacitors' plates when the rotor is in the
equilibrium position; Cy = initial capacitance of the capacitors.

From formula (1.28) it follows that the dependence of Ugjg on angle a is, in the
general case, of a nonlinear nature. Therefore, it is extremely important to take
into consideration the required range of measured frequencies and the allowable non-
linearity of the instrument's static characteristic when selecting the initial value
of the gap between the sensitive element and the capacitors' plates.

In order to create an instrument with a linear static characteristic, it is possible
to use a transformer-type bridge connection circuit. Such a circuit corresponds to
the one depicted in Figure 5b if Upow is fed into winding L3 and the signal is read
from the bridge's other diagonal. Disregarding the bridge's reactance, the output
signal's dependence on angle & then has the form

_ e . (1.29)

u =
35 24y

However, such a circuit has a high noise level and a high sensitivity threshold.

Xp It is feasible to use a piezoelectric sen-
(L) sor (8] only when the amplituc}e of'the
N M (2) 1l o I.RVG's.sensitive elc'ements' osc1_]..l§tlons tl:lat
X ,Itl_)'_ - 1‘7 ;j‘;‘“ﬁ is being measured is of a sufficiently high
A ‘; S T 1 frequency. The connection diagram of such
FEsT = 1 a sensor is shown in Figure 6. It provides
R e sl I for the measurement of angular vibrations,
P 1 A B with self-compensation for linear vibra-
" tions, with accuracy up to that of the
Figure 6. Connection diagram of identity of the piezocrystals' (PK) parame-
plezoelactric sensor. ters. The transconductance of a piezo-
Key: 1. IM electric sensor is computed with the formu-
2. PK la
Uyg =M g, (1.30)
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where d33 = piezomodule of the crystal; mrNy = inertial mass (IM); Ckx = capacitance
- of the riezocrystal; Cy = input capacitance of the signal processing unit.

The signal voltage's dependence on angular acceleration g is linear. Consequently,
} the dependence of Ugjg on the base's angular veloity will also be linear.

The shortcomings of a piezoelectric sensor include the effect of the processing cir-
cuit's capacitance and the cable's capacitance on the output signal's value, as well
_ as the necessity of deriving the signal from the rotating part of ti.e RVG.

r> ®4 (;ﬂ
U ¥ W,
” s,y u | col 1 Wyg
—— ny A y L —
(1 (2 (3) i ____Ci.l
Uy
I%» Lyn L1 CC%S 27 Wxy
roo B f
(6) __ |
™ 80 (o) L d
I lu
ront == v R e
w, (7) (8 | (10
u
rone b y2 U PR N
(7) (8) | Q) |
L
Figure 7. Functional diagram of information processing system.
Key:
1. IU 6. G
2. D 7. GOI.
3. U 8. U.
4. FD 9. SVO
5. SS. 10. T.

When the useful signal is read in the form of amplitude-modulated oscillations, the
processing system solves the problem of obtaining two direct-current signals that
are proportional to the angular velocities of the base's motion relative to the in-
strument's axes of sensitivity. Figure 7 is a functional diagram of such a system,
The signal arriving from the bridge of the measurer of angular rotor displacements
(IU) consists of oscillations with the frequency of the change in the power voltage
and balance-modulated oscillations with the useful signal's frequency. The ampli-

tude and phase of the latter contain the information about the base's angular velo-
cities.

The first stage of the signal's processing is its demodulation on frequency £ ow*
In order for this to take place, the signal Usig from the bridge enters demodulator
D, into which a signal from generator G (which generates the bridge's power voltage)
is sent as a reference signal. Oscillations with an amplitude proportional to the

RVG rotecr's angle of rotation are obtained at D's output, This part of the circuit
is absent in active measurers.

After preliminary amplification by amplifier U, the signal up from D's output is
sent into phase-sensitive demodulator FD. The reference signal for FD is generated
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with the help of reference pulse generators GOI. A GOI consists of a magnet that is

press--fitted into the rotating part of the instrument and a coil mounted on the
- housing. When the magnet passes by the coil, an EDS [electromotive force] in the
form cf a short pulse is induced in it. The magnets in the rotating part are situ-
ated at an angle of 180° to each other, while the two coils in the housing are at ah
angle of 90° to each other. When reading on intermediate frequencies, the magnets
and coils can be situated on the appropriate rotating parts. After amplification
with the help of amplifiers Ul and U2, the pulses from the GOI's enter reference
signal processing circuit SVO. When necessary, this circuit can contain a frequency
conversion circuit. On receiving signals from GOIl and GOI2, triggers Tl and T2,
which are operating in a waiting mode, generate rectangular reference voltage pulses
that are shifted 90° relative to each other.

The phase-sensitive demodulator is a comparison circuit (SS1 and SS2). The refer-
ence voltages from the triggers and the amplified signal from the demodulator enter
it and constant voltages uj and uy, which are proportional to the base's angular ve-
- locities, are obtained at its output.

The extremely simple circuits for reading and processing information from an RVG are
not the only ones possible. Inductive angle sensors can be used successfully in in-
struments of this type. In order to increase their sensitivity, capacitive or in-
ductive sensors can be built into the driving crystal oscillator's resonant circuit.
Preliminary processing of the useful signal, by placing electronic units directly on
the rotating part of an instrument, is used quite frequently. Conversion from amp-
litude modulation to frequency modulation or to amplitude modulation on some inter-
mediate frequency is another practice that is used.

This brief analysis of RVG information reading and processing systems shows that, in
contrast to gyroscopes constructed according to the traditional plan, RVG's are a
symbiosis of mechanical and electrical parts, with the latter having a substantial
effect on the design and basic characteristics of these instruments. This fact com-
pels us to develop a new approach to the process of designing such gyroscopes that
involves a more nearly complete consideration of the demands made on the mechanical
part by the information reading and processing system.

1.5. Methods for Solving Differential Equations With Periodic Coefficients

=z As was shown in Section 1.3, in the general case RVG's are described by linear dif-
ferential equations with harmonically changing coefficients. In connection with
this--and regardless of the information reading and processing method--a character-
istic of all RVG's is the presence in the output signal of a harmonic component that
changes with the doubled freguency of rotation of the instrument's rotor, while for
RVG's with multiple modulation it also changes with multiples of this frequency and
composite frequencies. Therefore, when there is inadequate filtration of the output
signal and a broad transmission band, systems containing RVG's will (in the general
case) by described by differential equations with periodically changing coeffi-
clents.

According to Lyapunov's fundamental theorem [1l], any differential equation with
periodic coefficients can be reduced to an equivalent linear differential equation
with constant coefficients. At the present time, however, no universal algorithm
for this reduction has yet been found. Therefore, the analysis of the properties of
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solutions of equations with periodic coefficient usually involves considerable dif-
ficulties.

The development in recent years of electronic computer technology makes it possible
to use the methods of numerical integration of differential equations to analyze
equations of motion. When these methods are used, however, the presence in an RVG's
output signal of a slowly changing component and a harmonic component having a rath-
er high frequency should be taken into consideration. The requirement that both
components be allowed for means that the amount of machine time needed to integrate
the equations of motions is increased sharply. At the same time, the necessity of
solving the synthesis problems that are related to the numerous possible structures
of systems and their parameters, as well as the parameters of the RVG's themselves,
stipulates the use of analytical methods to investigate the properties of the dif-
ferential equations with harmonic coefficients that describe the operation of RVG's
and systems containing them.

For the investigation of periodically nonstationary systems, the most fruitful
ideas proved to be those related to the use of a Laplace transform [14]. The com-
plete theory of such linear systems, as presented in [28], makes it possible to de-
rive the parametric transfer functions and the pulse-frequency characteristics of a
nonstationary system. However, the use of these characteristics in engineering cal-
culations is considerably more complicated than the use of normal transfer functions
and the frequency characteristics corresponding to them. The spectral theory of
differential equations with periodic coefficients is explained in the works of V.A.
Taft [34,35] and modified in [16] for the case of two-dimensional systems with amp-
litude modulation. There the result of the solution is presented in the form of an
infinite sequence of determinants, for the formation of which it is required to know
the specific parameters of a system already, which narrows the possibilities of us-
ing this approach. For the purpose of developing the spectral theory, in [27] the
author proposes an algorithm of a rather simple method that is free from the defects
enumerated above and, in principle, makes it possible to obtain stationary transfer
functions of two-dimensional linear systems with periodically changing parameters,
Let us discuss the features of the use of this algorithm in the investigation of

- linear differential equations with periodic coefficients and the possibility of
writing their solution analytically [10}.

It is not difficult to demonstrate that any linear differential equation with mono-
harmonic coefficients can be represented, with the help of Euler's formula, in the
form

X+ D, (p) xefe! 4 Dy (p) xe~it = R (p) u, (1.31)

where $5(p), ®3(p), R(p) = operators representing rational functions of differentia-
.ion operator p and having complex coefficients (in the general case); y = frequency
of change of the coefficients of the nonstationary part of equation (1.31).

As the first step in the solution (n = 1), let us perform the following operations.
To the left and right sides of equation (1.31) we will first apply operator elWt ang
then operator e Wt — ag 3 result, we obtain two equations from which the values of
x21¥t and xe71WE can pe found. Substituting these values into equation (1.31), we
optain the first-step equation

34
- FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000500040010-1



APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000500040010-1

FOR OFFICIAL USE ONLY

(1 — D, (p) Dy (p — iw) — Wy (p) Dy (p -+ iw)}x —
— @, (p) W, (p — iw) xer=0t — Dy (p) Dy (p + iw) xe 20 = (1.32)
=R(p)u— D, (p)R(p — iw)ue'® — dy(p)R (p + {w) ue-iot,

which is equivalent to the original equation (1.31).

Let us redesignate the operators in equation (1.32):
DY (p) = | — Do (p) Wy (p — i) — Wy(p) W (p + iwD);

D5 (p) = D2 (p) D2 (p — iw);

D4 (p) = DDy (p + iw),
and as our second step (n = 2) apply--analogously to the first step--operators el2wt
and e~120t ¢4 equation (1.32). As a result of the substitution of the values of

xe120t ang xe~120t that we have found into equation (1.32), we obtain the second-
step equation

n DL (p) D (p —i2w) @Y (p) DYV (p 4 i2w) T
[(Dl (p) - Ml) (p — i2w) - ‘Dsl Y(p F i12w) ] hnd

(1) — D, itk i2 s
i ““Dm(p)mm((z _:23 et — iV ( )®&§"(‘5i;2:)) xe~ ot _

=R(p)u=R(p — iw) [Da(p) + DL (p) rHE=20L] eter

B (5 — )
: (1) D, (p 4 i20) ~i¢ (1.33)
- R(p+ ‘“’)‘ [«D, (p) -+ D3 (p) m] ue™™ +

. @4 (p) 0t Y (p) 2
+ R (p — 20)grrg—mgy 4e™ + R(p +i0) m—_——m (a1 —
D (p) D, (p —i20)

— R(p — i3w) = bt

ue(Jml —

oy D4V (p) D, )
— R(p + i3w) R0 -,

If the harmonic coefficients change with frequency w in the original equation, in
the first-step equation they change only with frequency 2w, and in the second-step
equation with frequency 4w. After n steps we obtain an equation, equivalent to the
original one, in which the harmonic coefficients change with frequency 2w, In con-
nection with this, the recurrent relationships for determining the operators in the
left side of the equation are determined by the following expressions:

ll'.(_,"_” (,0) 1l'.‘(’n-l) (P . [211-!“)) (D;(‘n-l) (p) 'l‘{,"'“ (p + i’.’""m)

D" (p) = 0" (p) —

d,:n-x)(p__‘-.zu-lm) ‘Dtllu-l;(p+i2:,-|m) - (1.34)
un-i
(n-1) o [T o, (p—2o)
@im (p) = DD (/)) (p —ion 'w) _ s ;
cp(u 1 (p ‘.2/1-1(‘)) =1 pan=d-ioy (1.35)
1 [ T wh(p—i2a+ 2k)m)}
=L k=0
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2n-l_y
i I @, + i2k)
; ne B4V (p 4 ign) -
O =y SR o - (1.36)
" (p+i2h) . [ rlmw&+wm+%wﬂ
=] k=0

The right side of the n-th step's equation can be derived in the following manner.
It is obvious that at the (n - 1)-th step, the right side of the equation has the

form
2l ; 1 kot

E [A‘(‘n—l)(p)“elkul + B[(:'- )(p)“e-l [*) ]. (1.37)

k=0
In the n-th step, the right side will then be found from the exXpression

att=l_y
\ Y qin=-1) ‘Df!“-” {p) (n-1) -
(A0 (p) + Bo (p)) 1t - k}._j ”Ak (p) — m&::-lk (»

Ogll-l) (p)

—_ iQ"“w)J ue““"‘ — WIA“ (/) —_— "Qn-lm) +

- jun-d (D(_'n-” (p) (n-1y
+ By (p — 2% w)| uer Nt — Wi (p — 2y e (P
, - ®""" (p)
— 2 lw) uelt" “““’%—[3¥“”(p)—-E@:ﬂjiﬁ;;;fg;'At“”(p-+ (1.38)
@{"" (p)
[On-1 -ikat __ s N Bw-n
+ i “’)] ue o0 (p + 2" w) By=h(p +

4" (p)
2%ty ge-i et 3 puen ),
+ ) (D{n-” (p+i2“"m) k (l +

4+ i20-1w) yemi = T+ky e } .

Using expressions (1.37) and (1.38), for any n it is possible to obtain the values
of the operators standing before each disturbance harmonic in the right side of the

equation. Let us present the expressions for the operators on the first three har-
monics:
n R{p—iw)
AN =~ {‘DZ(P)—
n-t & ol (p —iolw
-3 HUTWWW;%iL%J'; (1.39)
Poer L o (p —i2 w) .
. R (p 4 iw)
Bim (p) = (o) {‘Da (p)—
n-t k (-1 !
@Y (p + i2')
— \1 — ) (Otk) _— |
ﬁ ( ]) IIJ; [) (p) (D=‘, (p+12‘0)) '
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) " Rip —i2u) ! (M
A‘ ’(P) D, (p — i2uw) O (p — i20) {(D‘.’ (P)—
n-l U-1) [ __iol
L0 (3
Z (= 17] m‘*’() (2%
<D“’ (r — i2'0)
(1.40)
] (n) R(p+ i2(l)) 1 (|) _
- B (/)) = —— @, (7 + %) B (p + i2w) [ (p)
=} D” 1y 2l
- S‘ (__1) qb”’()_____giti__l :
ol (p 4 i2 w)
i) Rip —idw) M, (p—i2w) | (o
-‘13 (P) (D (p — i3w) ﬁD‘“(p __,20)) l‘D (,0)
' M (p — %)
- ['—‘”:x (p - M)yt
0 () @lt-2p — 2 la) ]|
F Y (p— l4m)} 2 {-— 1)* H Iy P—E :
) E= (1.41)

(1) R (p 1+ i3w) ‘Di(l"l“‘)“’) {0
B B;; ( ) == D, (0 + 30) ™0 (p 2w) l(h (P)"I"

. D}”(p-}-l?m)
+~[——‘“:(P'Pl4w)7ﬁﬂ;ﬁ;ﬁ;ﬁ“‘*

4 n ko lk-1) (1-2) I-t
LN @1 (! (p 4 i2"'w)
408 (p e-Mw)}\ {—l)k ;

ot 2 )

If the functional sequences @{n) (p), A)in) (p) and B}in)

of definition for all values of p, while the sequences ¢( (p) and @

(p) converge outside the area
(n)

(p) converge

to zero, in the case of the limiting transition for n - o we obtain a differential
equation with constant coefficients that is equivalent to the original differential
equation (1,31) with periodic coefficients.

Let us examine some conditions under which the convergence of the indicated sequen-
ces is quite easy to prove. We will turn first to sequences (1.35) and (1.36). In
order to determire their limit, let us examine sequences l¢(n (p)| and |¢(n)(P)]

We will select the number v in such a fashion that

_ v_—_muxH‘l’z(P)\. I(I);;(p)Hy (1.42)
) and formulate a numerical sequence, the common term of which is described by the ex-
pression
n
a Ad (1.43)

= T =) (=2 2T (=2 v P2 )i oyl

It is not difficult to see that sequence (1.43) is a mazhoriruyushchaya {possibly

majorizing] one with respect to the sequences formed from the moduli of the terms of

sequences (1.35) and (1.36). Let us rewrite expression (1.43) in a more convenient
- form:
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_ B[Ry ([(——_z) i — (1.44)

From expression (1.44) it follows that a sufficient condition for the existence of a
limit that equals zexo for sequence a, is the condition

i v<%. (1.45)

Thus, according to (Veyyershtrass's) criterion [29], sequences (1.35) and (1.36)
converge and have a limit equal to zero in that case where the following relation-
ship is fulfilled for all p:

max {10, (p)], | Dy (D))} < - (1.46)

(n)

Let us determine the. condltlons for convergence of sequences ¢ (p), Ak (p) and

Bk (p). For sequence |¢ (p)l the mazhoriruyushchaya numerlcal sequence will be

_ (I —2v)2 —2vd2 —2veja | _9uan=1)3 _gian
T2 [=2v—av (2 ) (1.47)
where v 2 max |®y (p)|, which can put into correspondence the numerical series
1\P
4 - 2y 2v8

,,}:_'.‘1 C,=1—2v— T5vE — T =2y [(1 — 23 — 2vi]
- 92t (1.48)

T2 0—2vr—2v] - ([ 2va—2vip i 2y

Let us make use of (Dalamber's) criterion for series convergence [40)}. For series
(1.48),

1
Pp = {“v‘ ) ] j‘_”.___g (1.49)

and tnhe condition %ig Pp < 1 occurs for all v € 1/2, which means that the sequence

P (M)
Ibl

(p)! is a converging one under these conditions.

(n)

- The convergence of sequences A;n)(p) and Bk (p) is proven analogously, providing

that condition (l1.46) is fulfilled.

Let us examine the case where the conditions

[P2(p)] =0, [y(p)] =0 (1.50)

prim st

are fulfilled and the area of deflnltlon of funct.\.ons ¢, (p) and ¢3(p) is limited.
Then, obviously, the limit of the n-th number of infinite products in the denomina-
tors of expressions (1.35) and (1.36) is unity and the given products converge; that
is, they have a finite limit that is not zero. In view of condition (1.50), the nu-
merator of these expressions converges to zero and, consequently, functions @ )(p)

and b3 (p) also converge to zero. In connection with this, from expression (l 3)
it follows that l@(n (p) | - lQ(n 1) p)| + 0 for n + ©, which means that the
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functional sequence ¢{n)(p) converges. It is not difficult to show that the func-

tional sequences Ak (p) and B(n)(p) also converge.

The two cases we have examined do not encompass the entire area of convergence of
the method. However, it can be mentioned here that convergence must take place for
any linear differential equations that describe real physical systems, since the ex-
istence in a system of oscillations with infinite frequency and finite amplitude re-
quires unlimited power resources.

This method can also be used successfully in the more general case, when a linear
differential equation contains coefficients described by a periodic time function.
Then, by distributing the periodic function into a Fourier series, this equation can
be written in the form

@y (p) X + 2 Wy (p) v - }] Dy (p) xe™" = R(p) . (1.51)

As we did previously, let us apply the operators eiwt and ei®t to poth sides of
- equation (1.51). As a result, we obtain the following system of equations:

Dy (p — iw) ke - Dy, (p — iw) xe™' = — Wy (p — iw) x —
— 2 Dy (p — o) X IO B gy (p — iw) xeF T
k=1 =
+R(p — iw)ue'*

‘ A . (1.52)
My (p + i) Xe™! - by (p -+ iw) xe ™" = — Wy (p + f0) X —

o . fthk—1)wl \nw . —i(k+Dwt
- Latru (p+ iw)xe — Y Dy (p+iw)xe +
k=

—iwt

- + R(p -+ iw) ue

Solving system of algebraic equations (1.52) for unknowns xel¥t and xe % and sub-
stituting these values into the original equation (1.51), we obtain the first-step
equation, which--with the appropriate designations--will take on the form

=

) - L \ * (H Y —ikul___ w‘ (l’“) (e-lkwt -
Wi (p) x Zf.,"’ (p) e L Wi (p) s
—jwt

- = [AD (o) + B ()] A (p) ue™ - BY () e

After n analogous steps, we obtain the following equation, which is equivalent to
the original one:

Wi (p) <+ L D (pywe 5wl () et =

P

(1.54)

)Vl

— [ ‘(n) (km[ _*_ B;\-", )ue—-l'ku)IJ.
(p

;k)(p) and Q( )(p) converge to zero, while ¢( )(p),

(p) converge, then for n + @ we will obtain an equation w1th con-

If the functional sequences ¢

(n) (p) and B)i

stant coefficients that is equivalent to the original one.
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The realization of the mentioned limiting transition in practice is an extremely
complicated problem. In most cases, however, this is unnecessary, since even the
first steps provide a level of accuracy that is fully adequate for engineering cal-
culations and the higher harmonics can be simply ignored when the filtering proper-
ties of real systems are taken into consideration. The accuracy of the approxima=-
tions that have been made can be evaluated easily from the recurrent relationships
that were derived.

The method we have been discussing is convenient for creating standard programs for
digital computers, with the help of which investigations can be conducted of instru-
ments and systems described by linear differential equations with periodic coeffi-
cients.

1.6. Dynamic Characteristics of Rotor Vibration Gyroscopes

It is a well-known fact that the basic properties of automatic systems, as well as
the principles by which they are constructed, are determined essentially by their
sensitive elements' dynamic characteristics. In engineering practice, dynamic char-
acteristics are normally described by transfer functions, which are operators that

- convert a signal at an instrument's input into an output signal. For RVG's, the in-
put signal can be assumed to be the vector w of the instantaneous angular velocity
of rotation of the base in the instrument's sensitivity plane, while the output sig-
nal is the vector u of the signal at the output of the information reading and pro-
cessing system. Let us examine the dynamic characteristics of different RVG sys-
tems.

An RVG with single modulation is described by equations (1.20). Before analyzing an
instrument's dynamic characteristics, it is necessary to represent its equations of
motion in a measuring system of coordinates. For an RVG with single modulation,
such systems are a system of coordinates that is immobile relative to the base and a
system that rotates relative to the base along with the PD's shaft. Using conver-
sion formula (1.11), let us write the equation of motion in the nonrotating system
of coordinates:

3 \v(m—[wr_hpw....<p>+W/;ﬁ‘(mwu(m]pa
Y. —

¥ (p)
_ ij4‘ﬂ%)W“wL+WjXp+ﬂm0W“(m ore et (1.55)
W (p)
o V- (VEe W+ TV, () p-
T 0 —
il oY (p)
P (o 20) Wy, () + WE (0 + i20) Wy, () e i (1.56)

W (p)

The signal is read from the first or second stage's outer rotor on the zero carrier
frequency or a frequency equal to the doubled frequency of rotation. It is possi-
ble to measure the rotors' relative angle of rotation. Besides this, it is possi-
nle to read the signal by measuring the parameters of the motion relative to the
pase and to each other of the inner rotors in each stage.

Let us discuss an RVG's transfer functions for reading on the zero carrier frequen-
cy. Assuming the signal filtration provides us with reliable suppression of the
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oscillations on frequency 2wy and that the area of the essential frequencies is lim-
- ited, we will discuss only the first components in the right sides of equations

(1.55) and (1.56). Equation (1.55) should be analyzed when reading the signal from
the first rotor. By replacing the operators with their values expressed in terms of
the instrument's parameters, it is easy to see that the free term of the numerator
of the rational expression being derived is identical with zero. The instrument's
transfer function can then be written in the form

7

3 Ap

l==0

2, Bnp"
=0

Wi (p) = ' (1.57)

where Aj and B, are complex numbers in the general case.
Thus, the instrument in a steady state is a two-dimensional angular velocity measur-
er with a transfer factor

Ay

/\'9’- B, (1.58)

The transfer factor is increased by dynamic tuning of the instrument; that is, the
realization in it of a resonance operating mode. Mathematically, this means minimi-
zation of the value of By and, in the absence of damping, fulfillment of the equali-

ty
B, =0. (1.59)

Substituting the values of the instrument's parameters into equality (1.59), we ob-
tain the following condition for dynamic tuning:

(RS 4 R+ RI") wd + Cy 4 Cul (RPwih - C.)
<R - /"")mHCJ (R"wi -+ C,) — (RMwi -+ AC))?) +
+ (Rwi -+ € (R0f — C) [(Ri): -+ C — 28C3) -
- = (R + R w4 CHIRI Wl + €) (RPwi + ACLY +
—+ (R:l’wo - AC,)'( mw(} + C,)) -k (R. w.} + AC:)") X
< (R{Pwj + AC,) = 0.

(1.60)

= Let us find the dynamic tuning conditions for RVG's constructed according to plans
that are special cases of the one under discussion. For a three-rotor VG in which
the NR is coupled with intermediate elastic elements possessing commensurate tor-
sional rigidities relative to the orthogonal axes OY and 0Z, in (1.60) we should set
R{l) = 0. The dynamic tuning condition will then be written in the form

' (RS- RE7) 0d 4 €+ Gy (R0 + C (RS C) €, — ACH -
— Co (Rl 4 C) (G —2ACY) — (R wi + C,) x
0 (RP 4+ AC) + ACHRP WY + )] +
+ ACT(RPwi + AC,) =0.

(1L.6la)
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If the suspension of the first (counting from the base) rotor possesses rigidities
that are commensurate with respect to the orthogonal axes in the plane of rotation,
the dynamic tuning condition for a three-rotor MRG is derived from (1.60) by substi-
tuting ‘2{2) = 0:

[(RE? + RI") Wi+ Co + CIC (R + RM) 0} + €] x
< (RiVwy +C) — (R 6+ ACH) +C, (RMwf — C) x
» [(RI"wi)* + €T — 2ACT] — [(RY" + RI") w} + €] x (1.61b)
< [ACT(R{"wi + C)) 4 C, (R} — AC,)*] +
+ ACH(RI"wj + AC,)* = 0.

The intermediate rotor of a three-rotor MRG can be suspended in the same manner. 1In
this case the dynamic tuning condition is derived by substituting R(z) 0 into
(1.60).

f a three-rotor MRG is made in such a fashion that the rigidity of the suspension
of the first rotor to the PD's shaft and the subsequent rotors to the preceding ones
is incommensurably greater along one of the orthogonal axes lying in the plane of

- rotation than along the other, the dynamic tuning condition can be derived (for ex-
ample) from (l.61) by equating to zero the coefficient for the highest degree of ri-
gidity, which is moving toward infinity. Assuming, for example, that Céz + ®, we

- obtain

. HRSY -+ R wi ++ C 1 (R @i + C1) — (R w, + AC,)?) %

) (RS 4 RV W+ Cy -+ 208 + CC (RV6} — C) — (1.62)
— (R0 — AC,) [R$wi (R"w} — AC,) + 2R1"wiCH] = 0.

Two-rotor MRG's can also be differentiated among themselves according to the method
by which the elastic suspension of the rotors is realized. When the rigidity of
each rotor’'s suspension is commensurate with respect to both axes, the tuning condi-
tion is derived from equation (1.61) if in it we set R(2 = 0:

Co (R§?wy + Cy + C) [(RS"wj -+ C\) €, — ACT] — C.C, (C — 2ACY) —
— (R{"w§ 4 C\) (C,ACE + C,ACT) + ACTACS == 0.

(1.63)

For two-rotor MRG's in which the NR has only one degree of freedom relative to the
VR (cél) + «), the dynamic tuning condition is derived thusly:
(5 Rwb 4 C") [(RYw + C.) C: — ACH] +
(1.64)

>

+C.CER e = 0.

If, however, the VR has one degree of freedom relative to the PD's shaft (C(z) + «),
the resonance tuning condition for such an instrument (on the basis of (1.63)) will
D2 written in the form

(REwi 4 C, - 205 [RS8 + ) €, — aci] - (1.65)
— [R"wiact +-c.c'cl) =0 |

42
FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000500040010-1



APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000500040010-1
_ FOR OFFICIAL USE ONLY

When designing the elastic suspension of a two-rotor MRG's rotors that provides the
VR relative to the PD's shaft and the NR relative to the VR with only one degree of
freedom, its motion is described by the equations of motion of the first stage of
our generalized VRG model. 1In this case, the dynamic tuning condition is found
from expression (1.60), if in it we set R{2) = r{2) = o, AC; = 0 and C, + =. This
condition was discussed in [3] and has the form

(BS54 ) (RI"w} 4+ €1) + RIMwiC, —

. (1.66)
— AC, (2R wg + AC)) = 0.

Finally, the resonance tuning condition for a single-rotor VG is obtained if in
(1.66) we set equal to zero the VR's moments of inertia:

(R§wi 4+ C,) €y, — AC; = 0. (1.67)

In the case where the rigidity along one axis of the suspension is considerably
greater than that along the other one (C{}) + @, for example), we obtain the well-
known [3] resonance tuning condition

i ] 2
- /\‘le.,_—_Cf‘.", (1.68)
r-u’q,l ‘,I'Zu,z
- i B re = -
Lo % Ll W (pel2ws) Wi (p)+ Wy (p#i2uwy) Wtp) | 4 i,
Wi(p) P
w at ‘ L) -
Lo % _ Yo 0 12uw) W ()4 Wy " p 112w Wi () N i,
w(p) -] =
3 L ?ezzru,g

Figure 8. Structural diagram of MRG with signal reading
on frequency ug.

Wnen the signal is read on the frequency that equals the rotor's doubled frequency
of rotation, in expressions (1.55) and (1.56) it is necessary to examine the second
terms on the right sides. Then, when describing the instrument's dynamic character-
istics it is necessary to take into consideration the system for splitting the sig-
nal with respect to the sensitivity axes, which is a normal phase demodulator in the
simplest case. Figure 8 is a structural diagram of the conversion of the base's ab-
solute angular velocity of rotation into a signal at the outputs of an RVG's de-
modulator. Here the fact is taken into consideration that the demodulator is con-
structed on the basis of measurers of the rotor's angles of rotation relative to the
two coordinate axes that are coupled with the base. From expressions (1.55) and
(1.56) 1t follows that, in general, complete information about the angular velocity
vector is supplied by one angle measurer. However, the use of two such measurers
makes it possible to realize a demodulating function of the el2uwot type and thereby
(as follows from the structural diagram) get rid of the quadrature component at the
demodulator's outlet. In the case under discussion, the expressions for the signals
at the instrument's outputs can be written in the following form:

- W ' oy W, — 2w,) -+ W'_,“:" (p) W’“ (P — ilw,)
= - W (p — i2wg)

w®; (1.69)

43
FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000500040010-1



APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000500040010-1

FOUK OFFICIAL USE ONLY

- W)W, (p—i20)+WH (W, (p— i) -
R W, (p—i2w)+4 MW, (p—12u) o (1.70)
2 W (p — i2uy)

As with the case of signal reading on the zero frequency, the transfer function of
such an RVG is a rational expression that is analogous to (1.57). In connection
with this, the dynamic tuning conditions do not depend on the signal reading method
and are determined by expressions (1.60)-(1.68) that we have derived.

Let us derive the transfer functions of an instrument when the_signal is read from
the VR's of the first and second stages. We will call n and ny the vectors of the
angles of rotation, respectively, of the VR's of the first and second stages in_in-
ertial space. It is obvious that the following relationships occur for n; and ny:

’ - - —igt,
P _1 =0 } (1.71)
‘!

Making use of relationship (1.6), let us express the VR's absolute angles of rota-
. tion in terms of the NR's absolute angles of rotation and the base's absolute angu-
lar velocity of rotation around the instrument's axes of sensitivity:

(T — T g oo, l
. o : (1.72)
o (% + §wdt =y LT T Gdt). ‘

Substituting the values of ;i and i} from expressions (1.20) into (1.72), we deter-
mine the dependence of the VR's absolute angles of rotatiun on the angular veloci-
ties of rotation of the base:

h = % ‘[Wul (p) + w/n: (/”) - t?I‘ll (p) ";" Wl.l'.? (p)l 0_) +

F W (p i v P : : 1.73
T [Wul (P -+ lQ(uu) = Wu'.' (P + ‘20)0) — Wnl (p + lQmu) _*_ ( )
+ Wi(p 4 i20,)] w0,
n ! 7 = e
- "3=T'{[W..Q(P)—an(p)+7 w - [We(p + i20,) — v
— W:.; (p -Fi2uy) -+ _p_ﬁ_J a*e""“'“’} )
where
WimW, e W W o
W) == Vi 14 '

W W, 0+ Wi W, (p)
Wip) ’

Wu'.' (P) =

WS o)Wy (e —20) + WH (D)W, (p —i20,)
W p — i2wy) '

W =

_ W (p) = WIoW,(p—itw) + W W, (p—i20,) .

W(p — i2uwy)
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The relative angles of rotation of the VR in the nonrotating system that is coupled
with the instrument's base are determined by the expressions

T = {[ 5 = Wi o) = W () + Wi () — W »] e -

L ' v ' : (1.75)
—_ [Wa,l (p - l?ll)u) + Wllt (p + l?(l).,) *'— W.u (P "i" i2(.l)o) —_
— W:,. (p -+ i2m,)] ;‘,*e—.;’w.l’;
In 1 1 .. _
s = | [7 —W.a(p)+ W (p)J ®—
(1.76)
- .- [W,x: (p+i2w,)) — W’.‘m (p + i20,) + _p_m] 'u‘,*e—i'.'w..'-

From expressions (1.75) and (1.76) it follows that when the signal is read from the
VR in the nonrotating system of coordinates that is linked to the base, the reading
can be done on the zero frequency or on a carrier frequency that is the doubled fre-
quency of rotation of the PD's shaft. In connection with this, it is easy to derive
the instrument's transfer functions from expressions (1.75) and (1.76) in a manner
analogous to the derivation of the transfer functions of an instrument when the sig-
nal is read from the NR, while the dynamic tuning conditions coincide with the tun-
ing conditions (1.60)-(1.68) derived above. From expressions (1.73)-(1.76) it is
also easy to derive an RVG's transfer functions if the signal is ready by measuring
the rotors' motion relative to each other in the nonrotating system of coorfinates.

Let us examine an RVG with single modulation and reading of the useful signal in a
coordinate system that is rotating together with the PD's shaft. Considering trans-
fer formula (1.11) and an MRG's equations of motion (1.20), the dependence of the
rotors' NR's relative angles of rotation on the base's angular velocity has the form

W (p = 1w,) — (o — i) [V (p = i) Wy (0 — i) +

X'I’ _ -+ \F/j' (p.— iwn) W“(‘p-—im") -u-)e“.‘a‘ _
(p—iwy) W (p — iwg) (1.77}
‘Y/T (pFHiw) W, (p—iw,)+ W/:'P (Pt iw)) W, (P —iw,) oo Wt .
- W (p — iwg) ’
W (p—iw) —(p—'w) [wF (p—i) W,y (p —iwy) +
o W (i) Wy, (0 — i) oy
- - ' (P — iwe) W (p — iwy)
_ A " ' {1.78)
WI (p + “”u) l\’/,_,,_, (p - [“)u) + W‘.’ (p + “"u) W:J (p — ‘wu) “ ok, —lwet
— , w*e ,
W (o - iwy)
while its dependence on the VR's angles of rotation is
- 1 2 . .
Ay == 53 {[m —Walp —iv) = Wi (p — iw) +
(1.79)

+ wt‘ll (P - i(“u) - Wl‘l.’ (/) - ‘Imu)l E)eiw.i - lrvhl (P - ‘.‘”u) f'

-+ l¥7,,., (p + iwy) — W (p bioy) + W (p -+ 1w,)] t:)"‘u—“""l;
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- Atp = —,',— { [—l‘— — W (p — iw)) -+ Wiy (p — iw)] 0!
(1.80)

— [ Wa(p + i00) = Win(p + i) + g | 077

Pl

'el.th

Wn; (}7' iwaj Leuw,t

Y.
I} 2 —
; _ T

- * B W (pt lwy)

Figure 9. Structural diagram of MRG with signal reading
on frequency ug.

In the rotating system it is possible to take readings only on a carrier frequency
that equals the PD's frequency of rotation. Figure 9 is a structural diagram de-
scribing the operation of an instrument when the signal is read from the first
stage's NR and the presence of a phase demodulator at the output is allowed for.
When the signal is read from other rotors, the instrument's structural diagram takes
on an analogous form. Depending on the methods used to construct the demodulator s
circuitry, two reference functions can be realized in it: e~i®0t and elwot — 1¢
should be mentioned here that the realization of such reference functions is possi-
ble only in the presence of two rotor rotation angle measurers located on mutually
orthogonal axes in the instrument's plane of sensitivity. 1In the first case, when
the demodulator uses reference function e *%O%, the instrument's transfer function
coincides with the analogous one derived for signal reading on the zero frequency in
the nonrotating system of coordinates, and is described by the first terms on the
right sides of expressions (1.55) and (1.56). 1If the reference function used is

- ei¥t, the instrument's transfer function is identical to the one derived for signal
reading in the nonrotating system on the carrier frequency that is double the fre-
quency of rotation of the PD's shaft.

- Signal reading in the rotating system of coordinates is also possible with the use
of only one measurer of the rotor's angle of rotation relative to one of the measur-
ing axes lying in the instrument's plane of sensitivity. The structural diagram of
an RVG corresponding to this case is shown in Figure 10. Depending on which suspen-
sion axis the measurer lS attached to, the signal entering the demodulator is pro-
portional to either ReXB or ImAB, The first case corresponds to the upper signs in
the operators of the linear part of the structural diagram, while the second corres-
ponds to the lower ones. In turn, either el¥ot or =190t can pe used as the refer-
- ence function. The instrument's transfer functions for each of these cases can be
derived easily on the basis of this structural diagram. The structural diagram of
an instrument where the signal is read from the RVG's other rotors has an analogous
form.

Making use of the conclusions that have been reached, let us examine the dynamic and
static characteristics of several types of RVG's with single modulation. The
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Figure 10. Structural diagram of MRG with signal read-
ing from a single measuring axis.

simplest of them is a single-rotor MRG with
VP, a diagram of which is shown in Figure
11. The elastic suspension of rotor R is
fashioned in such a manner that the flexur-
al rigidity of torsion bars T is signifi-
cantly greater than their torsional rigidi-
ty, which in the first approximation can be
assumed to be infinite. We determine the
transfer function of such an instrument
from the general equations, equating to ze-
ro the moments of inertia of the second
stage's VR and NR and the first stage's VR
and directing toward infinity the suspen-
Figure 1ll. Diagram of OMG with rotat- sion's rigidity along the second stage's

ing suspension. axes and the rigidity of the first stage's
Key: 1. R sus§ension along one of the axes, such as
2, PD cl), as a result, by omitting the indices

we obtain the transfer function for an OMG
- when the signal is read in the nonrotating system of coordinates:

1.
lywp + 5 iRywy + 1y y2a4

W (p) =+ (1.81)

4 . 1 ; ’
IYupz + (”Yu‘zmll + PII) P o, + ) ang + Ca

It should be mentioned here that when the signal is read on the zero frequency and
when it is read on the doubled frequency of rotation of the PD, the instrument's
transfer functions prove to be identical to within the accuracy of the sign. In the
rotating system, signal reading is possible only on frequency wg with the help of an
angle sensor that measures the rotor's rotation relative to the torsion bars' axis.
In connection with this, the instrument's transfer function differs from expression
(1.81) only in that its transfer factor is twice as large.

One of the most important characteristics of an RVG is its transfer factor Kg with
respect to the base's angular velocity at a stable speed. For instruments of the
type under discussion, Kg is determined from (1.81):

K __:_l— l+)(y
$ 2“’0[2;-,8—([ —uy-vg)’

(1.82)
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where #y = (IXH ”H)/I = a structural parameter defining the geometry of the ro-

tor; VB = (1/wO)VCB/IYH ratio of a nonrotating rotor's natural oscillation fre-

quency to the PD shaft's frequency of rotation; EB = uB/(ZIYHmO) = relative damping
factor of the RVG's rotor.

Considering the dimensionless parameters that have been introduced, dynamic tuning
condition (1.68) will be written as

I —xy —v5 =0, (1.83)
while the instrument's transfer factor in the dynamic tuning mode will become
' K= lire (1.84)
9 45pwo

Substituting condition (1.83) into expression (1.84), we find the transfer function
of the type of MRG under discussion when it is operating in the dynamic tuning mode:

Pt TEamet
Boo (L) (gt +52)

(1.85)

In the area of essential frequencies (w << wy), the RVG's transfer function is ap-
proximated by an even simpler expression:

W(p) =1L T (1.86)

QT‘p-{-l’
where Tg = 1/&puwg.

Thus, this MRG is described by an aperiodic component element with a time constant
Tg. 1In highly sensitive instruments, time constant Tg reaches quite high values

(tens of seconds). Therefore, in the initial period of the transient process this
instrument is completely identical to an integrating gyroscope with an integration

factor
K 1
'f;r~7- (1.87)

Let us change over to a single-rotor MRG having commensurate rigidities of the ro-
tor's suspension with respect to two orthogonal axes in the plane perpendicular to
the PD's shaft. When the signal is read in the nonrotating system of coordinates,
its transfer function with respect to the base's angular velocity has the form

W = (1.88)
where
) =t O S b B mp? b [ (R Vi) (8 By) —
=20 =g (TR Y e ) B (L ) —
(sl »-xl)lw;}'pﬁv-i-iw&f(i?&;-?- ve) (1 4+ #y) - (t"“a -+ vg) (1 H‘z)““[?«'-lﬁ%zﬁ'];
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B(p) = p*4 Ui -2 B + Ea)l wop® + 116 (Ec -+ Ea) + 1Eckn +
+9E % — () () = (1 =) (1422 + 2% o +

1= 4G+ 8) — 2(Ec (] — %y) + Ea (1 — xp)) + 2 (EavE + EvE) +
+ i8Ekg + i2 (vE 4 Vi) —- zzj—’y‘(l — ) | wip + [ — 12

N =%y —vp) — 28, (1 — *y — VE) + vevh — ve (I — %y) —
— VB (1 - %) — 484t @),
The relationship £ << v < 1 occurs for a highly sensitive instrument. The dynamic

tuning condition (1.67) of such an instrument, expressed in terms of its parameters,
is written in the form

VZVE;—VZ)*(I—xy)—vé(l—xz).—_-o, (1.89)

It is obvious that this condition can be fulfilled by preserving the following rela-
tionships of the instrument's parameters relative to each of the.suspension axes:

vi=2(1 - xy); ve=2(1 — ;). (1.90)

The instrument's transfer factor is then found, with sufficient accuracy, frum the
expression

_ St tx=y)+Es(l+x2) .
K‘} T 2 (I —xy) FEB (I —x2) ° (1.91)

which, when the parameters with respect to both axes of the rotor's suspension are
equal, changes into
K, - d l_'*'_’i (1.92)

2T 3, T—x

Thus, in this case the instrument's transfer factor is considerably less than that
of an OMG having only a single degree of freedom in the plane of rotation. There
are also significant differences in the instruments' dynamics. In the case of dy-
namic tuning, the numerator and denominator of the transfer function of an OMG with
two degrees of rotor suspension freedom are the expressions

AP =6} [P +i4p” + [ Gk +vB) — 201 — %) -
(L Lzat Iy Tz _
K (g BT 22 (1 ) (4 %) P — (1.93)
=R ) —Ea(l %)
B~ o [p+ 1P+ (20 -+ (1= 2 =275 ) (1 = %) —

() ) P [T =)+ (1= 275) (1= %)) —

0 (1.94)
ZE2(1 Fny) — Ea2 (1 )i p + i20Ec (1 — ) 4+ Ea (1 — %),

where E = p/wg = a dimensionless operator.
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For the sake of simplicity, we will analyze in detail only the case where the rotor
has the same parameters with respect to both suspension axes; that is, vg = v, &g =
E , *y =5, 1In connection with this, we will allow for the fact that for rotors
in whlch the height (the linear dimension along the axis of rotation) is substan-
tially less than the length z2nd width (the linear dimensions perpendicular to the

axis of rotation in the plane of rotation), the value of # is close to unity
(1 - & << 1). 1In this case the instrument's transfer function takes on the form

W () t P4 idpt—(1 4 x2p =28 (1 +x)

p i — — — I o

o Frip 21— 1) =0 (] B
+ [i (4—'7%)(1 —x) — 2 (I +x)] 2 4 45 (L —%)

(1.95)

Examining transfer function (1.95) only in the area of essential frequencies

(w << wg) and approximating it by the product of the transfer functions of typical
inertial components and components that have had a derivative introduced, we obtain

v ! (1 4-»)p + 2%
W (p) = — €
(p) S (1 + %) (G__K_Q_L) X
- 7 2t
P—iT—x 4___ 4‘__1_,\'
by Iy (1.96)
|
Ix
7T —x—2 =
= (== Ix Iy
IS Sl A (R vop TV
i ‘(H-xﬁ( n) S

This approximation is correct when the following relationship among the instrument's
parameters is fulfilled:

Ix \?

4
6 —x—2-=
af L% \? Iy .
'55'(1_:)( D

From (1.96) it follows that when the base's motion develops spasmodically, the mo-
tion of an MRG's rotor consists of a slow (precessional) motion toward a steady-
state position and nutational oscillations that are superimposed on it. The preces-
sional motion is caused by the presence of viscous friction along the suspension ax-
es. In connection with this, the projection of the rotor's pole moves along an at-
tenuating spiral in the pictorial plane. The precessional motion's angular frequen-
¢, as referred to the PD's angular velocity, is

(1.97)

0g Zzij:tr;ZZST" (1.98)

the case where £, >> 1, the dynamics of the precessional motion are described
te accurately by the transfer function of a normal aperiodic component:
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LI b 1.2
Wn(p)=tTg;—_pT2mol_x ' (1.99)

where Ty = (4 - Ix/Iy)/(28wq).

Thus, the precessional motion of the rotor of an OMG with two degrees of freedom of
the suspension in the plane of rotation proves to be analogous to the motion of an
OMG rotor with one degree of freedom. The only difference is the absence of nuta-

- tional oscillations in the latter. The relative frequency of the nutational oscil-
lations is determined from the expression

) | —x L
Vo= () ~ (1.100)
= while the relative damping factor is
7 7—x——2}-"—
=ty - l, (1.101)
T g—atX
ly

When such an instrument is used in automatic control systems, nutational oscilla-
tions in the system's band of essential frequencies can have unfavorable consequen-
ces. Therefore, it is desirable to select the instrument's parameters in such a
manner that VY be as large as possible.

A component in the numerator of transfer function (1.96) defines the OMG's reaction
to angular accelerations in the base's motion. The ratio of the instrument's trans-
fer factor with respect to acceleration K; to the transfer factor with respect to
velocity is

Ko 1
Ry ~ Zay (| T2 (1.102)

The dynamic characteristics of a single-rotor MRG with nonidentical suspension pa-

rameters are gualitatively the same as those discussed above. The quantitative re-
lationships for them can be derived in an analogous manner from expressions (1.93)

and (1.94).

When the signal is read in the nonrotating system of coordinates on frequency 2uwg,

the following polynomials correspond to the numerator and denominator of the instru-
ment's transfer function:

A(p) = —Ea)oup® + [ — i (e — Eg) — 28 (1 4+ %v) +
4 0285 (1 -+ %) + (v& — va)l wip — [(1 + ) (2 + ivE) — (1.103)
— (1 4 %) (285 + ivE)] 0
Bip) =p [ —id — (1 = wy) +i 72 (1 —g) + 2 (e + ) | w0 +
F L= 06 (B + B + 48&s (1 +22) (14 20) + v + VB —2 —
= (=) (1 +75) = 6L — %) | wip® + [~ 88k —
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— 12(vE + vB) — 2 (VB — 3 + xy) + 24 (vE — 3 +x,) — (1.104)

—i2(1 — %) (4 +%) o+ i4(2 — 3%z — 3ny) +

+ i (1 4 %) (1 + %) ip + [i26: (1 — %y — vB) +

From expression (1.103) it follows that,

42, (1 — %y — Vo) — gk + veve — ve (1 — %y) — V3 (1 —x,)].

given identical instrument parameters rela-

tive to the suspension axes, it is invariant with respect to the base's angular mo-
tion. The larger the transfer factors Kg are, the greater this nonidentity. In
connection with this, according to its characteristics the instrument is obviously

sensitivity.

Figure 12. Diagram of DMG with rotat-
ing suspension.

close to the OMG discussed above that has a single degree of freedom in the plane of

When the signal is read on frequency wg in
the rotating system of coordinates, the in-
strument's transfer functions are the same
as when it is read on the zero freguency in
the nonrotating system.

Let us discuss the dynamic characteristics
of a two-rotor modulation gyroscope. The
simplest DMG layout is the one where the
VR is suspended from the PD's shaft and the
NR is suspended from the VR with the help
of torsion bars with one degree of freedom
(for all practical purposes). This layout
is depicted in Figure 12. When the signal
is read from the NR relative to the base in
the nonrotating system of coordinates, the
instrument's transfer function is analogous

to (1.57), while the numerator and denominator are described by the following ex-

pressions:

+ (27500 ) £ 280 iR SR i (2 1 vh) + viota +

3 R 2
s [2,—;‘"4-\’1:-!-\’:23—(1 + xy) X

lywlzn

(1 %) - 0B (B F Ba) - 48k -+ Ry L R-'] wip? 4

(1.105)

-+ V‘Z;?L",c + 888 — 4 (S + &) — 28 (1 — xy) — 28y (r— "z.a)] X

ps u)ﬁp -+ wf, [%‘“ <2vf, -+ %-" -+ H&u) -+ v?;vr';, — vac(l —Ky) —

- VZ; (I —xz) -i2 (gﬂvé + gl_'vléf) — {26 (1 —xy) — 12§B(l — 7)) —
— 4880
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A =p+[i(4+ ,RT‘") + 8 + & wip? +'[.;(vg ) — (50 (14 xza) + 3 (8¢ + &)

- —f§c(l—xy —xgﬂ(x_xlﬂ)_zu_,‘m)_@;&__

..,_E‘;(‘)—-uy—t@a)] wip + “-’0[ i (v +va) — (1.106)

iV (L= ) — D vE (1 — wz) — Ec(l —%y) —
Ea(l — KZn)—"(Ech-erZn)—?EB +“’5 ;n +

-1—1 Sr(y-—s)—‘o(]—x[u) —R‘]’

where Iz; = Izy + Izp = adduced moment of inertia relative to the VR's suspension;
X = (Ixg - Iyy + Iz8)/Izg.

The resonance tuning condition, as defined in terms of the dimensionless parameters
we have adopted, is:
- vév%—v‘;‘;(r_xy)_vg“_,%HQIR;. (VB — I = xy)= (1.107)
- n
When the resonance tuning condition is fulfilled, the instrument's transfer factor
with rzspect to the base's angular velocity is determined, with a sufficient degree
of accuracy, by the expression
i (vc+v3)—va(_—4(l-—-’xy)————- (l—xln)-"—-—-
Ky

|
=7 TR - (1.108)
%8 <l-m+va -1 +x2n> -;—§C(va—l+xr)

According to its dynamic characteristics, the DMG under discussion is qualitatively
analogous to an OMG with two degrees of freedom in the plane of sensitivity. 1In the
area of essential frequencies, its transfer funct:.on is described by the expression

l-ﬁ—“p-{—l
W(p) =~ LE,, + . (1.109)

(—P'T'"‘f‘gn) (—v—l"-ﬁ—i-{-s,‘)

At the same time, the values of the frequencies of the nutational and precessional
oscillations and the other parameters that are part of (1.109) differ substantially
from the analogous values for the OMG, and when §. = EC' for most real instrument pa-
rameter values they are approximated by the following expressions:

vé—’rvé—(l —Ry) —— IZn +’
(tFry) (14 %5,

R ) -1 1) (1.111)
6 (5 ol oyl ] R. R, T '

n_. (1.110)

/Z;I - n

- R, R
ooy CTVe Tl ) 2 (1.112)
" (T 2y) (T %) = bz'

3
FOR OFFlélAL USE ONLY

APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000500040010-1



APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000500040010-1

FUR OFFICIAL USE ONLY

—2
Eu"’g N N R. R +%b ’
v&-l-v‘a—(l—xy)t-i-’.’-lz—'n (1.113)

where b = some structural parameter determined from the expression
2 2 R
(4% (0 =4 (V4 g +275) +

- r R‘-‘ ] o
p— U T 1"‘Y)('*“"Zu)}(‘—"v)‘(“r"v)('—uz..) (1.114)
- . o Rz 2 '
[ +vh =0 7+ e gt

K= (1 + 1) (1 + xz2). (1.115)

In the case of reading the signal from the NR on carrier frequency 2ug, the denomina-

_ tor_of the instrument's transfer function with respect to the base's angular veloci-
ty w remains the same as when the signal is read on the zero frequency. The expres-
sion for the numerator takes on the form

- . R . - R ;
A == (1R + 8= 38) B [— o @y +i20) +

il @+ ) — b (24 wza)) — 5 (v - vB)] 2 —
= i (v = | = ) + 28+ [Ec (1 4 %) — B (1 + xz0)] +
Fig () =9 (1 + xaall).

(1.116)

When operating in the dynamic tuning mode, the instrument's transfer factor with re-
spect to the angular velocity is determined by the expression

(v§+2%)(x+xy)—v§ (1+xz,,+2—,'-§-';>—
—i2 [§C(1+u,,)—§ﬂ<|+xm+2%)] (1.117)
g (2 R +vé_-l+xz,,)+&c(v25—l+xy) .

Iz

. ]
Ry =+

H

It is obvious that the larger X, is, the greater the nonidentity between the DMG's
parameters with respect to its suspension axes.

Por reading in the nonrotating system of coordinates, the transfer factor of a DMG
in which the NR has two degrees of freedom can be represented in the form of (1.58),
wr.are

1. TR
rlu=leoi(l — e Jp“) [([z"— ly")c(gl)'{— [z,.lz,(l —‘Azu) X

U+ 20 05] CEY (1 — cos 210) 2 v (1 — xya) w5 ( ¢ —C8) +

+CE'CE za (1 + %20) + Lza (1 + 42)] + C2 [Cy (1 + 20 -
+ C‘BI)IZN (] "" KYN)] e 4l.¥nlan3(] bl qu) (Ql?lw‘g + ng)) +
-+ 2CE Wi [R Ly (1 4 %) ++ Ry (R, + R —

+ CH0I2R 2 (1 + #24) = Ra(lye — I2a)]l;

(1.118)
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By= A+ iwy {p‘c” [Rewd 5 (2Riw8+ CE 4 C") + 2R10iCk +

1+ CECL] + b [ Rowi (2R10 + €& +CE) + 11
+ 2R wiCt -+ Cg’C?)] + € (RewiC, + C'CH’ },

while the value of A is determined by the left side of (1.65), and equals zero in
the dynamic tuning mode. As is the case with other types of MRG's, in the case of
resonance tuning and a low degree of damping, when there is a discontinuity in the
angular velocity the transfer process will be extremely protracted. When operating
in the initial section of the transfer process, with respect to the base's angular
rotation the DMG can be regarded as an integrating gyroscope with integration factor

K, =—;’l“—, (1.120)

- where
By =iwy {C‘C"CQ’ [({zu — 1yn) €OS 2010 4 2020 + lzu -+ Tvu] +

'*_ C(C?) [lXuRale) + 2Cz‘”IYu + 2Cg’lln] +
+ CE0F [ 2Ry (1 +xp) + R (Ry — R+ - [xulRs (cos 21 — 1)] +

+C8" [ = 5 IxuRewd (cos 2 g — 1) — 2RiRy03% +
. 2 2] oy o)
+ 5 {25 (1 + %28) Rywi + 21z (1 + %24) R|(1)u] -+ 2L xuRs@iR 0
If the VR's suspension has two degrees of freedom and the NR's suspension only one,

the numerator and denominator of the instrument's transfer factor with respect to
the base's angular velocity are determined by the following relationships, respect-

ively:

Ay = [C8 5 1CE v L+ %) + Tya (1 %va) +

Fzu—Tv) (1 = ™) 4+ C8 [1zu (1 4+ %2u) + T2a (1 + ®2za) —
— Uzw— Ty (1 = &)+ 2(Uxu - L) (R + 4Ry -

- CECH v (1 ) o CE {Rwi [ 1+ 203 (1 -+ )+
F L (1 = €08 21) — 5 lya (1 2wy (1 = e200) | + (1.121)
- 2R 08l (1 4+ )] - CE (e (2 Tzl 4 2a)
— Il = €032p) = 5 [y (1 4x2) (1 —e*0) | 4-

+ 2Rwilyu (1 m..)} + 2 (1o + L) RawiR 5] o
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A+“""{ & [leo’“awo%- P«woca+ CY (Re+ 4R)) +

n)CmJ ) [leoRa‘ﬂo *_ RquC(,,+

Qi ")(R3+4R)wu—}—C‘“’ m]_‘_“(n [C, (R3+4R.)ma+C”’ (2) }’

the left side of expression (1.64).

(1.122)

The numerator of the integration factor of such a gyroscope coincides with expres-
sion (1.121), while the denominator has the form

By s i [C (Uxa -+ L) (Ry + 4R) 0F + CE12 (v + 1) +

+ (zu— Tyi) (1 — €05 2p12)) + CB* (2 (Izu + 124) —
—Uzu — Iyu) (I — cos 291} + CE'CE 21y, +
- CE (R} (—2R, + 2lva + Lxu (1 — OS2 gy)) +
4 4Ryl vy (1 4 %)) + C”’{Rawé (—2R, + 2125 +
+ 21y — I x, (1 — cos 2<p,._.)) + 4R i vy (1 + %yw)] +
+2(/xa + T) RwiR i

(1.123)

In the general case, when the suspension of each of the DMG's rings has two degrees
of freedom, transfer factor Kg can be determined from the expression

Ay = [CU)C};” {L) ci

L;’ “Yu(] 'f‘ xYII) + IYI!(l '*" RYB)I 'I-

O anll b + L (1 K)o (it ) (Ro 4R) ) +

H 4G (Ixe + 1 xa) RwiR G 4 CLP {%cé?’cs”ly.. (1 %) +

+ CElva (1 ) R} + CE08% [ Ry (0 — 1) +
-+ QRI (21'\(" — le" —_ % /)»” “ ll_ KYH))}} .i_

1 {5 CECE a1 -+ x20) + CE 03 [Ry (et 1) +

2R, (2,Xu — 2y — ‘:_lz_ Iln(l + %z..))] (Q)Iz"(l + Kz") R|0)u}

+ 1 xuRswi (4R \@)Cy + CE'CH ]imo;

= & oy {jRywi (C24R 0 + CHCH) +-
“’C“)[C-_r(R;,—{—‘lR.)m{’;-i—CE‘”CB’]+
+ u"’d“ [C.(Ry-+ 4R) wi - CE'CH | +
P oo [C 4R Ry + CCY (Ry -+ 4R )] 4-
4 (HECE -+ ' CE) (C1Rawd -+ CL'CY)),
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where, for the sake of simplification, ¢j32 = 0, while A = the left side of dynamic
tuning condition (1.63).

If condition (1.63) is fulfilled in the instrument, its important characteristic is
the integration factor, the numeratcr of which is Ag, Jhile the denominator is By.
For the DMG layout under discussion, the expression for By has the following form
when ¢12 = 0:

= CC'CH (U xu -+ Txa) (Ra + 4R b -+ 2CE (Iyw + Iva) +
-1 QC (Izu + 12)} + COCECE 21y -+ (IysRs - 1ydR)) XCE +
A xu+ L2 Ry 4 1y, AR 68CE) 4 2 (I e -+ Ix0) RiR 03] -+
+ Cy {CECE 220 + CE (1w + Tya) Ry + [244R)) w6 -
B CE (2uRs + 12u4R) Wi+ 2 (Ixa + x) RwiiRyo%) 4
* - IXuRa’J’u (4R.(uuC + CL )C( '))

(1.126)

In conclusion, let us examine the layout of a TMG [three-rotor modulation gyroscopel]
with the outer rotor on the zero frequency, for which the suspension of each rotor
has only one degree of freedom on the zero frequency. We will limit ourselves to
the case where the suspension of the second stage's inner and intermediate rotors is
orthogonal. Assuming the absence of a first-stage VR in the generalized model, so
that c{l) » @, we obtain the following expressions for the numerator and denominator
of the instrument's transfer factor Kg with respect to angular velocity:

_ v 4, - lel CH I (1 ) -k 19 (1 4] &

-l»Tcii'l/‘z'..’(l L) o 1G]
A (K A4 150 (RS 1 R&"")u»‘i-’rh(/‘,-'.{-, 1) — 18 - 288" -
R RY 2 (18— IR IR 4 R (R 1 C8) }-1
L ORI (1) 48 (R (1410 + @12
+ 5 RE (210 — 21— 5 10 H‘z‘.l))]wo +
+C [ R (1 %B) + R (W 4 R ol +
L RIGRYIE (192 - 18)+ RPGREWS (214 — o 13+
R 1) RIGRY S (218 4 RS o

Bj =4+ iwn ‘lw(.‘” [Cy (RE" + RS?) wi + CE'CE" +
-+- R( )U)Q(P“) + /(l ))mo + P(z)u)() {)C )] + }l-_m).i. [‘L I(£|)R§2)kt);i -}—

O (RS 4 RE )]+_ w&Cy (_ RV H)) + (1.128)
+ i [CE (5 RSVwh+C) 4 R (RS wi + ‘>C‘c”)J}-

The TMG's dynamic tuning condition A = 0 is derived from (1.62), with the appropri-
ate renotation. Let us spend some time on one special case of the fulfillment of
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the dynamic tuning conditions. The expression for A can be presented in the form
8= R [R5 + 202 (4 RPWS 4 CF) + RViCH] +
+ [( RP6E+C) €8 + R + ) €|} + (1.129)
+CcWH [(4Rl‘!mu+ 2c® (?Rgﬂlw3+cg)) -[-.;—Ré”m;’c}f’].
It is obvious that the dynamic tuning condition is fulfilled for the following rela-
tionships among the instrument's parameters:

‘1 m 2+C“’=0

) u " o " (1.130)
(F RYwi+ C) CB 4 (2R} + CP) € =0

Expressions (1.30) make it possible to select the TMG's parameters quite easily.

For example, if the rigidity of the third (counting from the base) rotor's suspen-
sion from the second and the second’s from the first equal each other (c{l) = cf{2)y,
the rotor's resonance frequency of rotation depends on the suspension's Figidities
and the intermediate rotors' moments of inertia:

e e

0 = — = (1.131)

5 R 2R
The ratio of the rigidities of the first and subsequent rotors' suspensions is de-
termined by the relationship of their moments of inertia:

l 9 23
c® 5 R HRP

= (1.132)
o RDY

If all the suspension rigidities equal each other, then in addition to the fulfill-
ment of condition (1.131) it is required that the rotors' moments of inertia satisZy
zhe equality

LRy _up —2r =o0. (1.133)

The denominator of the integration factor of the TMG layout under discussion is de-
rermined by the expression

Bi~C& (1) ~ /4:))(/2:5:_,_ m)uﬁ-{»—*ﬂR“’(lV.’.-,L/‘y'.:) wu-f-
‘)C‘ )(/Hl 4')) 'T'OC (“).J- (’))I _T_CC’)Cia)2I(H '
S CET(IY 1 )R“’—{-/(z RJ’]wo-{-C}s’[/m AN L R + (1.134)
-i-'*/(’:',)/fz.«)lwd-%-T(/.‘xlr:-l-/l )R(”(OURJ"D&+/(zl.:’R‘,’qua Wy +
) Il'\.) (N .R(l)
T {Yue

nalogous exgressions Zor other TMG laycuts can be derived quite simply from the
s2neralized RVG model. The expressions for the transfer factor Xg and integration
facter ¥j, as well as for the frequency of the nutational (y;) and precessional (v;)
sscillations are the original ones for the synthesis of the basic parameters of such
instruments.
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CHAPTER 2. DEFECTS IN ROTOR VIBRATION GYROSCOPES

2.1. Reaction of Rotor Vibration Gyroscopes to Harmonic Vibrations of the Base at a
Frequency Equal to the Doubled Frequency of Rotation of a Rotor

Accuracy of measurement and threshold of sensitivity of gyroscopic instruments are
extremely important characteristics, on which the possibility of using them to solve
certain navigational problems basically depends. The accuracy of an RVG depends on
the errors engendered in the mechanical part and the errors in the information read-
ing and processing system. The sensitivity threshold is determined by the zero
noise level at the instrument's output; that is, by the signal that is available at
the output and is completely identical to the useful signal in the absence of a
measured angular velocity of the base, as well as the possibility of distinguishing
the useful signal against the background of this noise. Errors in the sensor of the
angular rotation of an RVG's sensitive element and the information processing system
are the subject of research in special branches of technology, so in this chapter we
will limit ourselves to a discussion of the errors that arise only in the mechanical
part of an instrument, assuming that its information reading and processing system
is functioning ideally.

RVG errors can be methodological, operational, or technological. The first type is
related to special features of their operation on an arbitrarily moving base that is
subjected to angular and linear vibrations and overloads; the second, to a change
during the operating process of the values of their basic parameters; the third, to
the effect on an instrument's sensitive elements of disturbing moments caused by in-
accuracy during production and tuning. In general form, let us discuss several of
these errors--those typical of most RVG setups--using an RVG with single modulation
as an example.

From the generalized mathematical model of an RVG with single modulation and a ro-
tating suspension (1.2C), it follows that angular vibratioris of the base on a fre-

- quency equal to the doubled frequency of rotation of the PD's shaft lead to angular
deflections of the sensitive elements, which means the appearance at the instru-
ment's output of a signal that is identical to the signal caused by some constant
angular velocity w, of the base.

et us discuss how to determine the value of G; for different layouts of MRG's with
VP, We will assume that the instrument's base is performing angular oscillations in
its sensitivity plane, the velocity vector of which is determined by the expression

' (2.1)

W == (e,
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From (1.56) it follows that when the signal is read on the zero frequency of the
nonrotating system of coordinates, the angle of rotation of NR1 relative to the base
is determined by the expression

A ; - w,l W" i2 u) W‘(p) -‘
M=g, = W p-ti2w,) r%p) (p+i2e,) W, . (2.2)

The constant angular velocity of the base in the instrument's plane of sensitivity,
which can be found from (1.56), also leads to rotation of NRl at some angle A%, so
that angular vibrations of the instrument's base at frequency 2mo will lead t3 the
appearance at its output of a signal that is identical (equivalent) to the signal
from the base's constant angular velocity We:

- Wi io + i20,) Wiy (0) + Wi* (p + i205) W\, (p)
W o) —IWT () Wiap) + W5 (o) Wy ()]

poy for p + 0, (2.3)

We will assume that the amplitude of the vibrations is constant and ignore damping
with respect to the suspension axes. For an OMG, the equivalent angular velocity
then equals

. (L—xy)ve = (1 =) vp .
We= 3 T - Wg4. (2.4)
4—-(1—xz)—(l+x2) '-—(l+xy)vc
If the rotor has a uniformly rigid suspension (C_ = C_), the equivalent angular ve-

locity equals zero; that is, with a level of accuracy up to that of the assumptions
that have been made the instrument has no error related to angular vibrations of the
base on ZIrequency 2wy, For an OMG with a single degree of freedom of the rotor's
suspension from the PD's shaft, the dependence on the amplitude of the rate of vi-
pration acquires the form

I 1 —x

R - 2.

(ue :t2 |+)¢0A' ( 5)
in this case, a reduction in instrument error can be achieved only be reducing the
value of 1 - R by the appropriate choice of the rotor's geometric configuration . that
2lso results in a reduction in the rigidity C of the torsicn bars.

For a DMG having two degrees of freedom in the sensitivity plane, the equivalent an-
sular velocity for base vibrations at frequency 2wy is determined by the expression

R 2 -9, R v
- (l"'/Zu)VB'L(l-‘Y)< 7—l —v"e”v >—2 ‘u VB a (2.6)
ve= 9 (y? ! 2.2 Ry Ri=R B .
_(VL.-l-\'b)—-vaC-—-i(l—'-Xy) —/Zn -4(' —'KZN) IYH

The smaller the values of 1 - wy; , 1 - RY and Ri, which are determined by the geo-
mezrical dimensions of the NR and VR, the smaller the error in a DMG. Instrument
2rror also depends on the angle $3, between the NR's and VR's suspension axes in the
rorors' plane of rotation.

let us examine the possibility of achieving a substantial reduction in this error by
choosing the DMG's structural parameters appropriately. 1In order to do this it is
necessary to have such relationships between the instrument's parameters that the
aumerator of expression (2.6) changes to zero, while the dencminator is represented
by some finite number. Such physically real conditions can be obtained only for the
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cases ¢, = 0 and ¢;, = 7/2, the first of which corresponds to an orthogonal posi-
tioning of the axes, as was shown in Figure 12, while the second corresponds to a
coaxial positioning of the torsion bars connecting the PD with the VR and the VR
with the NR. Analysis shows that for a DMG of the Khaui type, with identical rigid-
ities of the inner and outer suspensions' torsion bars (AC = 0), the requirement
that the numerator of expression (2.6) change to zero is incompatible with resonance
tuning condition (1.66). Therefure, for instruments of this type operating in the
dynamic tuning mode, the error caused by angular vibrations of the base at frequency
2wg cannot, in principle, be eliminated by the proper selection of their parameters.

In the case of a coaxial positioning of the torsion bars' axes and resonance tuning,
the numerator of expression (2.6) becomes zero when the following relationships of
the instrument's parameters are observed:

) Rt —=y) (2.7)

ve=0, vi
¢ B=2R1"Izn(l_"v) '

v, =—'2-/RZ_:I' \'é-:O. (2-8)

o

From (2.7) and (2.8) it follows that the degree of rigidity with respect to one of
the suspension axes must be zero. This means that on one of the DMG's suspension
axes it is necessary to install supports that do not impose any elastic moments on
the rotors. However, all known types of mechanical supports that have a sufficient-
ly nigh load-bearing capacity also have "dry" friction, and are practically unsuita-
ble for a precision gyroscope of the RVG type.

“hen the suspension axes are arranged orthogonally, the conditions of equality to
zero of the numerator of expression (2.6) for an instrument operating in the dynamic
tuning mode nhave the following form in the presence of angular vibrations of the -

base (2.5):
. s 2R (I —xy)
T 2.9
or
N R a
=2 (1 —x— ) b =20 =) (2.10

Conditions (2.9) coincide with conditions (2.7) and, as was stated above, are of no

practical interest, Conditions (2.10) can be easily realized in practice. In con-

nection with this, however, the denominator of expression (2.6) also becomes zero.

In order to evaluate the indeterminacy that is being obtained, we should allow for

- damping with respect to the gyroscope's suspension axes. The instrument's transfer
factor with respect to the base's angular velocity then takes on the form

. R
%(‘+“m*97iq+5d'+xﬂ

K, = - R - (2.11)
3 (0 = %) TS (P —#y) 2w,
while “he =quivalant angular velocity is determined by the expression
) . . R,
- —;C(l—xy)-r' | —%, —¢4—
é =|T >B< n /‘") e (2.12)

, , R A
§C(I TxY)T§B<l +xZn+2 721?)
6l
' FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000500040010-1



APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000500040010-1
FOR OFFICIAL USE ONLY

Thus, according to condition (2.10), during dynamic tuning an instrument does not
acquire the characteristics that are typical of the resonance mode, primarily in-
dependence of Kg on the angular velocity of rotation wo and an inversely proportion-
al derendence of Kg on the coefficients of viscous friction along the suspension ax-
es. Therefore, we will call this mode "pseudoresonance."

An analogous mode occurs for an OMG when conditions (1.90) are fulfilled and for a
DMG with coaxial positioning of the torsion bars when conditions (2.8) are ful-
filled. 1In the pseudoresonance mode an instrument's transfer factor can be in-
creased noticeably by selecting the rotor's parameters appropriately so that Ry + 1
and ¥y +> 1. However, it is necessary to reduce the suspension's rigidities in this
case, which can have a negative effect on the instrument's strength properties,

It is also possible to reduce DMG errors caused by angular vibrations of the base
when operating in the pseudoresonance mode by choosing the damping value and the ro-
tor geometry properly. In connection with this, it is necessary to keep in mind the
fact that the creation and preservation of a certain relationship between the ex-
tramely small coefficients of viscous friction along the suspension axes is hardly
©0ssibla at the present time.

L2t us discuss a DMG in which the NR's suspension from the VR or the VR's from the
?D's shaft has two degrees of freedom. In the first case, the numerator of the op-
rator in expression (2.3) takes on the following form for p =+ 0:

— Ry (CE'Cis* + 2679 AC,CE") — 4R} (RywiC, - CH'CLY), (2.13)

<nile che denominator is determined by expression (1.118). If the NR's suspension
crom the VR is uniformly rigid (AC; = 0), expression (2.13) becomes equal to zero
Zor the following values of the firsc stage's suspension's rigidity:

— e RJRI 2
Cl—() il C|— 4mlﬂo- (2-14)

substituting (2.14) into the expression for dynamic tuning (1.65), we obtain the

corr2sponding values for the rigidity of the VR's suspension from the PD:

CE'=—2pui ana CF =0 (2.15

and (2.15) it follows that when the NR's suspension from the VR is uni-
d, a substantial decrease in the error caused by angular vibrations of
frequency 2wy can be achieved only by realizing a nonelastic suspension
rom the PD's shaft. When a nonélastic suspension of the NR from the VR
(Cy = 0), the instrument will cperate in a pseudoresonance mode.

“he case of inequality of rigidities ¢!{1) ang Cél), expressions (2.13) can beccme
1220 only when $1; = 0 and ¢, = 7/2.

tn order to raduce the instrument's sensitivity to constant angular vibrations of
- zh2 tase at fraquency 2yg, it is necessary that its parameters be linked by the re-
lacionship
4R RywiC, + (Ry + 4R ) CoCy
2R, AC, ' (2.16)

2
CH = —

~r2rs the indices related to the rigidities of the NR's suspension are omitted.

62
FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000500040010-1



APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000500040010-1

FOR OFFICIAL USE ONLY

Substituting the value of (2) from (2.16) into (1.65), we obtain two conditions,
the fulfillment of each of which can insure a reduction in the instrument of the er-
ror being investigated the the instrument is functioning in the dynamic tuning mode:

Co= 2R, R wj
2R R0} + (Ry + 4R,) Cg

Ce: (2.17)

Cc=~R3w5. (2.18)

Let us determine the requirements for the rigidity of the VR's suspension. For the
simultaneous fulfillment of equalities (2.16) and (2.17), it is necessary that cf2)
equal zero. When relationship (2.18) is realized, the rigidity of the VR's suspen-
sion is determined by the expression

cp = — Bt 2R T R Rw) (2.19)
Cp+ R jwj v
The simultaneous fulfillment of conditions (2.17) and Céz) =0 or (2.18) and (2.19)

is necessary and sufficient for a substantial reduction of the error under discus-
sion in the instrument. However, realization of a nonelastic VR suspension is re-
quired in the first case.

For a DMG in which the VR's suspension from the PD's shaft has two degrees of free-
dom.(cél) -+ @), the condition of low sensitivity to angular oscillations of the base
at frequency 2wg with a censtant amp‘itude has the form

—Ruw} (ACLY + e ouCciCy”) —

(2.20)
— 4Rw8 Ac_.( Rywd Tc‘”)

It is obvious that this condition is fulfillable only when the VR's suspension is
not uniformly rigid and ¢$;, = 0 or ¢;5 = /2, (We will not discuss the trivial case
where the rigidity along one of the axes of the VR's suspension is zero.) From
(2.20) let us determine the required relationship between the rigidities of the NR's
and VR's suspensions:

CcCp + 2R 0] (Cc —Cyp)

Y =—
R !
<|+4?f>mc—cm

(2.21)

where the indices related to the rigidities of the VR's suspension are omitted.

Substituting expression (2.21) into the instrument's dynamic tuning condition, we
obtain the relationship between the rigidities along the axes of the VR's suspension
from the PD's shaft:
Ry + 2R,) wj
C= (R4 GC
€ IR 0:4'C3 (2.22)

‘jsing this relationship and expression (2.21), we find the relationship between the
YMiR's suscension's rigidity and CB:
2Ry +Cy

— 8 Rl (2.23)
(Ry+4R)wj+Cy

~i )
cy' = —
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Thus, when relationships (2.22) and (2.23) are realized in the resonénce mode, the
instrument error caused by angular vibrations of the base at frequency 2wy will be
extremely small. These conditions are not closed relative to the rigidity values.
For certain relationships of the rings' moments of inertia, the rigidity along one
of the suspension axes can be assigned arbitrarily on the basis of some additional

onsiderations, although in this case conditions of realizability consisting of the
simultaneous fulfillment of inequalities Cz >0, Céz) > 0 and CC > 0 must be provid-
ed.

For a DMG in which the VR's and NR's suspensions have two degrees of freedom in the
plane of rotation, the necessary condition for the equality to zero of the error
caused py angular oscillations of the base at frequency 2wg, given the absence of

moments of viscous friction, is written in the following form:

Ry (ACCL'CY + &7 aC,CPCh ’) +

i) (2.24)
+ 4R, AC: (RuwiC, +CY'CY
The simplest way to fulfill this condition is the creation of elastic VR and NR sus-
sensions that are uniformly rigid along both axes (Cl Cp = 0). Dynamic tuning
condition (1.63) then takes on the form

. ARWIC, -+ Ry} (4R, + €
€, = — Bl LA G+ G (2.25)

IZ only the NR's suspension is uniforaly rigid (Acl = 0), a second condition for the
fulfillment of equality (2.24) will pe the absence of an elastic coupling along one
Of the VR's suspension axes. In the general case, when the NR and YR have a non-
iniformly rigid suspension, the joint fulfillment of conditions (1.63) and (2.24)

ir ures the absence in the instrument of srrors caused by angular vibrations of the
zase during ogeration in the resonance tuning mode. This requirement, however, does
define an unambiguous relationship among the instrument's basic structural pa-
sameters, which can change within extremely broad limits.

U)

(e]

I
u
cro

T

In conclusion, let us examine a TMG in which the suspension of each succeeding rotor
Irom <h2 preceding one has only one degree of freedom (R(Z) 0, Céz) -+ =), The
conditicn o¢ low sensitivity of such an instrument to angular oscillations of the
“aze at fraquency 2uwg will be written as
_._vg“.-,ct‘) [R(l) (Q“)Q)S | qc(l) R“) ACI] _

— RY" (RSVw] 4+ 2C5") (RS w§ +2C¢") ~ (2.26)

— (R = REPYCCE — CRY RS wi = 0.
1z dweil on only two cases of the relative positioning of the axes of the sus-
fons 2 cthe first f(counting from the PD's shaft) and second rotors: 915 = 0 and
-~ = T/2. In the first case, on the basis of condition (2.26) the following rela-
must be observed between the rigidity of the first rotor's suspension and
i13idizies of the subsequent rocors' suspensions:

Rll) (R'Uw! * qcal)) (Ri’.‘)m;",_ ‘ZC‘CU) +

| __(R(ll R( )) C”)C“) IR.‘JHR(]:I’“)-: (2'27)
T TR (R - 100 — R SC, |

12y
Cs' =

(2.27) into dyrnamic tuning condicion (1.62), we obtain an expression
rmines the required relaticnshis tetween the rigidities of the second and
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third rings' suspensions:
(2R1" [(RE"w] +CL) (2 (RE” + 2R1") w0} + CB) +
*;—C‘”( R(l) ‘)R“)"J{‘R“))wo]+(R“)NJ+C“))[R'”RJ” 2
+‘7C‘”(R“' - R&‘))”Cm" “’molRm[.?(meJ r—C“)),

o (4R +er))%+gc(|) c (2 (R + 4RM) i + (2.28)
+ PPwE — 2C8)] + RP (RY o} LCy ey +
) + RIM (RSP w))* [2R(PRI w3 - CE (R + 4R ] w3} =0,

_ The observance between the TMG's parameters of the relationships satisfying condi-
tions (2.27) and (2.28) makes it possible, during operation in the resonance tuning
node, to practically eliminate the error caused by angular vibfation of the base.
The analogous conditions for the case where $15 = m/2 have the form

_ . R(l) (R(Hm'lJ_r)C(I)) (RSB)QS+ r_\c{cl)) R
L (R +RP) COCY + CRPRP G} (2.29

P —— L
2 R}“ (R;(‘”WJ"*"ZC(B“) —_ RS” Acl !

{ (l)(Rl D i +7C“))+[-;— )Rﬂl)ma-}-([?“) , R('))C“'JCS)}CE')”%—

B + RV} I3R“’ (RP w3 = ‘)Cigl’)+1l,—-R§')R§2‘u)3+
_ 4 (R”’—l— R‘“) le(m L ( “’wn) [Rgz)ml)wg_!_
] + (28" + 5 R) Cc] =0

(2.30)

If the realization of the dynamic tuning mode is achieved by fulfillment of rela-
tionships (1.131) and (1.132) among the instrument's parameters, an additional con-
ditior that makes it possible to achieve a substantial reduction in the effect on
its accuracy of angular vibrations at frequency 2wy is

R31)=R§2)- (2.31)

Fulfillment of this condition entails some structural complications, but in princi-
ple 1t is possible.

Thus, for modulation RVG's having two or more rotors, when the signal is read in a
- nonrotating system of coordinates on the zero carrier frequency, it is possibles to

select the parameters such that in the resonance tuning mode, a significant reduc-

tion of the instrument's sensitivity to angular vibrations of the base with a fre-
_ gquency of 2wy is insured.

For an MRG with signal reading cn a frequency equal to the doubled frequency of ro-
tation of the rotor 2wy, angular vibratious of the base in the instrument's plane of

- sensicivity on this same frequency als~. result in a signal that is egquivalent to a
signal caused by the base's constant angular velocity. Actually, suppose that the
base's angular vibrations are described by expression (2.1).

Then, allowing for the demodulator, the slowly changing component of the signal at
the instrument's outlet has the form
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W (p —i20,) — (p— i20,) (W} (p — i2,) W, (p — 2iw;) +
i = + Wi o —i2w) Wy, (0 — i%,)] - (2.32)
: (P —120y) W (p — 120g) — O

In connection with this, signal (2.1) from the base's angular vibrations will be to-
tally identical to the signal from some slowly changing anqular velocity Wy, which
is determined by the expression
W (p—i20,) —(p — i20,) (WT (p — i20,) W 4 (p — i20,) -+
. W (0 —i20,) Wy, (p — i20,)] s (2.33)
(p —i2w,) (W1 (p) Wy, (p — i2u0) + WE* () W, tp — i20,)]

_ In order for there to be no error it is necessary that in the instrument there be
_ realized that relationship among the basic parameters so that the right side of
(2.33) becomes zero.

As an example, let us examine in some detail several specific setups of MRG's with
signal reading.on frequency 2wy. An OMG's error when there are angular vibrations
of the base is found from the relationship
5 _L(l—xy)vﬁé-f-(l—xz)vé =
2 (L xy) Ve — (14 %2) v

(2.34)

This error can be reduced only by reducing the values of 1 - HY and 1 - ®z. The
closer to each other the values along the suspension axes are, the greater the ad-
duced instrument error, which is explained by the reduction in their transfer factor
with respect to the useful signal.

For a DMG, the suspension of each of the rings'of which has only one degree of free-
dom in the plane of rotation, the expression determining the equivalent velocity Wy
when there are angular vibrations of the base at frequency 2wg has the form

. T (Vb= %) G (= %y) + V3 (1 = %z0)
mc= —_— R : - " 0).4, (2.35)
=2 (Ve — 1 —xy) v (14 y) =B (1 +xz0)

In contrast to a DMG with signal reading on the zero frequency, in this case the er-
ror does rnot depend on the angle $1, Detween the suspension axes in the plane of ro-
tation. A joint examination of the condition of low instrument sensitivity with re-
spect to the base's constant angular vibrations (2.1) (@, ¥ 0) and dynamic tuning
condition (1.66) shows that the simultaneous fulfillment of these conditions is pos-
si=le only when a nonelastic suspension is realized for one of the rings (CB =0 or
Co=0).

“hen the signal is read in a rotating system of coordinates on frequency.wo, two
cases are possible, depending on the type of reference function used in the demodu-
lator. In one of them, where the reference function has the form e 140t the ex-
cression for the instrument error for angular vibrations of the base on frequency
2wy coincides with expression (2.3). 1In the second case, where the reference func-
zion e%¥0% is used, the instrument error will be determined by expression (2.33).

Starting with the generalized mathematical model of an RVG, in a manner analogous to
_ the previously discussed cases it is easy to derive expressions for the computation
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of modulation RVG errors caused by angular vibrations of the base at frequency 2wg
when the signal is read from the intermediate suspension rings in any measuring sys-
tem of coordinates.

2.2, Reaction of Rotor Vibration Gyroscopes to Disturbing Moments

No actually existing instrument can be manufactured with ideal accuracy. During the
building of instrument assemblies and the assembly and regulation of the instrument
as a whole, some deviations from the given rated parameters are usually allowed.
Such deviations also appear when the instrument is used. One of the consequences of
this can be the appearance of disturbing moments that affect a gyroscope and result
in additional errors.

Let us investigate the errors caused in modulation RVG's by the effect on them of
the mechanical part of disturbing moments. From the generalized mathematical model
of an RVG (1.20) it follows that when disturbing moments are acting on a gyroscope,
the motion in inertial space of the first stage's (for example) rotor is described
by tha expression

|
badl

! Y -iPuAg -iw
V= gy (W (p) (M 4 &7 digle ) 4

+ W, (p) m(l)'e-im.l + eiw.,;ﬁ'(‘l)‘e-m.r) + (2.36)
_ -+ Wm(ﬂ) (m‘(‘.’) + Mf]2)'e-iw.1) + WV (ﬂ(?)'e-i'zw.t + l‘ﬁ](l:)'e-m,:) l

From (2.3é) it is obvious that the creation of an MRG that is totally invariant when
acted upon by disturbing moments is impossible in principle, since the requirement
that all the terms in the numerator on the right side of the equation equal zero
automatically results in a requirement that its denominator also equals zero.

Let us discuss, in sequence, the errors caused in different types of MRG setups by
the effect of different types of disturbing moments. Let the first-stage rotor be
subjected to the effect of a constant or slowly changing moment M(1) . The reason
for the appearance of this moment can be displacement of the rotor's center of mass,
relative to the suspension axes, along the axis of rotation and the presence of con-
stant or slowly changing linear accelerations of the base, the vector of which lies
in a plane perpendicular to the rotor's axis of rotation. 1In this case, in the non-
rotating system of coordinates the rotor can be deflected through some angle and
cerform oscillations with a frequency of 2wy around this angle. When the signal is
read in the nonrotating system of coordinates on the zero frequency, the instru-
ment's error will be determined by the expression

- W lo)

Z|==—W¥GT—.H‘“. (2.37)
It is obvious that in this case, as in the case when angular vibrations of the base
act on an instrument, it is convenient to represent the MRG's error in the form of
an equivalent angular velocity, the signal from which is completely identical to the
signal from an acting disturbing moment:

pW¥ 4y (p) M,

D= —
Wip) — (Wi Wiap)+ Wi (o)W, ip)p

(2.38)

&

For an OMG with a single degree of freedom in the plane of rotation, the expression
for the equivalent angular velocity in the resonance tuning mode has the form
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B.=——— M .
o, UMY M, (2.39)

The larger the rotor's moment of inertia relative to the axis of the torsion bars
and the higher the rotor's frequency of rotation, the smaller this error will be.
In the case of two degrees of freedom in the OMG, its error when affected by moment
M(1) will be found from the expression

L 5 ; 1 2 "
Iy ['2-"5—(‘ —"v)‘|"§s] +1z !T"c—(‘ —*z) +‘€c] o
i

11, [i _ (l-t-xy)vé—)-i—%—(!+xz)v%— (2.40)
Ix

Do = —

19|

—i( =12 P = )~ (14 1) o,

Thus, the OMG error caused by disturbing moment a1 cannot be eliminated. It can

be reduced by the proper selection of the instrument's parameters and by reducing
the disturbing moment itself.

The error in a DMG in which the suspension of each of the rings has one degree of
freedom is described by the expression

o ! " R .
) . vB + —/:,: ve +'-"/']'.l“ —(} —xy) (I +cos2¢p,) it
Ge=—7 . T T
ZaWy TVZ;(!+"~an)':"§‘”?-‘(!+**’)+\)2’7,‘,+ (2.41)

R, —Rl

R § PRAT -
+7;T(5"Y—3)—2 Ton (} —=%40)

In order to build an instrument that is not sensitive to moment ﬁ(l) it is necessary
that its parameters have values for which expression (2.41) becomes zero. The con-

- dition of eguality of the numerator of (2.4l) to zero is fulfilled for the following
relationship between the rigidities of the rings' suspension:

Cc=—2(Ry -+ R)wi — Cg. (2.42)

It is not difficult to see that equality (2.42) is satisfied for the rigidity values
determined from expressions (2.10), and in connection with this the denominator of
(2.41) also becomes zero; that is, the instrument operates in a pseudoresonance
mode. In order to find the error in this case, we should take into consideration
the viscous friction acting on the suspension axes. The expression for equivalent
angular velocity uw, then takes on the form
{ /
Tywlzaw, e <
-}

13
‘BE = Ynr8

(2.43)

Thus, when operating in a pseudoresonance mode, a DMG realized according to the dia-
gram snown in Figure 12, with a rotor that is acted upon by constant disturbing mo-
ment M nas an error determined by expression (2.43).

Z the NR's suspension has two degrees of freedom (CéZ) +> @) an?l?lz = 0, the condi-
tion cf nonsensitivity of the instrument to disturbing moment M has the form
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{1

Cy' [2(Ry + Ry wj + C +C8'] 4+ 2R w5 (oRa(Oo—‘-Cm)-{—

+C5’ (2P3m0+c N=

It is also fulfilled when conditions (2.16) and (2.19) are observed, since they make
it possible to reduce the instrument's sensitivity to angular vibrations with a fre-
quency of 2wg. If the VR's suspension from the PD's shaft has two degrees of free-
dome and ¢1, = O, the nontrivial conditions for DMG invariance to the effect of mo-

(2.44)

} ment ¥ in the resonance tuning mode is written in the following form:
C o o T PR R) 6l = RV —R0JCD (2.45)
2R} + C '

2000 2 oy e 2, 9
Cg’=__ RwCH 4 (R;‘*‘R,)m,,CB +—2-C(C)C(e’+2R'Jm°led . (2. 46)

2 | ; 9
(Ry+ 4R ) o)+ o (€27 +C)

These conditions turn out to be incompatible with the conditions of low sensitivity
to angular vibrations of the base with a Sfrequency of 2wg. Therefore, and depending
on the instruments' operating conditions, their parameters must satisfy either rela-
tionships (2.21) and (2.22) or relationships (2.45) and (2.46).

For a DMG in which each rotor has two degrees of freedom, the condition for the ab-
sence of error caused by disturbing moment M) is determined by the expression
Rywg (C'CYH' + CE'CE") -+ 2R4w3 (C\C — AC, AC»COS 1) -+
+ 4R (C,Cs + CCY) + 4Ry3 Rl (C; + Ca) - (2.47)
+CCECY CCPCY =0

When each of the rotors has a uniformly rigid suspension, this condition is ful-
filled when the condition of dynamic tuning of the instrument is,

Let us examine a TMG in which the suspension of each of the rotors has only one de-
gree of freedom. The condition for nonsensitivity of such an instrument to constant
disturbing moment M( has the form

[(RS" + RI") wp + C\] [(% § < R (1 + cos 2y )) wi+
+Ci— ACy cos 212 + C| — 5 [(R["w + AC)° + (2.48)
2 (R{"wj + AC)) (—R"wi + C1) cos 2953 + (—R{wp + C,)*] = 0.

From (2.48) it is possible to derive the dependence of the rigidity of the first ro-
tor's suspension to the PD's shaft on the rigidities of the suspensions of the other
two rotors, which--when the suspension axes are orthogonal--is described by the fol-
lowing expressions:
for 915, = O,

[(R(Jl)_ILR(ll)) m;‘}&c ‘ [(L RO‘.‘) +2R(1”> (Dj +Cgl)] -

_A_E_()Rll) CH))
(RyY -+ RV wg + €,

(2.49)
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for 1, = /2,
o 1 9y a |

(R + R uf +.)) (5 AP+ ) =
Ry + R 0§+ C, '

(2.50)

c = —

The joint realization of relationships (2.49) or (2.50) and (1.62) makes it possible
to build an instrument that is not sensitive to disturbing moment M(1) when operat-
ing in the dynamic tuning mode. For the simultaneous fulfillment of the condition
for low sensitivity to angular vibrations of the base on frequency 2wy, relationship
(2.26) or (2.28) must be considered jointly with these expressions. In this case we
have a system of three nonlinear equations relative to the three rigidities of the
the RVG's rotors' suspensions. The selection of the optimum instrument parameters,
with due consideration for the mentioned conditions, can be done with the help of a
digital computer.

Let us discuss the MRG errors caused by a constant disturbing moment ﬁ(l) when the
useful signal is read on frequency 2wy in a nonrotating system of coordinates. Al-
lowing for the signal demodulator at the instrument's outlet, in this case it will
have the form

Wis(p —i2w,)

o= ey M (2.50)

wnile the equivalent angular velocity is determined by the expression

(I)'e_—.. — Wi (p = i2w,) M, (2.52)

WE(p) Wi (p —i20,) - W (p) W, (p —i2wy)

Tor a DMG with a single degree of freedom, in the resonance tuning mode this expres-
sion takes on the form

Moe, (2.53)

e

. t
T L (I + %) wy

This relationship coincides with expression (2.39); that is, the method used to read
the useful signal has no effect on the error of an OMG with a single degree of free-

dome that is caused by moment M

The error in a DMG in which the suspension of each rotor has a single degree of
freedom can be found from the relationship

! R [ [
. R s e ol S
d);;__t_ ly /ZuR Iy ¢ lza 8 5 Mive, (2.54)
W, e e - LRI, JOAR NN S AL
(- XY)<VL + 2 IZn) va(l-f—x“-f-’l 12n>

#nan condition (2.10) is fulfilled, the numerator of (2.54) becomes zero. In con-
nection with this, the instrument operates in a pseudoresonance mode and in order to
ietermine its error it is necessary to take into consideration the internal friction
in the torsion bars of the rotors' suspensions.

2 condition fur nonsensitivity of a TMG with_single-stage suspension of each of
zhe rotors to the effect of disturbing moment M(1) nas the form
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Cg"’ _ ‘L 2= 20 [Ré"’)ﬁ)_(,ﬂ (R‘I')w:'; + ACl) + 2R§”“’3C2”l +C£~”C‘B"' (2.55
2 e""“’"(R“’w"’+AC . +35)
7 1} 0 1)

Condition (2.55), together with dynamic tuning condition (1.62) and the condition
for low sensitivity to angular vibrations of the base on frequency 2wg, makes it
possible to select the optimum parameters for an instrument that is being designed.

For an MRG with signal reading in a rotating system of coordinates on frequency wg,
the error caused by disturbing moment M )——depending on the form of the reference
function used in the demodulator--is described by either expression (2.38) or ex~
pression (2.52).

. 1f moment M(1) is of the harmonic type (M(}) = ﬁhe’izwot) with a frequency of 2uj,

_ which can occur (for example) when linear vibrations on the same frequency act on an
instrument, the errors in modulation VRG's are determined by the following expres-
sions:
when the signal is read in the nonrotating system on the zero frequency,

- W3 (p) —.

D, = PW 13 _ .

W) = W) W, (o) 4 Wi (p) Wi (oMo e (2.56)

when the signal is read on frequency 2uwg,
— Wi (o —i20,) EA
W (o) Wy (p —i2m,) + WE* (9) W), (P~ %)

by = (2.57)

For the MRG's under discussion and % constant amplitude of moment @, expression
(2.56) coincides with expression (2.52) for all practical purposes; that is, the er-
ror caused by harmonic moment (1) witn frequency Zmo for an instrument with reading
on the zero frequency is equivalent to the error of an MRG with reading on frequency
2wp that appears when the constant disturbing moment (1) acts upon it., When the
signal is read on frequency 2uy, the expressions for OMG and DMG error coincide, re-
spectively, with expressions (2.53) and (2.54). 1In this case the instruments' er-
rors do not depend on the signal-reading method. For a TMG with one-stage ring sus-
pensions, from the condition of the equality of the numerator of (2.57) to zero it
follows that when there is a relationship among its parameters that is defined by
the expression

. o _ 1 RPei(RVe+C)) + (2R[Nel +c) i : (2.58)
2 Rirar+ C, '

the instrument will be insensitive to a harmonic disturbing moment with frequency
2w, :
Oo

From (2.36) it follows that when disturbing moments act on an MRG'sS suspension ax-
es, there will be an error expressed by the presence at its outlet of a signal that
is equivalent to the signal from some constant angular velocity @ only if these mo-
ments are of a harmonic type with the frequency of rotation wg of the rotor. These
moments include, for example, moments caused by static disbalance of the VR along
the PD's axis of rotation and the effect in the plane of rotation of constant line-
ar overloads and vibrations with a frequency of 2w, as well as moments generated by
static nonequilibrium of the rotors relative to the suspension axes and linear vi-
brations of the base along the axis of rotation at frequency ug.
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Let us represent the vector of moments ET(,I') in terms of the amplitudes and phases of
narmonic disturbing moments. Let the following disturbing moments act along the
suspension axes of an MRG's first stage:

My’ =mgsin (oo + gu)i ME = m sin (ot + gc). (2.59)
Then, using Euler's formulas, vector H,gl) can be written in the form

H = (—imye a4 m{Peive) et
- (2.60)

+ (im§e™'®8 — nfMe7'®C1) g ],

There are also analogous expressions for the vectors of disturbing moments acting
along the other stages' suspension axes. Using relationships (2.36) and (2.60), let
us determine the NR's angular deflection in inertial space:

il =_% Wl(p) ‘__‘.el'Om (e-f‘l’“W”(p)_*_ei'Pan (,U)) mg)‘l"

- e“’Cn (e'""uW” (P) —_ e""an(p)) Ill}_«” +
-+ i7" "en (e""qul (p) + g"'pl-:“”m (p)) m}," —_
v (e () — W ()

(2.61)

In the case of signal reading on the zero frequency, MRG errors (presented in terms
of equivalent angular velocities) are determined by the expression

—ie' %8 (o) 4 W ()
+ A (B-“’”Wn (») —EM“WIJ (”)) g (2.82)
W (p) — (W (o) Wia(p) + Wi (A) W\, (Pl g

while when the signal is read on frequency 2uwg in a nonrotating system of coordi-
nates, they are determined by the expression

- |
(l)e=‘_;.-

i (T (5 — i2u) 4 €W (p — 120)) mi) —

— (e_m'“W” (p — i2w,) —-e"o“W” (p— i‘2(uu)) ”“C“ (2.63)

e
m e
I
!
IDI —_

WE)Wiap —i2w,) =W (p) W (0 —i20,)

Let us discuss the errors in several specific RVG systems. For an OMG with a rotor
naving a single degree of freedom and with signal reading on the zero frequency in
rhe resonance tuning mode, the equivalent angular velocity in the presence of dis-
rurbing moment (2.59) relative to the suspension axis has the form

- -1 L (e 2.64
W, = ————————— — My e 81, (2.64)
e /Y”(l + %) 0, 2

Tor a DMG that also has only a single degree of suspension freedom for each rotor
znd from which the signal is read on the zero frequency, in the dynamic tuning mode
“he exror can be determined from the expression
_ ! . oy ) | | 5 , . R "»
A ; T2 ‘(Va‘l+4Y)mse“’u+m(v;:—l1—'Az"+.’Tl’T> mget®c
Bp = — == — : 5 [ = T (2.65)
v ' ) R
= vz ll+= 0-—'>+—v' x4 S e, gy =T Ry
3 B( Za 42 T7a 3 c (! +xny)+ Tzn (5% —3) ./Yu
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Vhen conditions (2.10) are fulfilled, the instrument operates in a pseudoresonance
mode and the numerator and denominator of expression (2.65) simultaneously hecome

zero. Therefore, in order to reveal the indeterminacy that is obtained in expres-
sion (2.61), it is necessary to take into consideration the damping along the ro-

tors' suspension axes.

For a TMG with a 51n?le degree of freedom for the suspension of each rotor, when
constant moments and m (1) are in action, the numerator of expression (2.61) has
the following form

D= —ietoe™: {C‘J’ L5 4 2REP) wi 4 CE ) 1 5 COCY +
-i-' C| [/\’;j” 1" }7 R&'—’) -‘y' R‘[” (2 '%— COoS Ql[‘lg)} w;'; _—
— AC, €os 240 (Rﬂ” - .‘\‘(1“) (u;‘; + C ’R“‘ (1 cos2¢, )w, -+
+ o R (RS 2R17) wi -4 REVWERS" (1 4 €08 241 i -
F - CICEe e R Wl 4 o ACRY ’uu} my + _ (2.66)
+ e“"cly-“‘l [ 4‘) (Rll) 4 H)) *_ Czl)c(ll(l _L‘A‘."Pu) 'i-
+C(RY 5 R+ ?R:") 0f — AC,RY cos 2py.u -
S CHRM (1 = 208 2py2) w5 — CV R wif — AC R¥ wj -4
o RPGR W] - RED@IRIY (1 -+ cos 2q1) uﬁ}m’u“.
Expression (2.66), together with expression (1.127) for an instrument's transfer
factor, makes it possible to determine the equivalent angular velocity w, when dis-
turbing moments (2.59) are acting on the suspension axes. The errors in DMG's hav-
ing signal reading on the zero frequency and a two-stage suspension of the NR from
the VR and the VR from the PD's shaft can also be found with the help of expression

(2.66) and the corresponding expressions for transfer factor . In order to do
this, in (2.66) we should set R{l) = 0 in the first case and R32) = 0 in the second.

When the signal from a-TMG is read on frequency 2w, in a nonrotating system of co-
- ordinates, the numerator cf expression (2.63) takes on the form

D =i o™ [ (2R ] C) (4 R wi -+ CH ")k

+2RiC 1 % (LpeBoyeiley | my ~ (2.67)

— e el {C;J“ ( Rl 2 +CY )) - —;-(l —«L"‘."“'l-') C‘J’CZ;”J )

As special cases, from (2.67) we can derive expressions for the errors in DMG's and
. OMG's having signal reading on frequency 2wy when disturbing moments (2.59) are act-
- ing on the rings' suspension axes.

The reaction of an MRG to disturbing_moments acting on the second stage is analogous

to its reaction to moments M and Mj+/. A constant or slowly changing moment M
will cause in an instrument an error described by the following expressions:
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when the signal is read in a nonrotatlng system of coordinates on the zero carrier

frequency- -
- Wy (p) T
B @ - M, .
S Wi —(WE(p) Wiz (o) 4+ B (2) W\ ()] (2.68)
when the signal is read on frequency 2ug--
Go=— Wy (p — i20,) Mo, (2.69)

Wt (p) Wy o = i200) + W37 () Wy (p — i20,)

An erxor w111 a%go ap ear in an MRG if disturbing moment n2 is of a harmonic na-
ture: e~12wot, I this case the expressions for determining the instru-
ment's error have the follow:.ng form:
when the signal is read in a nonrotating system on the zero frequency--

- pW'“ (p) 4 o 13

@, = - = my’ (2.70
WY () + T () W) )

when it is read on frequency Zwo--

= Wi in —‘-"io) =(2)
o m .
R T W Wy (p —i2w) + WE () Woy (5 — 20y A (2.71)

Disturbing moments §§2) acting on the second stage's suspension axes will cause an
error in the instrument only if they are of a harmonic nature with a frequency of
cnange of wy. Analogous to (2.60), in general form we will write this moment in the
following manner:

MP = % [(—imp e ®s: 4o m@PleiTcs) o' .t
. , o (2.72
+ (im}s!)e-xrrgz . nl',;’e""Cz) e—u-»"f]. )

- The MRG errors generated by disturbing moment (2.72) will then be determined by the
following expressions:
«“nen the signal is read in a nonrotatlng system on the zero frequency--

—ie' "8 {W s tp) W, ff’)l’”m + ¢/t [ll’/',,(p) ‘VN »] m,;
w (p)—[“/.'_. (n) \V,,(p)-r W'p_ (PYW, (m)p
when it is read on frequency 2wp--
e (W12 (0 = 20p) + Wy (P — i20,)] mg) —
| =S (W (p = i20,) = I\, (b~ 20g) | m{? (2.74)
2 W (MW, (0 — 200 - Wr ()W, (5 — i2em)

(2.73)

»

(0=

The expressions presented in this section make it possible, when the disturbing mo-
ments are known, to determine MRG errors expressed in the form of an equivalent an-
jular velocity of the base, as well as their dependence on the instruments' basic
rarameters. The latter fact can be used when designing specific instruments with
the required accuracy characteristics when operating under given real conditions.

- 2.3. Operating Errors in Rotor Vibration Gyroscopes

- Cne of the important properties of instruments is their ability to maintain their
basic characteristics with given limits when they are in operation. Actually, when
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affected by a change in temperature, instability of the power supply, material prop-
erties that change with time and other factors, the values of instrument parameters
and, consequently, basic instrument characteristics can change during the operating
process. The effect of these factors on the characteristics of RVG's is particular-~

- 1y noticeable, since their basic operating mode is the resonance tuning mode, with
very little damping, which makes them extremely sensitive to even an insignificant
change in their parameters. When designing such instruments, therefore, it is ne-
cessary to devote particular attention to the possibility of insuring their stable
operation under given real conditions.

Let us discuss how small changes in parameters affect the basic characteristics of
an MRG. The basic characteristic of an MRG is its transfer factor with respect
to the base's angular velocity, which is a function of the rigidities' of the ro-
ters' suspensions, the rings' moments of inertia and the PD's frequency of rotation:

K3= K?(C'B”- C‘Ci)v /,‘!r"a'v /‘Yfa)v /,(\'io;cy /()ri,:./fzi,,), /é‘;,’.w,,). i=1,2...., n (2.75)

During operation, these parameters can deviate from their rated values; that is,
some small increments appear. In order to evaluate the effect of these increments
on a change in the transfer factor, let us make use of methods from the theory of
sensitivity [37].

The basic factor affecting a change in the value of will be detuning of the in-
strument from the resonance mode. The transfer factor can be written in the follow-
ing form:
- Redy+ilm 4,
Ky= ReBor s, (2.76)
while the instrument's dynamic tuning condition has the form Re By = O. £, during

operation, there occur deviations of the instrument parameters listed above from
thelr rated values, the expression for Re 3g can be written as

Re B, = Re B, ]Aa‘=§+ A(da), (2.77)

where Aa; = deviations of the instrument's parameters from their rated values, while
A characterizes the detuning of the instrument from the resonance mode that arises
in connection with this. Substituting (2.77) into expression (2.76) and assuming

- that the parameters' rated values corresponded to resonance tuning, we obtain the
expression for the instrument's transfer factor when it is detuned from the reso-
nance mode:

i
. . Im8
/\;:;/&3_9 _._——A-L_‘-, (2.78)
l+<lﬂ|Bq>
where Kg. = the instrument's transfer factor in the resonance tuning mode. Thus,

when the instrument is detuned its transfer factor is reduced by a factor of

1+ (A/ImBo)Z. In addition to this, as a result of the detuning there appears a
cross component of the transfer factor, it being the case that the larger the ratio
A/ImBgy is, the larger it is.

It is completely obvious that the more sensitive an instrument is %o detuning from
the resonance mode, the higher its sensitivity with respect to the base's angular
velocity (and the lower the coefficisnt of viscous friction along the suspension
axes) .
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In order to evaluate the magnitude of an instrument's detuning when the values of
its parameters deviate from their rated values, we will use sensitivity functions of
the first type. 1In this case the expression for detuning can be written in the form

n

dJ y
A= 0 dwy ReB“ e '=0A("0 + E{ ) \C“’ Re 0! C(B” AC )+
+ ()ReB (3) C;.",'{"
d AC¢ , =0 (2.79)
Tz 2 GARm Re 8, R(l')go(Al“) — AV — A% +
{i i (i
+20ARH)ReB"l ‘().')=O(A/X))I—AI' )— L\I ) .

For MRG's w:.tn VP that are constructed on the basis of two stages of the generalized
RVG model, the sensitivity functions of the first type that are part of expression
(2.79) take on the following form;

1., When the PD's velocity of rotation changes:
030) ————Re 8, Lm,=o = 20m C:‘”C“) [{(RY" 4R - Rs,:)) (2/?{2)(,)0 +
+C2) + 2RICE | -+ CECH TRY” (2R s + C.) + 2RCY) ]
+ 200 [R)" (R1"wil + C\) ++ 2R1"CH T [(RY + RV R™) (R -
+ Ca) - 2RICE] + on [RY" (RY" -1 RYM _ RiP) (2R{"RP w3 4-
+RI"Co 4 RIPC) + 2R1RP (R (CH + C§') + RIVCY —
— RI"C")] + 20iR1RICIY (3R 4 2C,).

(2.80)

From (2.80) it is easy to derive the analogous sensitivity functions for simpler MRG

layouts. For example, for a TMG with one degree of freedom for the suspension of
2ach rotor, we should set R](_Z) = 0, CCZ) + ®, As a result, we obtain

o Re Balsonma = 20n o CECH" (RS + 4RI 4 REY) o
- C(ﬂ) [RIH( {”(I)O"LC)-{—QR”,C“)]"—
_ +(RY + RIM) ok [Rg” (TRfl)wn + C.) + (2.81)
+2R1C" ] + 20fRIVRSCE! |
Tor the OMG in (2.81), we should set Réz) =0, Céz
T ReBu,, = 2o (R (201 4 C) 4 2RCH). (2.82)

finally, for an OMG wich a single degree of freedom (R(l) = 0, C(l) + =), the sensi-
civity function has the form
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(h

REBn ‘A =0=R3 x).

_9
d 1\(1)0

o

2. When the rigidities of the rotors' suspension change:

9 =C};”Cg’ [(_;_ Rgn +2R§”+

.')ACU) Re
+ 5 Ly 2R(2’) o0+ Cm] + CP} RS (R{"wi -- C1) +

B,

2
ac’=0

) + 2R{"c}5"1 + R (R0 + C) + 2R1CE] - (RS -+ REY -+
+ BRM ‘-')0+ R(II,RSUC(C”('M,

1 | 2 2 '
— ReB,.[ACm COCE [ (RS -+ 4RI RE) i 4 CB] +
a4 ¢ =

+ R (RS (RI"0h + C1) + 2RCE ] [ 5 (RE” +RIY —
Rm)mo_*_c(")} +R=”R§”C(c”t\"

Re B ; C(I)C(?)C(") f;”(-m[(/?“’ +_ 4R=“ _{_ p‘g?)),:

,)Acﬂ) (,‘((:”
5 (RPR -+ C2) + 2ROCH] 4 - R0 (RS -+ 5R{" —
- —“R(’“) 03 (Rl‘) 2+C"') +C(") (QR(")(')‘?, (7))]

TJTZWReB" (I)C(")Ct’)+cc m.-[(R("+4R§”+

FRY) (RP WA+ C) + 2R7CE +CEOCH (4R + 2R ) 0f?!

(0
arg =2

( [?5” | ?Ru)>[(,?m ”’——Ri?)) (/\’1"\06 LC~)4—2R(')C )I(Uu-

3. When the moments of inertia of the rings changes:
——— Re 8,

AR =
IR (R wg 4 C)) -+ 2R1"CE'] x
. I(’?:(’l) R(l) R(‘)) I3 +_f)(\"’) C ] !_ R“)R”)C:”O)m

HR‘“ Re By =C"CE 7 (R o 4- C);

Re B.,

J ‘R()

Y
;(‘".—_‘n

= (PP wi + C) ol 1" 0} (R wi) -+

J )R'“
-+ C mc:“) - 2c"’(le“’«m 2C)] + (R oi + 2C5’) wi -
RS - R R @ (R w4 C) -+ CP (2Rl + CE) )k

)
lII —n

g Re B i, = (R0} 4 C) Wi [R5 (RIV0} 4 ) +

FArpic, +ocy + (RI%d - C) wh (RS + RI" —
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The expressions for the senstivity functions make it possible to find, for each in-
strument, the dependence of its sensitivity on a possible change in the basic param-
eters. Along with the expressions describing an instrument's transfer factor and
dynamic characteristics, as well as its basic errors, the sensitivity functions are
initial expressions for synthesizing an RVG's basic parameters. A}l other condi-
tions being equal, it is desirable to have those instrument parameters for which its
sensitivity functions will be minimal. Starting with the sensitivity functions and
the requirements for an instrument, the allowances for changes in its basic parame-
ters under real operating conditions are calculated.

2.4. Errors in a Single-Rotor Modulation Gyroscope

Xo.Xs

Figure 13, Systems of coordinates.

In the preceding sections of this chapter we have discussed errors in MRG's with VP
in general form. As an example, let us investigate in more detail the errors in the
simplest of the MRG's: a single-rotor modulation gyroscope with rotating suspen-
sion, a diagram of which was presented in Figure 1ll. Let us discuss the mathemati-
cal model of the operation of such an instrument, allowing for the basic technologi-
cal errors in its construction. 1In order to do this, we will introduce the follow-
ing systems of coordinates (Figure 13):

OpXp¥pZp-~a system of coordinates coupled with the instrument's base;

OpX2¥2Zp--a system of coordinates coupled with the PD's shaft;

0,X3¥525-~a system of coordinates, the 0,2} axis of which coincides with the torsion
bars' axis, while the O,Y) axis lies in the torsion bars' plane of rotation;
0,%Y;2;-~a system of coordinates coupled with the torsion bars;

OX{YjZj--a system of coordinates with its origin at the rotor's center of mass and
axes that are parallel to the axes of system 0,X1Y32y3
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OXYZ--a system of coordinates, the axes of which coincide with the rotor's main axes
of inertia, while its origin is at the rotor's center of mass.

Among the basic technological errors in the prodaction of the instrument we can in-
clude:

the presence of some distance I between the motor shaft's axis of rotation and the
torsion bars' axis;

static disbalance of the rotor, characterized by the coordinates ay, ay, ag of its
center of mass in the system of coordinates coupled with the torsion bars;

dynamic disbalance of the rotor, characterized by angles vy, Yyr Yz

The gyroscope's rotor can be suspended from the PD's shaft with the help of torsion
bars of different designs. In connection with this, the general requirement is that
the torsion bars' flexural rigidity exceed substantially their torsional rigidity.
Assuming that this is observed in a real design, we will consider only the angular
motion of the rotor relative to the torsion bars' axis. Assuming that the values of
ay, ay, ag and Yy, Yy, Yy, as well as angle ¥, are sufficiently small and retaining
in the equation of motion only terms of no higher than the second order of small-
ness, we obtain

Thp 4 28T 4+ p = — K, 02008 (@pf + 7. — K@y sin (0 — vy) +
+ Kowzo 510 (Wl - 1) — Koya€OS (0ol -4 py) — Koo —
— K@ x0 — K0yowge COS 0yf — Ky A Ky 72009 Sin 0f - (2.92)
— K Y200 M @y (jyo COS gl — jzoSiN W) +

-+ m’ay (fya COS Wof — [705iN Wpl) h + m’axja — m'ayjxs,

where
2 _lz. or _ P . Kk T .
7" = o , Ly = V-IZC" ' n +Y\'
Ky = 1221 45 ¥ TH s
a

Ix—1y .

K1=2(’x—’v')'(‘gi‘l K2=—(—C"‘—Y"
Ky = %Ux?z + Iyyx + Ixveyx + m(ay +Dayl;

P le=lz oo m — Oy 2= ly

l\4=TYY’ =T g = 2vx Ix+iz—1y
j‘(O' ivor jzo = linear accelerations in the base's motion relative to the corres-
ponding axes; Cq = C + (Ix - Iy) 0= total rigidity of the elastic system relative
to the torsion bars' axis; m = the rotor's mass. :

For arbitrary motion of the base, equation (2.92) is a non-steady-state one and its

exact solution entails considerable difficulties. Therefore, let us take advantage

- cf the method of successive approximations, which is widely used in gyroscopy ([18].

- Ignoring the terms of the higher order of smallness in the right side of (2.92), we
- cktain the CMG's equation of motion in the first approximation:
Thp = 2ETp + p = —K @70 €08 gl — K@y SiN Wyl -+

. 2.93)
+ Koqwze5in wyl — Koy COS 5 — Majy, ¢

where Maq = adduced disturbing moment acting, in the first approximation, on the
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rotor when the base is in motion. In order to find the motion of the OMG's rotor in
the second approximation, we place the solution of the equation of the first approx-
imation on the right side of equation (2.93) and solve the linear differential equa-
tion that is obtained, keeping only terms of the second order of smallness in the
right side.

We will conduct our investigation of errors after provisionally dividing them into
three groups: methodical, instrumental and operational.

- Expressions for the signals at the instrument's output, in the presence of harmonic
rocking of the base around the axes of sensitivity in the frequency pass band, can
be derived from its transfer function (l.81) by replacing p with iwg. 1If, for exam-
ple, the base performs oscillations around the OgY¥g axis:

Wyy = Oy, SiN f, (2.94)

the signals at the OMG's demodulator's outpﬁt have the form

duy = — N (wy — 0) (K, — K,m)cos [wt + B(vg — )] +

+ N (0 4+ ) (K, + K, w) cos [wt - B(wa + )1} Ky, Wy,

Hy = {—N (w0, —0) (K, — Kw)sin (ol +R(w, — )] + (2-99)

FN (O + 0) (Ko + Kyw)sin |l + B (w, + w)]} Ky or,,
where

N = l/ . _sz:)l: e B(w) = arctg%%;

Lgm = the demodulator's transfer factor.

rom expressions (2.95) it follows that when there is harmonic rocking of the in-
trument's base, along with the basic si¢nal (at the demodulator's first outlet)
here appears a cross signal (at the second outlet), the magnitude of which with re-
spect to the basic one increases as the frequency of the base's oscillations rises.

ct Wty

As was already stated in Section 2.1, a characteristic feature of RVG's operating on
the principle of amplitude modulation is that.when there are harmonic oscillations
oi the tase in the instrument's plane of sensitivity that are on frequencies close
Co 2w, at its outlets there aprear error signals that are identical to useful sig-
nals f{rom slowly changing angular velocities of the base.

The 2quivalent angular velocity of the base's motion can be found from expression
{2.3), while for frequancies equal to 2wy it is found from expression (2.5). With
tie given instrument accuracy, from (2.5) it is easy to obtain the allowable ampli-
tudes of the base's angular oscillations with frequency 2wy at the point where the
instrument i3 mounted.

et us discuss the methodical error that occurs in an OMG when there is angular mo-
tion of the base relative to the three axes. Without disrupting the commonality, we
#ill limit ourselves to an investigation of the expression for the interference sig-
1 at only one of the demodulator's outlets, which--in the case of resonance tuning
the instrument and the presence of simultaneously permanent rotation of the base
speeds uye, wyr, wzc and angular vibrations with amplitudes Wxa: Wyas Wgs=-has
Zollewing form:

T w O 9
(1 ore fu

J

the

1
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RS

2ty = Kyn —21'5’ V{ —K. (“’.\'C"’YC 4 ‘12" M xaWyq ) -

+ 2—13;’ KoK 0xc0ye + ‘;— K 0x01, [— _;'N(“’o — ) X
, X (K — Koo} stnBy o N (0n -+ 0) (K -+ Kyo)sinBy] |+
. (2.96)
P T l l N
-+ {2 ((Dxc“’zc + 5 mx::“’a:) - % KoK 0y 0z —

— % K005y { —21- N (09 — 0) (Ky — Kqw)cospy -+

. -+ % N (g + w) (K, - [{,m)cos ﬂzJ }

where

y TR———— m.
Wzy =i Wi 0y, f =arclg 1;-7" '{‘ﬂ(“)u —), =
Ya

= arctg

© L B (0 + 0).

7
‘a

(0]
(l))
From expression (2.96) it follows ‘that when there is permanent rotation of the in-

~ strument's base relative to an arbitrary axis, in it there appears the interference
- signal

. | .
21, ___3‘: Kan (35 Kolks — Ks) 0xOzvc (2.97)

The ratio of the interference signal to the useful signal, allowing for the rela-
tionship (L/2£)KgKy >> Ky, can be expressed in the following manner:

Auy =~ 22 2xe Bave (2.98)
E Oy,

Expression (2.98) makes it possible to evaluate the accuracy of the measurement of
the rotor's angular velocity as a function of the base's angular velocity relative
to an axis that coincides with the rotor's axis of rotation. The smaller £ (the
greater the instrument's sensitivity) and the rotor's angular velocity wg are, the
greater this error is.

An evaluation of the additional error that occurs in connection with low-frequency
rocking of the base, as made with expression (2.96), shows that this error is ex-
tremely small and does not have to be allowed for in connection with tne real param-
eters involved in the rocking of objects and the real requirements for instrument
accuracy. When there is angular vibration of the base, the error signal is evaluat-
ed with the simple expression

|
2uy = g KialGoxaza (2.99)
while the base's equivalent angular velocity can be computed, with sufficient accu-

racy, with the formula
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® z n Za"“.\’u

!
YT T TR, e (2.100)

ey =
The error under discussion, which is caused by angular vibrations of the base, oc-
curs only when the vibrations take place around an axis that does not coincide with
the rotor's axis of rotation and does not lie in the plane of sensitivity.

Thus, exXpressions (2.97)-(2.100) make it possible to evaluate an instrument's me-
thodical error when it is operating on a movable base. One of the basic factors re-
sulting in instrument error is the presence of static disbalance of the rotor (Fig-

- ure 13). 1In this case, when the instrument is operating on a base that is subjected
to linear accelerations and vibrations, its rotor is affected by disturbing moments
that, in accordance with the results presented in Section 2.2, lead to the appear-
ance of error signals at the instrument's outlets. In the presence of static dis-
balance along the rotor's axis of rotation (characterized by coordinate ax) and con-
stant or slowly changing accelerations in the plane of sensitivity jgyc, these error
signals, expressed in terms of equivalent angular velocities of the base, are de-
scribed by the expressions

- mar l
[ R ——" S S
- ¢z (T xg)o, 17 ]
ma, . I (2.101)
Y =TT T ae,

Practical calculations show that high OMG accuracy (on the order of 10-2 °/h) under

onditions of overloads of up to 10 g and more requires that the static balance
along the rotor's axis of rotation be insured with an accuracy of several angstroms.
Such high balancing accuracy can be achieved only by the use of special methods that
utilize the system for measuring the rotor's angle of rotation that is already
availaple in the instrument.

In the presence of linear vibrations of the base with frequencies q = wg and gq =
= 2wg (as well as frequencies close to them) and amplitudes jya, Jya: Jza, at the
instrument's outlets there also appear interference signals. In the second case,
when jgg = jZacos 2ugt and jyg = dyscos 2mot, the base's equivalent velocities of
rotation nave the form

[

1 max

Oe¥ —T ll("*‘“z)wn Iva: (2.102)
! 1 ma, .
Wez = — 5 TS zar
and in the first,
ma,. )
Wy = — W/Xn sin e, ]
ma,, , (2.103)
- Wez = — AT 1xa COSQ,, ]

where jg = phase of the vibrations with respect to the rotor's angular velocity.

The value of the interference signal for identical overloads is of the same order as
when constant linear accelerations are affecting the instrument. In order to reduce
“his interferesnce it is possitle to cushion the instrument, when the parameters of
tne disturbances are known, to select the rotor's angular velocity so that the vi-
bration overloads in the area of fraquencies wy and 2wy will be minimal. In addi-

tion to this, there exist special methods for reducing this interference (32].
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When linear accelerations and vibrations act simultaneouély along all three axes of
an instrument, the error signal's additional component can be expressed in terms of
equivalent angular velocity:

m

@r= (1 --%z) o,

m ..
{?le,rch'c—
‘o

—ay V' ayN (@) [xalzra + (M ayixc + KVizwva +

-

(2.104)

F2m’a, (Mayjxc + Ko) IzvelzvalxeN (@) Sin B —

Loa
—Tmakixalzm[N(wo+q)—N(wo—q)]}-

It should be mentioned here that in the case of instrument operation on a vibrating
base, in addition to those that have already been discussed, in it there can appear
additional interference signals with the following relationships of the frequencies
of the angular and linear vibrations and the rotor's rotation frequency (5]:

v, =0, (2.105)
where
V= 0y — W, Vo=@ — Wy, Vi=W — @,
v'=2w0—q; V5=(D-—2q; v‘=2(u)_q;
v; = 3w, — ¢; Vig ==ty — @0, V=20, +q—w;

Ve = (20 — 0y Vg =0p— 0 G Vi g= 3wy — g3 o

The magnitude of these errors is much less than those presented above. However,
when designing an instrument the value of wg should be chosen so as to reduce as

much as possible the intensity of the vibrations close to the frequencies found
from (2.105).

An investigation of the effect of dynamic disbalance of the rotor on instrument er-
ror showed that it is negligibly small for the basic signal and can be manifested
only as some increase in the level of the cross signal that appears when there are
constant angular velocities of the base and that, in connection with this, is
smaller than the basic signal by a factor of [l/ZYX]/[IZ(l +%z)/(Iz - Iy)].

During the analysis of methodical OMG errors it was shown that one of the basic
causes of instrument error is angular vibrations of the base with a frequency of
2wg. In practice, such vibrations are inherent in any rotating bodies, as well as
the rotating part of an OMG. In connection with this, it has been proven experi-
mentally that the vibrations' amplitude depends on the quality of the realization
of the supports and the dynamic and static disbalance of the OMG's rotating part.
In {13] the author presents a quite complete technique for investigating the reac-
tion of ball-bearing supports to the appearance of vibrations caused by rotating
todies. Therefore, here we will examine the effect of static and dynamic dis-
balance on the appearance of angular vibrations with a freguency of 2wy in the ro-
tating part of an OMG. It is obvious that such a phenomenon takes place when there
is varying rigidity in different radial directions in the main rotation supports.

Let the radial rigidity of the main rotation supports be different in diiferent di-
rections. We will designate the radial rigidity of the left support as Cg; and
that of the right support as Cpy (Figure 14). In the case of an infinitely rigid
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!

Figure 14. Diagram of effect of disturbing factors on the rotat-
ing part of an RVG.

shaft and rotor, the total angular rigidity of the rotor-shaft-support system will
- then be determined by the expression

=2 CnCos (2.106
G =L T )

where 2 = distance between the supports.

In the presence of a force acting in a plane perpendicular to the main axis of rota-
tion, from the side of the supports the rotor will be acted on by reaction moment
Mp, the vector of which lies in the same plane and is perpendicular to the force's
vector. Let us determine the moments acting on the rotor in the system of coordi-
nates that is rotating along with it. Let Q be the force generated by the static
disbalance of the OMG's rotating part, while Mg is the moment generated by its dy-
namic disbalance (Figure 14). According to [21], the expressions for Q and M3 have
the form

Q = m,Da,y; (2.107)

/\/,d_—_(, —_ li) F(i)z, (2.108)

- where m, = mass of the OMG's rotating part; azy = displacement of its center of mass
relative to the axis of rotation in the plane of rotation; I, I = axial and equa-

- torial mements of inertia; € = angle between the main axis of inertia and the axis
of rotation.

In the XDODZp plane, the following radial force acts on the left support:

o 4 My
Fi = (Qsina -5, (2.109)

while on the right support it is
Fy=— (Qsink 4 2d). (2.110)

As a result ~f this the rotor will turn through angle Wp: which is determined quite
accurately by .he expre.sion

L/ F R
‘Pp=7‘(,_—“-—?r:>« (2.111)

Cn the other hand, according to Hooke's Law we have
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My = Cobp. (2.112)

where Cy is determined by expression (2.106). Substituting (2.111) into (2.112), we
obtain the expression for the moment acting on the rotor along the OPYp axis:

A
Myp = 5L g [ — (@sinn = 2 ¢,y -
" (2.113)
+ (Qsink + ) Coz] .
Analogously we find the moment acting along the 0Z axis:
M- [ [Coz—cnx Qcosh. (2.114)

T2 T G

The radial rigidity of the supports is not the same in different directions because
of nonuniformity of the material's properties, deviations of the geometric shapes of
the supports' elements from the ideal, and the nonlinear dependence of the supports'
pliability on the stresses. Thus, radial rigidity can be regarded as a periodic
function of angle ¢ = wgt, with period 2.

Considering what has been said above, along with conditicns (2.113) and (2.114), let
us write the equations of motion of the OMG's rotating part in the system of coordi-
nates that is rigidly coupled with it:

Cnx ('D - —3— sign(Q cos)~)> Con (Q) -+ % sign (Q cos A)>

Cn <‘D + %sign (Qcos A) - Coe ((D -+ %sign (Qcos )\))

LB - Ip, 1L 0=

P
(2.115)

L, Cot(‘n - %sign (Qcos R)) — Cv:<'Il-}--T‘—sigv1 (Qcos A))

“
<

Qcosh,;

~ no. .
Co (0 + 5-5ign (Qcos A) ) + Cog (0 -+ T sign (Q cos n)

‘m(:n - r——sngn (Qsm) }v—t;‘i) ) b

< Ca:( AR <1gn<Q sin A -——J(—))

Lan — //{} 2 2 2 _
31[ Cm(rb g_g ngn(Q:mk - _~)> +- o
-+ F-n»("’ -ri.:——Tmpn(Qsmk— Wl’d ))
Coy (lD i %— — & cign (Qsink—}— %’L)) —
S ((Dl “%“g" (osmar—=2)) Qsinh — M,
: Cor \/"h : l) *%sign (Qsin A} ﬂ-)) -+ o

- Cys k‘b Al -—;— sign (Q sinA — Md))

Let us examine the case where 0 < M3/2 < Q sin X and 0 < Q cos A. Equations (2.115)
will then be written in the form
|

Iehy |- Hp, + 1°F <fh L3 0 =5 Ty ('h i 5 Qeosh;

) . | (2.116)
Ighy — H L BF (D), = = (F (M Qsin k.~ My,
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Functions F and Fy satisfy Dirichlet's conditions and can be expanded into Fourier
series:

F(®) =F, + X AF,sin(ad + q): (2.117)
1

n=

Fy (‘D + —’:—) = Fd4o + \;.. AFgasin (D -L qu.), (2.118)

where F characterizes the average moment (during a single revolution) that is ap-
plied to the rotor and appears because of the inequality of the average radial rigi-

dities C8; and C§o of the left and right supports. Monotypical, precision supports
are most often used in these instruments, so we can assume that Coyp = Coo and Fq = 0.

In equation (2.16), the terms with AF, and AFy,, as determined by the nonuniform ri-
gidity of the supports as functions of angle ¢, are terms of a higher order of
smallness, so in order to integrate this equation we use the method of successive

approximations. In connection with this, the equations of the first approximation
have the obvious solution

M
\’)":0; \"D=-——ﬁ7§’—_ (2-119)

Substituting solution (2.119) of the first approximation's equations into the right
side of the second approximation's equations, we write them as

Ieép + H\bp + PFyy = — -2|—Ql cos E AFyq, sin (uw,,t - n;+ff4n);

n=\

Ly — Hby - 0F 0, = — 1_”;: Z AF, sin (nwyd + qp) - (2.120)

n=|

+ - QlsinA Z AF 1 sin (ot + 9,

n=|

where 225‘0 = average (during a single revolution) rigidity of the rotor-shaft-
SuUpport systam.

An error can appear in an RVG only if the instrument's rotating part completes os-

cillations with a frequency of wg in the system of coordinates that is coupled with
it; this occurs only when n = 1,

o3

e velocities of the rotating part's angular oscillations arocund the 0Zp and OYp'
xes will be expressed by the relationships

- g -l_ ’ _ " |
P (=leor) + UF) 4 (llw)* { 7 QUaFq [(—lew] -= FF) cosh +

<= Hgsin Lfsia (w,! + Ty1) — T‘f—%’- AF Hwysin(wt -+ 4[\])};
2.121
{._L,Qz My [ Huycosh -+ ( )

o

(—lfw] + 1-'F“)" + (Ha,)

'bp =

i (—fewl = FFa) sin 1) cos (wit -+ qq1) —
M N N
- T;: AF (=g + I‘Fy) cos (m,.t + o) } .
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Analogous expressions can also be derived for the relationships Q and M3, as well as
angle A.

_ In order to determine the OMG error caused by nonuniformity of the supports' rigidi-
ty and disbalance of the lnstrument s rotatlng part, it is necessary to find the
projections of angular veloc:.tles-s-p and w on the instrument's axes of sensitivity
and substitute them into expression (2.5). Overloading in the instrument's plane of
sensitivity also results in the appearance of an error when the supports' radial ri-
gidity is not uniform. Its magnitude can be evaluated with the technique presented
above. The technical measures contributing to a reduction in the error can be as
follows:

careful dynamic and static balancing of the rotating part;

increasing the angular rigidity of the main rotation supports;

reducing the value of the angular nonuniformity of the supports' rigidity, which can
be achieved by reducing the permissible tolerances for the geometrical shape of the
supports' elements, properly selecting the bearings and the "favorable" mutual ori-
entation of their outer rings, and creating the appropriate axial tightness,

In conclusion, let us discuss the OMG error arising because of a change in the in-
strument's basic parameters while it is in operation. As has already been pointed
out in Section 2.3, the basic source of this error is the disruption of resonance
tuning. In accordance with (2.79), detuning for an OMG is determined by the expres-
sion

T we [ AC Ay Aw
8= [0 =) (F =T - 25 + 8] (2.122)
where wg, C, Iz, ¥z = rated values of the parameters insuring resonance tuning of an
OMG.

From (2.122) it follows that in order to achieve a substantial reduction in the ef-~
fect of a change in an instrument's basic parameters on its detuning from the reso--
nance mode, it is necessary to provide a rotor configuration such that My + 1, If
the changes in the parameters arise as the result of changes in the temperature con-
ditions, detuning can be reduced by selecting the appropriate materials for the ro-
tor and the torsion bars [31].

Detuning from the resonance mode leads to a change in an instrument's transfer fac-
tor that, in accordance with (2.78), can be determined from the expression

K, =1t L S (2.123)
“r RIS <3 IJ_(__\_>
D)

in order to maintain stable operation of a highly sensitive instrument it is neces-
sary that the condition 4 << 5 be fulfilled when it is in operation.

From an analysis of CMG errors it follows that a significant reduction can be
achieved in them by adopting a structural solution in which Ry + 1. However, from
the dynamic tuning condition it follows that in this case the torsion bars' torsion-
al rigidity will converge on zero. Reducing the torsicn bars' torsional rigidity
results in a reduction in their load-bearing capacity; that is, their capability to
insure the instrument's nondestructability and ability to operate undsr large con-
stant, impact and vibrational overloads.
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Figure 15. Torsion bar cross-sections.

Let us discuss the dependence of the strength characteristics of torsion bars on an
instrument's other parameters. Torsion bars are usually made in the form of tension
members that are either in one piece with the rotor or are made separately and then
press-fitted into it. Torsion bars can have cross-sections of various shapes. They
are most frequently circular, rectangular or cross-shaped (Figure 15). When their
cross-section is constant throughout their entire length 4y and there is no axial
tightening, the torsional rigidity of such torsion bars is determined by the follow-
ing expressions [39]:
a) for a circular cross-section--
aD4

C=-3—2TG, (2.124)
where G = shear modulus of the torsion bar's material;
b) for a rectangular cross-section--

G .
C=pwp'hrt, p=ih, (2.125)

where 3; is a function of the ratio h/p;
c) Zor a cruciform cross-section--

G
C=PRp*h -, (2.126)

T

where 2, is a function of the ratio h/2p.

By substituting expressions (2.124)-(2.126) into the dynamic tuning condition, it is
possibls to relate the torsion bars' geometric dimensions to the moment of inertia
o£ the rotor relative to the torsion bars' axis I, and the angular velocity Wy .

X In order to calculate the strength of tor-
_ sion bars, let us determine the stresses
My arising in them under the influence of two
=] = . factors: the force Q applied in the ro-
2y [ [-+j:f:£ tor's center of mass along its axis of ro-
’ tation and the bending moment M; directed
q along the rotor's OY axis (Figure 16).
Figure 16. Diagram of effect of force This system is statically indeterminate.
2 and bending moment M; on an OMG ro- In order to disclose the indeterminacy, we
tor. - will free the right torsion bar's left end
and apply to it forces x; and x3 and moment
%:. The canonical equations of the method of forces ([39] will then have the form
8,00 1 B2ty + B3y 4+ 819 = O

« e e e e
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8121 + Bunty + 83 + 83 = 0 (2. ]:27)
81y =+ Oaxa 4 Ooxs +- 63Q =0,
where dik = ski = relative displacement of the system's points in the direction of

the i-th force factor when acted upon by a single force factor replacing the k-th
factor.

The basic movements in the system under discussion are determined by flexure.
Therefore, we will ignore shear and tension, assuming that 633 = 631 = 632 = 613 =

= 8§53 = 0. By using (Mor's) integration, we then obtain the following expressions
for the other movements:

" 8 .
6\\ :_-:—/I—E ,’ (Q‘ - 3(1',-{——:3—13) ' 612 =5'll ==

I , | '
= o l(@+ 20); 8 = 7 2
| " 5 S
o= — 7 -l + ol + )i b= (2-129)
1
= — g hlat o
M; .
Sun = — T (20 +3L); By = — My

where I = moment of inertia of the torsion bars' cross-section; E = modulus of elas-
ticity of the torsion bars' material. Substituting the values of Sik from (2.128)
into (2.127), we determine the unknown reactions to X, and X, in the case of being
acted upon by:

force Q--
I I
q=—5Q tn=——Q\ (2.129)
moment Mj-- LiarLop
. 2
x’=__w_a_+erMh s B R V)
- @+ 2l + =13 @ 4 2al, + 1} (2.130)
MI- P
L
: (-
- i l
3 Bt
=~ G l /Iy
IW Uu' M,
Wy
A,
"
! /

Figure 17. Stress sheets.

The summary diagrams of the bending moments for the first and second cases, as well
as the correszonding stress sheets, are presented in Figure 17. From the diagrams
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it follows that the greatest stresses occurring when acted upon by transverse force
Q arise at the points where the torsion bars are attached and can be calculated with
the help of the following expression [39]:

Omax =l_Ql‘_-'me ’ (2.131)
4 i
where Ymax/I = momenc of resistance of the torsion bars' cross-section.

Using resonance tuning condition (1.68) and expressions (2.129) and (2.131), we ob-
tain the formula for computing the values of the maximum stresses in the cross-
sections of the three different types of torsion bars under discussion:

for a circular cross-section--

! G

Tope == == .
S M Ty DQ: (2.132)
for a rectangular cross-section--
3 G p
= — - , 7 =Omax ¥y 7 2.133
Tinax 1 r’n /Z(l—"z) (u,:; ﬂQ max 2 max ¥ T ( )
where 8, = 0.41 when p = h;
for a cruciform cross-section~--
3 G ' "o
Tmax = — P ; R (2.134)
1,(1 —%;)w A L
Z( Z) J l-r D n

Trom expressions (2.132)-(2.134) it follows that the higher the rotor's angular ve-
locity, the smaller the stresses in the torsion bars. The maximum stresses do not
depend on the length of the torsion bars. Therefore, from the viewpoint of strength
it is meore favorable to have short and thick torsion bars. In the case of a cruci-
Izmm cross-section, the larger the value of ratio h/p that can be provided, the
smaller the stresses. From the viewpoint of achieving maximum strength, cruciform
torsicn bars are the most preferable of the three types under discussion. If the
raximum possible load on the rotor, the parameters of the torsion bars and the maxi-
mum allowable stresses in their material, the limitations on the value of Xz can be
derived from (2.132)-(2.134).

An important characteristic of the rotcr-torsion bar elastic system is its flexural
. rigidity when acted upon by a moment directed along the rotor's OY axis. Using the

stress diagrams that have been compiled and Mor's integration, we obtain the expres-

s.on for the linear movement of point A (see Figure 16) when acted upon by moment

[ LY BRIV

=57 M (2.135)
Ia this czase, the system's static flexural rigidity will be determined by the ex-~
ression
. a
C,,SCI,,—‘T. (2.136)
mare C: p = flexural rizidity of the torsion bars, which can be derived from the
“>llowing ralationships:
Ior a circular cross-section--
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C: . = aD* E |,
1.t €4 ’_1_’ (2.137)
_ for a rectangular cross-section--
. ] 3 E . 1 L] E .
Cioev =g ph 4, Cing=—5Wp -3 (2.138)

for a cruciform cross-section--

|

Cio=gr[hr+m—p]E.

(2.139)

Let us evaluate the ratio of the torsional and flexural rigidities (when the rotor
is rotating relative to the OY and 0Z axes, respectively) for torsion bars with dif-
ferent cross-sections. Allowing for the total rigidity of the elastic system and
the fulfillment of the resonance tuning condition, this ratio has the form

Cr  Cix x| (2.140)

Keeping in mind the relationship between C and Cj  , we obtain the following expres-
sions for different torsion bar cross-sections:
for a circular cross-section--

Cz l .
- Ty - @ E | _uyadx (2.141)
w3 )T,
for a square cross-section--
Cz _ | .
(22 a E o Ix _y’ 2.142
119 = (1) + 75 =1 ( )
for a cruciform cross-section--
#= : ] : (2.143)
Cy — A1 pY\ a E X .
0168 (14 57— ) 5 (=% + 75 =

T

Torsion bars with a cruciform cross-section have the smallest Cy/Cy ratio. In con-
nection with this, the smaller the value of 1 - Ry, the more commensurate rigidities
Cy and Cy are. In this case the instrument's errors and dynamics should be defined
more precisely according to the equations that describe the functioning of an OMG
with two degrees of freedom in the plane of sensitivity.
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CHAPTER 3. COMPOSITE ROTOR VIBRATION GYROSCOPES
3.1. Principles of the Construction of Composite Rotor Vibration Gyroscopes

An analysis of the functioning of various RVG systems shows that when the rotor's
center of mass is displaced relative to the suspension axes' point of intersection,
most of them react to linear accelerations of the base in the same manner as they do
to its linear velocities. This leads to errors in the readings that can be reduced
only by careful static balancing. At the same time, in the case of segregation of
signal components caused by the base's angular velocities and its linear accelera-
tion, this property makes it possible to create an. instrument that measures simulta-
neously both the absolute angular velocities and the linear accelerations of the
base's motion. We will call such instruments composite RVG's. The principles of
the construction of these RVG's are explained in [43].

In order to segregate signal components, it is necessary to know the characteristic
features of each of them. It is obvious that these components can be segregated
reither by a frequency nor by a phase feature. The feature used can be only the
sign of the component. The signal component that is proportional to the angular ve-
locities changes sign when the direction of the drive motor's angular velocity Wy
does, while the component that is proporticnal to the linear accelerations changes
sign when the sign of coordinate ay of the displacement of the rotor's center of

- mass does.

When constructing a composite RVG it is necessary to have two signals, in one of
which cnly one component differs in sign from the one analogous to it in the other.
The other signal parameters must be identical. From this it follows that in order
to construct a composite RVG it is necess?ry to have two identical oscillatory sys-
tems that differ from each other either in the drive mctor's direction of rotation
or by the sign of the coordinate of the displacement of the rotor's center of mass
reiitive to the suspension axes' point of intersection.

In the first case we must have two independent RVG's with parameter values that are
extremely close to each other. It should be mentioned here that the creation of a
composite instrument according to such a principle is also possible through %“he use
of classical two- and three-stage gyroscopes, although the preservation with the re-
quirsd degree of accuracy of the identity of the parameters in these instruments,
which are usually of a complicated, prefabricated type, is practically unrealizable.

In the seccnd case, both oscillatory systems can be mounted on the shaft of a single
drive motor. Such a method of instrument construction is most rational, since it

-
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makes it possible to reduce the instrument's dimensions substantially and does not
require (as it does in the first case) synchronization of the angular velocities
(when different drive motors are used) or the use of reversing (when a single drive
motor is used).

X, X, A composite RVG can be built on the basis
of the different RVG layouts described in
the preceding chapters. However, taking
into consideration the requirement for the
greatest possible overall identity of the
oscillatory systems' parameters, preference
should be given to the structurally most
simply realizable OMG setup.

Figure 18 is a diagram of a composite in-
strument (KOMG) based on two OMG's. To the
shaft of a drive motor rotating with angu-
lar velocity wyr two rotors are attached,
each by its own pair of torsion bars. The
rotors' suspension (measuring) axes are
situated parallel to each other in a single
plane. The rotors' centers of mass are
displaced, relative to their suspension ax-
is, along axis of rotation OX by the values
axl and axz.

Figure 18. Diagram of composite RVG

with independent suspension of the As was demonstrated in [43], it is also

rotors. possible for the torsion bars' axes to be

placed perpendicular to each other. How-

ever, although in the first case angular vibrations of the PD's shaft with frequency
2m0, which give rise to errors in the measurement of absolute angular velocities,
have practically no effect on the accuracy of the measurement of linear accelera-
tions, in the second case the opposite is true: their effect on the accuracy of the
measurement of absolute angular velocities is insignificant, but during the measure-
ment of linear accelerations it is very tangible. Thus, the advantage can be given
to either system, depending on the formulation of the problem. There are no other
differences in systems with parallel and perpendicular positioning of the torsion
bars, so let us discuss the former.

From (2.92) it follows that, in the first approximation, the rotors' equations of
motion relative to the measuring axes have the form

/,rx‘bl -+ !ll‘bl +{Ixy = Tvy) 0’.!»*}— Cil = —/z1@z0 cosSwil — !

— Iyovasinod + Iz 4+ Iy — Iy)) 007050 ot --

- (121 -l =1y |) M)y COS Oy -} mp,(rx,fz..sin wpl —
— My @x,fya COS Wi, (3.1)
/7.2‘.132 + ll?‘i’z (e = ly3) w; - Cal o = —1 72020 COS Wyl —

— 170y 8i0 gl + (122 + Txa — [y9) 040050510 0gf — (I 74 -F
+ T2 — [y3) 90y COS g - 111 ttyaf 70 SIN @4f —

= Mpalys fraCOS 0L,
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In equations (3.1), subscript "1" refers to the first rotor (Rl), and "2" to the
second rotor (R2).

Let ug discuss the case where the values of the parameters of both oscillatory sys-
tems equal each other, while the rotors' centers of mass are displaced to different

sides at equal distances from the suspension axis (ax, = -ayj). By subtracting and
adding, term-by-term, the equations in system (3.1), we obtain
Iza¢c + pac 4- ((7x - ly) ] + C} ac = —2/;0 4, cos wol —
—2[z0yysinwet + 2(17 4 Ix — I'v) wpwz sin wof —
~ 2(lz24 Ix = Iy) wywyocos wot; (3.2)

I28n -+ 10 + [(1x — Iyv) 0} + Cl 2 = mpayjz sin oof —
~— MplxfyoCOS Wel,
where
% =y -F P Za = hy — 1Py

Thus, the rotors' total angle of rotation relative to their measuring axes will be

proportional to the base's angular velocity in the instrument's plane of sensitivi-

ty, while the difference between the rotors' angles of rotation is proportional to
- the base's linear accelerations in the same plane.

The information can be extracted by three different methods. First, by summing and
subtracting the appropriate signals at the demodulators' outlets. In this case each
CMG has its own signal reading and processing system. Secondly, by summing and sub-
- tracting the amplitude-modulated signals at the outputs of the sensors of the ro-
tors' angles of rotation. Here, each OMG has its own rotor rotation angle sensor,
while further processing of the information takes place individually, over an angu-
lar velocity measurement channel and a linear acceleration measurement channel.
Finally, in the third case signal separation by channels is possible by using angle
measurers, one of which measures the rotors' total angle of rotation e directly,
while the other measures the difference angle a,. It is obvious that such measurers
can be constructed on the basic of well-known inductance and capacitance angle meas-
urers. Of the three signal separation methods listed, the last is the most prefera-
ble, since it eliminates completely the effect of nonidentity of the parameters of
the different information reading and processing system. channels on cross communica-
tions between the angular velocity and linear acceleration measurament channels.

From (3.2) it follows that the functioning of a XOMG with respect to the angular ve-
locity measurement channel is practically the same as that of the OMG, the features
of which were described in Chapter 2, except for the fact that its transfer factor
ic doubled.

Let us evaluate how the instrument's basic parameters are related to the character-~
istics of the linear acceleration measurement channel. It is not difficult to see
that motion of the base in the instrument's plane of sensitivity 20Y, with constant
linear accelerations J, leads to a signal at the KOMG's output that is equivalent to
the signal that appears when the base rotates at a constant angular velocity Wg, as
determined by the expression

m.a
p X
W, =

7, (T4 #,) o, (3.3)
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This expression makes it possible to relate the basic characteristics (such as sen-
sitivity, linearity of the characteristic, sensitivity threshold and measurement
range) of a composite instrument used to measure linears accelerations to the analo-
gous characteristics of an OMG. The sensitivity threshold for the measurement of

- linear accelerations |]ﬂ| can be evaluated with the expression

I (L4 %),

l/nl = ,”pax I(’)nlr (3.4)
where Iwwl = the OMG's sensitivity threshold with respect to the base's absolute an-
gular velocity.

B a,, MM The relationship between an instrument's
{I+ 1 sensitivity thresholds relative to angular
) ol T h[ : velocity and linear acceleration depends on
«»7#uuhzg-mu%-~f the rotor's rotation frequency and geomet-
8O b f e ric dimensions and the displacement of its
mgtjj:i.y‘:::ii," center of mass along the axis of rotation.
L r WZ Figure 19 is a graph of the dependence of
Il i ay on the value of |Gy |/134] for a struc-
_ AW—--«».‘.:: T tural coefficient value (Izmp)wo(l + Rg) =
L f = 420 cm?/s. It is obvious that the lower
100} ~—{-4- 144 A 11m1t of the relationship of the sensitivi-
. -t it ty thresholds, as well as the sensitivities
- . & T /' themselves, is determined by the technolo-
50 ] il gical capabilities for creating such a
Hl /4 small displacement of the rotor's center of
" Y/ i mass and maintaining it during the operat-
2 H|4 “L«’ ing process. All other conditions being
1L Ll equal, this limit can be lowered by in-
ﬁ:: as ; %ﬂ creasing the rotor's frequency of rotation
|QJ and selecting the appropriate geometric di-
| & mensions (for example: for a rotor in the
Figure 19. Graph of dependence of shape of a parallelepiped, the required
displacement ay on the value of value of ay is practically groportlonal to
le/]“I. the square of its length (b<)

From an analysis of expression (3.4) it is possible to assume that however low a
threshold of instrument sensitivity to linear acceleration is desired can be
achieved by increasing the displacement ay of the rotor's center of mass. However,
this is not so. Analyzing equations of motion (2.92), we find that for quite large
values of ay we should take into consideration moment

mpu '

(I‘( —17)71)—— /\’n‘l

which we previously ignored as beiny a value of a higher order of smallness in com-
parison with the equation's basic terms. Linear vibrations of the base relative to
the OX axis can lead to parametric resonance and the disruption of the instrument's
stable operation, while constant linear accelerations can result in detuning from
the resonance mode. In accordance with expression (2.122), the relative detuning
can be computed with the formula

1 L—x, .
-~ Mpdx/ o (3.5)

8 =
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From (3.5) it is possible to determine the maximum allowabie value of ay as a func-
tion of the instrument parameters, the linear accelerations acting on it, and the
- requirements for its accuracy characteristics.

The creation in a KOMG of the required ranges for measuring angular velocities and
linear accelerations is an important question. The design of the torsion bars and
the rotor rotation angle measurer is such that angle y is limited by some maximum
value ¢max' Since the amplitude of the rotor's angle of rotation is determined si-
multaneously by both the velocity and the linear acceleration being measured, their
ranges depend on each other. When only small angular velocities are being measured,
the range of the linear accelerations is enlarged, and vice versa.

Let us discuss how to evaluate an instrument's maximum range for linear accelera-
tions and angular velocities. When resonance tuning condition (1.68) is fulfilled,
from equations {3.2) we find that the maximum angle of rotation of the rotor is de-
termined by the expression

= | } may . | }
‘tm:\x L= —Q-E(-I')T { (l 'I" KZ)I W pa¢ I ""_ m | Twax | [ » (3.6)
where lmﬁax|, |§ﬁax! = absolute values of the maximum measured angular velocity and
linear_acceleration, respectively. Introducing designators 4, = mhaxl/lmﬂl and

dy = lgﬁax‘/|§%| for the angular velocity and linear acceleration measurement
ranges. respectively, and taking expression (3.4) in consideration, we obtain

280, Fmax
dy+d; = T+ %, lon| (3.7)

From (3.7) it follows that for a highly
sensitive instrument, even when the meas-
urement range for angular velocity is ex-
P27 tremely limited (when the instrument is
mounted on a stabilized base) its linear
acceleration measurement range is still
103-105, which is inadequate for many prob-
lems. We should also mention here that the

~d measurement range is coupled with the in-
strument's pass band and increases as it is
expanded.

The KOMG system under discussion contains
two independent oscillatory systems. Since
it is impossible to achieve complete iden-
tity of these systems' parameters during

,//"‘ivrl\ TN

Y Y - IR the production process, instrument tuning

S A consists of achieving equality of the fre-

Figure 20. Diagram of composite RVG quencies of their natural oscillations to
with common rotor suspension. the angular velocity wo of the drive mo-

tor's shaft. Individual parameters of the
oscillatory systems, such as the rotor's moments of inertia and the torsion bars'’
rigidity, can differ noticeably from each other. A change in these parameters dur-
in3 the operating process leads to different relative detuning of the systems from
resonance and, as will be shown below, to substantial instrument errors.
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From (3.7) it follows that a substantial enlargement of the range of linear acceler-
ations that can be measured is impossikle without reducing the instrument's sensi-
tivity to angular velocity, and vice versa. The KOMG layout depicted in Figure 20
was proposed for the purpose cf eliminating this defect. In this setup both rotors
have a common suspension axis 0Z. In the general case, the angular rigidity of°the
torsion bar connecting rotor Rl to the shaft equals Cy, that of the torsion bar con-
necting rotor R2 to the shaft is Cy, and that of the intermediate torsion bar con-
necting the two rotors is C;. as in the preceding case, the rotors' centers of mass
are displaced along the OX axis relative to the 0Z axis by distances ay] and ayp (in
connection with this, it is necessary to try to insure that ay] = -agy = ay). In

- comparison with the layout discussed earlier, this one makes it possible to achieve
a significant reduction in the instrument's size and is more convenient from the
viewpoint of the manufacturing process, since both rotors and the torsion bars can
be made from a single blank. Besides this, any errors related to nonparallelism of
both rotors' measuring axes are eliminated.

The equations of motion of a XKOMG realized according to the layout depicted in Fig-
ure 20 have the form
T2vpy + pibr + [Ty = Tv1) @3 4 Ci 1y + Cact = —
—I 1020 COS ot — [z @yosintoot + (Iz0 4+ Ty — Tv1) wawzy
Xsinmgt — (I7; + [x1 — [y)) 00y COSWYE -
+ M1y 20 SIN Ol — M Axyfya COS Wt
Tz0p2 + pabz + [(1x2 = Ty2) 03 + Co} Y2 — Cottn = —
— I 73020 COS WY — [ 7,@ypSIN Wot = ([ 75 + Tg — [y2) 0y01z4 X
X sin 0 — ([z2 + T2 — Iye) wowyy COS 0yl +

(3.8)

= Myadyf 20 SIN Wol — My xafyg COS 4L

If the parameters of both rotors are identical, then--by adding and subtracting
equations (3.8) on a term-by-term basis--we obtain the following KOMG equations of
motion: .
[76¢ + PG'C + [(IX _ /y) (,).i + C] ac = 2/ 7020 COS Wyt —
— 2 50y Sin Wyl 4+ 2 (17 + [ — Iy) @pza SIN ot — 2(/; +
4 Iy — Iy) 0yWyy COS Wyt y (3.9)
I28q + & + [(Fx = Iv) wj +C 4 2Ca] aa = 2mpay
% (fy COS ol — [z 5in wof)

Thus, as with the preceding setup, the rotors' total angle of rotation ac is propor-
tional to the base's anjular wvelocity in the plane of sensitivity, while difference
angle an is proportional to the linear accelerations in the same plane. The essen-
tial difference between the second KOMG construction plan and the first is that in
the second ecre, resonance tuning with respect to the angular velocity and linear ac-
celeration measurement. channels cannot be realized simultaneously. When one of the
channels is tuned intc rescnance, the second will have the relative detuning

Cn

By varying the wvalue of Cp, this makes it possible to change the relationship
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between the instrument's sensitivity thresholds for angular velocity and linear ac-
celeration. Actually, if (for example) resonance tuning is carried out with respect
to the angular velocity measurement channel, the relationship between the equivalent
angular velocity and the linear acceleration has the form (allowing for expression
(3.10))

.= man | -
e~ T, (T+x,) 0, H_(l-—xz [ I (3.11)
<7
which for Cp/C # 0 results in a corresponding decrease in IE}]/IE}[. The smaller £

is (that is, the higher the instrument's sensitivity), the more significant this re-
duction is.

3.2. Dynamic Characteristics and Basic Errors in Composite Rotor Vibration Gyro-
scopes

Let us discuss in more detail the operation of a XKOMG setup (see Figure 18) contain-
ing two independent oscillatory systems, as described by equations (3.1l). From
(3.2) it follows that when the parameters of both cscillatory systems are identical
and the measuring axes are parallel, the instrument consists, as it were, of two in-
cdependent channels for measuring anqular velocity and linear acceleration, each of
wnich--in turn--also contains two channels corresponding to the instrument's axes of
sensitivity. The dynamic characteristics of the angular velocity measurement chan-
nel are described by transfer function Wg(p), as determined by expression (1.81),
wnile the linear acceleration measuremen: channel is described by the transfer func-
tion nay

p%)

Iz (1 +xz) 0, W?“’)'

Thus, both channels have the same pass band, in which the frequency distortions are
Juite small. From (1.86) it follows that the narrower this band is, the higher the
instrument's sensitivity.

There exist a number of technical problems in which, along with a highly sensitive
measurer of angular velocities, a less accurate but broad-band measurer of linear
accelarations is required. Within the framework of the setup we are discussing,
such an instrument can be realized only by the cre=ation of zero displacement of the
center of mass of one of the oscillatory systems, which will operate as 2 normal
CMG, and the creation of the required dynamic characteristics in the second oscilla-
tory system, which has a displaced center of mass. In connaction with this, in or-
der to obtain a signal that is proportional to the linear accelerations, after pre-
liminary processing (for the purpose of obtaining identical characteristics with re-
srect to the angular velocity) the signal from the first oscillatory system should
ce subtracted from the signal from the second. In this trivial way it is possible

_ to achieve full independence of the angular velocity measuring channel from linear
accelerations of the base.

5 the structural diagram of a KOMG constructed according to the setup
igure 18 and in accordance with equations (3.1). The characteristic fea-
5 setup is the presence in it of cross~couplings between the measuring
cnannals when the oscillatory systems' parameters are not identical, Let us evalu-
ate the level and nature of these couplings. Allowing for the presence at the in-
strument's outlet of a phase-sensitive demodulatcr, we will consider only signals
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- Figure 21. Structural diagram of composite RVG with independent
rotor suspension.

that are proportional to the envelopes of
the rotors' angular oscillations with fre-
quency wg. In order to do this, as we did
previously we will make use of vector co-
ordinates and complex transfer functions.
In this case the instrument's structural
diagram is converted into the form depicted
in Figure 22, where the following addition-
al definitions have also been introduced:
W11(p) = Wg1(p) + Wga(p) = sum of the
transfer functions of the first and second
MRG's with respect to signals that are pro-
portional to the base's angular velocity:

Wa (p) = _W?l (P + Wgz ()
m_.a m_.a,.
w S —— L S " W 1 e.c T W
. 1(7) T2 (- %z) 0, 31(,)) Iza (1 %z} 00, V‘;'Z(m
is the difference between the transfer functions of the first and second MRG's with
respect to signals that are proportional to the base's linear acceleration;

€l

Wy (p)

= W (p)

Wiz (p)

Wi (p)

J

Figure 22. Vector structural diagram
of composite RVG.

m a m_,a
Wao(p) = —25 W (p) -+ —L2K2 W (p).
2 (P lgy (1 -+ %z) 0, 31“)) s 70 (T %g5) 0y 32(0)
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Transfer functions ¥31(p) and Wg2(p) are determined from expression (1.81) by sub-
stituting the values of the parameters of the first and second oscillatory systems,
respectively.

In order to evaluate the effect of individual instrument parameters on the cross-
courlings between the measuring channels described by transfer functions Wi2(p) and
W51(p), we will make use of methods from sensitivity theory [37]. Let one of the
oscillatory systems have the following parameter values:

W, = l L _ _ _
Mt Ill o, Xz = Xz, § == &1. ﬂlpl =z Inf" ayy =ay, /Zl — IZ'
while the second has

O =0, + B, % =x -+ Ax, =t AL m

pr =
=M, 3 Allll,I Qya == Ay + Aax, /(2 = /X + A/x,

where A“‘m' A, Ag, amp, day, 0I; = small variations in the parameters.

Using sensitivity functions of the first type and limiting ourselves to the band of
frequencies w << wy, the expression for Wy1(P) can, with a sufficient degree of ac-
curacy, be represented as

Wa (p) x .
W., (p) = 1 =
) p—T—li+%{'+"A)‘p {(7'2 = T
H 2
T 02 A, Ty o, _ , (3.12)
T ) 5t i e (G 80— 1 e)]
RO T S N A O ! i
; ( T Ww.;)dx— e ..um(;tJ—Am.,-;-TAg)J}_
while the expression for Wio(p) is
W (p) A Aa‘ Al |
R L S S
_;i_i_ Re Mp ax 1y U
Pt T,
| Amg day Aly I —x T, 2 .
'*(77(7;‘**7;——/;“ o %) + T wldx 4
(3.13)
73 O gy — )] [L amp 4
T Wgw" < W, dw, T “JAJ}‘ + Ts ( my
Aay sl | —x T,
+?_l—z—l—-}-—;Ax>'—T+—;l;‘;m”<“"'mnAK+

Oy x___2_ * 1 mDaX
+ 2 G Qw7 88) | |
The variations A , dwp and A of the oscillatory systems' parameters that are used
in expressions (3.12) and (3.13) are expressed in terms of the oscillatory systems'
elementary parameters with the help of the following relationships:

Ay =81y =Ny .

Az = Tz ‘ (3.14)
_ Mg AC ‘-\IZ .
du, =5 (= 7F): (3.15)
. AT Y I 1 2 Alg =&l c
AL = L o2z L (e M=y C . .
® QIZL “"’-‘:'i"ﬂé [ I3 2 Iz 2 xw;;-i.u.:( v 1z /;) . (3.1%)
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- From expressions (3.12) and (3.13) it follows that the cross-couplings are the
greatest in a highly sensitive instrument that is operating in a resonance tuning
mode. The relationships X = 1, £ << 1 usually occur for such instruments. Taking
into consideration the relationships between instrument parameters that occur during
operation in the resonance tuning mode, and using expressions (3.12)-(3.16), in ac-
cordance with the structural diagram depicted in Figure 22 we obtain the following
expressions for the equivalent linear acceleration l;el and angular velocity wg:

i~ ux)mo_i_{ [ I My —Aly —x Al | —x
- e m a FER S / I
" ? 2 (3.17)
(LY: - '\IZ>J .t An } w
NC N ST T
4
m._a. : A
o ~ Py _l_f_.<r.\nzp> ax Al R
T e E Mp ’ Uy Tz Tox L\x)
. 2§(Tgp+_ l)—— [—2'_ L\/X——.\;V_.V,\/7 _ | .»7;( (-‘\Q_ (3.18)
A 2 (;

L\,Z . .« t\[l. | -
1z >Jl _gl—t}-'f’p—i—l I

where -]T-e = linear acceleration causing a signal identical to the signal from the an-
gular velocity W of the base's rotation at the linear acceleration measurement chan-
nel's output; W = anguiar velocity of the base, the signal from which is identical
to the signal from the base's linear accelerations j at the angular velocity meas-
urement channel's output.

From expression (3.17) and (3.18) it follows that the greatest effect on the level
- of the cross-couplings is exerted by nonidentity of the oscillatory systems with re-
i spect to parameter ®. This is explained by the fact that determines the value of
the dynamic rigidity along the rotors' suspension axis, which is 98-99 percent of
the total rigidity along this axis. When £ << 1, even an insignificant change in
will move the system out of the resonance tuning mode and cause a sharp change in
- its transfer factor and the signals' phase relationships. For example, given iden-
tical sensitivity of the instrument's measuring channels and § ¢ 103, in order to
obtain a cross-coupling level of Eé/j = je/ﬁ < 10'2, it is necessary to achieve
identity of the oscillatory systems' with respect to parameter ® with better than
0.004-percent accuracy. An instrument constructed according to this plan can oper-
ate only in a narrow band of measurable values. In orxder to enlarge the measurement
band, a plan in which one of the oscillatory systems has zero displacement of the
center of mass (for example, az; = 0) can be used. 1In this case the instrument's
transfer functions have the form

W (py = W?n {p.
Wiu(p) =0
W (m) = Wg: (n— ng (m:
mn

p.dva \V” (/’)

xa (1 =) oy

W,, () =

Here thnere is no dependence of the angular velocity measurement channel on the ac-
celeration measurement channel, while the effect of the first on the second can be
reduced by creating the appropriate relationship between the instrument's channels’
sensitivities.
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The effect on the cross-couplings' level of nonidentity of the torsion bars' tor-
sional rigidities C is directly proportional to the share of these rigidities in the
system's total rigidity along the suspension axis; that is, the smaller the value of
1 - ®, the less the effect. Practically, for identical conditions the requirements
for accuracy in maintaining C are two orders of magnitude smaller than the analogous
requirements for parameter X. The requirements for the identity of the coefficients
of viscous friction in both oscillatory systems are smaller by a factor of 1/f than
the requirements for » and are comparatively easily realizable for small values of
£.

B There is yet one more factor that can lead to cross-couplings between the measuring
- channels in this setup: nonparallelism of the rotors' suspension axes. Actually,
between the projections of the rotors' suspension axes on a plane perpendicular to
the axis of rotatin, let there exist a small angle A¢. If the first OMG's transfer
factor then equals unity, the second's will equal eldd, The inequality of the
transfer factors results in cross-coug}ings between the measuring channels. In con-
nection with this it is obvious that je and We can be determined with the help of
the following expressions:

. . la(1 ), _ |

fo=iAg z(ma 2% o (3.19)
P

- comaay i} 3.20

me"‘“\‘PWI' ( )

Analogous cross-couplings will occur when the suspension axes are not parallel in
the XOY plane. In comparison with the others, the level of these couplings is in-
significant and can be limited by introducing the appropriate tolerances in the in-
strument production and assembly process.

Let us discuss the cross-couplings between the measuring channels that occur during
the operation of a KOMG built according to the second plan. By adding and subtract-
ing equations (3.8) ona term-by-term basis, we obtain equations that describe this
setup's operating features when the oscillatory systems have nonidentical parame~
ters:
- lzcic +pcic + [(Ixe — Iyve) od -1 Colee -k Lzafin 4 pain +
+ [(,.\‘n - [)'n) (')3 -+ Cnpl'ln = —2/14;6),30 cos mpf —
— 2 @vasin oyl + 2 (10 + Ty — 1y¢) 04050 SiN w0yl —
— 2(I3c -+ Txe — Ive) a0y cOs 000 (Mpatixy — Mpiay) jy %
X €OS (gl + (Mpaltys — Myxy) 7510 Wyt (3.21)
I2cn 4 ptetn 4 [(Ixe = Iy ) o - Ce - 2Ca) @y 4 [7nfi +
+ Jialtc -} [(/.\‘n - /Yn) 0)3 I Cup] ac = —2/ 7,0z cosonf —
— 2l g0y SIn gl + 2170 -+ Lxn — Iyy) 0p2 74510 0yl —
- - 2(,7." + /Xn - 1\ n) W0y COS (’)Ot ’{“ (mpza,\": - ’”pla,\’l) -~
X fy COSWot + (Mpaay, 4 MuGyy) f75iNwg!,

where

17241
/zc=Aj—’-';

Iy = va 1y, 1' AR

’

lxc==111%;L£L:

oA Iy,
lo == 21
’ N 2 '
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Ixa—1
Io=tx=la, o Gitc,

- g — Ty —
“": ‘22}l' C (422(:

Iyy = /Y'.';l)’l S }222‘/21 :
Ko Wey(p-iw,)
Kip Wi (p-ia))
- 7 Ky Wi (p-i,) w,(;;.iw,) B

Figure 23. Structural diagram of a composite RVG with common sus-
pension of the rotors.

on the basis of equations (3.21) and allowing for the presence of a phase-sensitive
demodulator at the instrument's ocutlet, the structural diagram for the signals' en-
velopes has the form presented in Figure 23. In connection with this, we introduce
the following definitions:

Ky =2(zc+ lxc — Ivo) vy
Ko = 2(Iz0 + Ixn — Iyn) 0o
Ky = Mpalls 1= My iy, Ky = Mpalxe — My Axy;
Wi (p) = lzcp* + pep + [(Ixc — Iye) w3+ Ce -+ 2Ca);
Wi (p) = Wia(p) = [z0p* - pap + [(Ixn — Iya) @5+ Cupl;
Waa(p) = Lzc0” + wep -+ [(Ixe — Ive) 03 + Ccl; (3.22)
Wa(p) = {12cp" + pep 4 ((Ixc — Ive) w8 + Cel} {12ep®
Frep+ (I = Ive) o4 4- Ce - 2C,]) —
- “ZHP2 + unp + [(/.\‘u - !Yn)‘”‘% + Cnp”?'

In accordance with the structural diagram, the signals at the instrument's outlet
are described by the following expressions:
1 . R -
- G, = W, (p — iwg) KWW (p — iwy) 1 KnWia(p — 0] @ +

F (KW (p -~ iwy) + N Wi (p — (0g)] ]}
i = ooy KW (p = 00 -+ KieWar (p = f0)1 ] +
A (K War (p — i) |- KWy (p — i0g)] 0}

] (3.23)

Equations (3.22) and (3.23) make it possible to derive quite easily the expressions
for equivalent angular velocity and linear acceleration when there is an input value
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in the other measuring channel:
- KWy (0 —iog) + KaaW o (p — i) -, l

Ce= KuWiy (7 — iwy) + KWis (p — i) (3.24)
7 KaWa(p —io) + KWy, (p — i) &. I ¢
€ KuWaa (p — iwg) |- K12Way (p — itsg) )

- Assuming, as before, that the instrument's parameters can differ from the nominal
ones--which are identical for both interrelated oscillatory systems--by only small
amounts that are determined by the variations in these parameters, for the area of

essential frequencies we obtain the following expressions for “’e and jg in the first
- approximation:

; moay
/z(l+><)
|

e .—__._X
p—ill— Kb Vi = T E ) g 4-bwg 1/ % -} v2 -{-————-
( l/ zo §) 1) 501/ Iz“’o

(n e X

X

R | Am Aa A . Am Aa
XT{_IT LN Bt S ALY /)-..r_i P-_X._% g_
w} my ay 1z (g mp ay It
. \ . (3.25)
Amp . Nay A/z Aly |
_1(% o )J/)+Ar—(l—- 04z
“ 2 C Am, A“Y AC
| —x vt = - 4V e -
g ) (R ) e
. P P 2‘_\1‘_‘ i
Lo ! m, T ay !

where v = Y(C + C")/Izwg is the ratio of the frequency of one rotor's natural oscil-

= lations to angular velocity Wwo when Wy = 0 and the second rotor has lost a degree of
freedom relative to the torsion bars' axis;

- Tewt-———-—-l’“ntx) v
¢ —_— m" 3
p—i(l_l’,: )"'D - glu,.‘/ o
x %{%(\Ax-um—x) ‘“’)n —i (Mt @405 A”)p+ (3.26)
Y . Al
»i—z\n-—(l—x'l—z"-r-'(l-—xl,k-w—[Z("I')[Ax—{(l% %) ’]+

. AC wof MU \I7
—}-\"?\—,———~l:2<—"—-rdﬂ- f(l I"K) )l )

From expressions (3.25) and (3.26) it follows that, as was the case for the first
setup, the greatest influence on the level of the cross-couplings between the meas-
uring channels is exerted by the nonidentical natural of the rotors with respect to
parameter R. In contrast to the first setup, however, the level of the cross-
couplings depends on which of the measuring channels is used to realize resonance
tuning. If resonance tuning takes place along the angular velocity measurement
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channel, the cross-coupling from the first channel to the second has a high level,
and vice versa. The level of the cross-coupling from the channel not having reso-
nance tuning to the other is determined by the magnitude of this channel's detuning
from resonance, which is requlated by the intermediate torsion bar's rigidity Cj.
Thus, by selecting the appropriate value of Ci, it is possible to change the chan-
nels' dynamic characteristics, their measurement range and the level of the cross-

couplings.

From the expressions for the transfer functions of an OMG (1.86) and a KOMG it fol-
lows that during the creation of a highly sensitive instrument (when resonance tun-
ing is realized and the relative damping factor ¢ is extremely small), its time con-

stant Tg can be quite large.

As a result of this, in a KOMG there can arise large
errors in the determination of angular velocities and linear accelerations.

These

errors are especially large when the instrument is operating in an open system (for
example, the acceleration measurement channel's dynamic errors for an inertial navi-

gation system and so on).

Taking (1.81) into consideration, the expression for the

acceleration measurement channel's dynamic error can be written, with a sufficient

degree of accuracy, in the form

ry I ]

dy(t) == K,L7 | (

where

.o 2maax .
/\lﬂ‘(Tw —VT=8)(Tw, = 1)
b] 55 wy -~ 1)

L7l = operator of an inverse Laplace transform.

\T,p—lq—pl:- — "‘!‘:>i(p)}'

(3.27)

Suppose that the law governing the change in acceleration can be approximated by the

first n terms of the exponential series

j=ad,+at+ . =a,. (3.28)
The expression for the dynamic error then takes on the form
— Ty ap'+ap™ 4 ol ds (3.29)
q(p) = —K; T —i 4ty o — g

By breaking the right side of (3.29) down into elementary fractions and applying the
inverse Laplace transform to both sides, we obtain an expression for an instrument's
dynamic error signal when acceleration (3.28) is acting on it:

uglt) = — K, {Z. AL LA L BTe T

e
= ! t 1 T
+ 8, [—Hgs‘n —— - C0S —J e Tt 1

H 2

ot
Sin —— +

T (3.30)

J —i oy

The unknown coefficients A; and B; can be found from the following equalities:

p""'ReB,+ p"ReB, -+
+ [P ReA\4-p"? Re 4, + -
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- i s n-i - .
= [(sz + pa) %P"" Red; — Zuﬂ Im a,-] ;
p"*'1m 3, + 7" Im B, +
+ "M mA 4P Im Ay - (= 1) Im A ]

(3.31)

£

n . n X
= [(Tz/) +m) X P Ima, + Y p"' Re &iJ.
i=h i=0

By equating in (3.31) the coefficients for identical powers of p in the left and
right sides, we obtain a system of 2(n + 2) linear_algebraic equations in order to
find the 2(n + 2) unknowns ReA;, ImAj, ReBj and ImBj.

#hen the instrument is acted upon by a discontinuous disturbance and the measuring
channel is tuned into the resonance mode, the dynamic error will be described by the

expression ,
- . - L, e f i o
i ()= “”DGXT'E' a, (cos 2t = T isin 2 7?) e ’3:«.
’ | e L . (3.32)
“v”—'“"paxgg ae 9.
- Thus, the larger the value of Ty, the greater the instrument's dynamic error. At

the same time, as was shown in Section 1.6, the higher the instrument's sensitivity
{the smaller £ is), the greater the value of Tg. Therefore, the realization of an
instrument that has both high sensitivity and small dynamic errors is fundamentally
impossible within the framework of the layout we are discussing.

In addition to the specific errors we have discussed, a KOMG also has all the errors
that are typical of an OMG (see Section 2.4). 1In this case the errors related to
angular motion of the instrument's base and synchronous interference are doubled in
the velocity measurement channel. 1In the acceleration measurement channel they are
- Zetermined Ly the nonidentity of the oscillatory systems' parameters. Thus, the
iinear acceleration measurement channel's errors are much smaller than those of the
angular acceleration measurement channel. Thanks to this, the instrument's second
channel's sensitivity threshold is lower and the cross-couplings from the secon
channel to the first can be reduced. The second channel's dynamic errors can be re-
duced by introducing detuning from the resonance mode.

3.3. Synthesizing the Parameters of an Output Filter for Composite Rotor Vibration
Gyroscopes

<n 3ection 3.2 it was shown that composite MRG's have significant dynamic errors
that cannot be reduced without lowering the instrument's sensitivity. These errors
have the greatest effect on the instrument's functioning in the linear acceleration
measurement channel if the signals from the channel are used for an inertial naviga-
. tion system. Integration of these signals results in inadmissibly large errors in
determining velocity and the path that has been covered. Into the channel's input
zhere also enter disturbances related to angular and linear oscillations of the
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base, which are a source of additional errors. Besides this, both the instrument
itself and the signal extraction and processing devices have internal noise, on
which the instrument's sensitivity threshold depends to a considerable extent.

Thus, there arises the problem of optimum signal processing at the linear accelera-
tion measurement channel's outlet for the purpose of obtaining the most reliable in-
formation about the linear accelerations acting on the object, with due considera-
tion for the factors listed above. Such processing can be carried out with the help
of a special filter installed at the instrument's output. Let us determine the pa-
rameters of this filter.

]fn (¢) 'f,‘ (t)
Lo sy =o— 20
~j . uy(t)

Figure 24. Diagram of formation of composite RVG errors.

Figure 24 is a structural diagram of the formation of instrument errors in the ac-
celeration measurement channel. Let us introduce the following definitions:

f;(t) = the disturbance caused by angular and linear oscillations of the base, re-
duced to an equivalent linear acceleration; f,(t) = the instrument's internal
noises, as heard at its outlet; $(p) = transfer function of the filter at the in-

strument's outlet. Disturbance £ (t) is of a random nature and depends on the char-
acteristics of the specific object in which the instrument is installed, as well as
the conditions of its motion. Therefore, we will ignore this disturbance in our
further discussion. An instrument's internal noises are also of a random nature and
are usually approximated by "white noise." We will also assume f,(t) to be "white
noise" with the same power 82 at both channel outputs.

We will determine transfer function ¢(p) on the basis of the minimum mean-square er-
ror in the measurement of the linear acceleration's absolute value and the given
limitation on the dispersion of the noise at the instrument's outlet. This means
that it is necessary to bring to a minimum the functional

I=j|ad(z)[’a‘t—;—k20a (). (3.33)
0

where k = an indeterminate Lagrange multiplier; Dg(t) = dispersion of the modulus of
the linear acceleration measurement channel's output signal.

an instrument has the greatest dynamic errors when operating in the resonance tuning
mode. In connection with this, the cross-couplings between the channels can be ig-
nored with a sufficient degree of accuracy, while the instrument's transfer function
is written in the form of (1.86). 1In this case the problem reduces to the synthesis
of a filter that is optimum, in the sense of criterion (3.33), for each linear ac-
celeration measurament channel. We will use the method of synthesis in a frequency
rea, the basic ideas of which are explained in [41]. According to (Parseval''s)
theorem, in the area of images the expression for functional (3.33) can be written--
allowing for the assumptions we have made--in the following form:
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ioo

’=% I (1) g (—p) 4- 2B*D (p) D (—p)} dp, (3.34)

where ug(p) = error signal at one of the linear acceleration measurement channel's
outputs.

Using the structural diagram presented in Figure 24 and introducing error factors Cy
[23], we will rewrite expressions (3.34) ; substituting the dynamic error's value in
terms of the acting disturbances and the instrument's parameters:

[ n

| [
=% f {[Kle(P)‘D(P)—K/-F?_;T,—P]X

i : -
L] n
X [K;‘Vg(—p)(b(—p)—/(ﬁ Z ;[:“(—p)'}i(p)i(—p)+ (3.33)

I=1
+ B0 (p) D (»‘—/7)] dp.

The ‘necessary and - sufficient condition for ac’.eving a minimum of functional (3.39)
is the regquirement that all poles of function X(p), which is determined by the ex-
pression

- X (p) = Do(p) [KiWo(p) Wy(~p)  (p) | (—p) + KB +

_ + (—K, + %"‘) Wy(—p) K, (p)j (—p). (3.38)

I

where ¢n(p) = transfer function of the forming filter, which is optimum in the sense
of the adopted criterion, lie in the right semiplane.

Let us adopt a law governing the change in acceleration in the form of (3.28). When
determining dg(p) we will require that the optimum filter be stable; that is, that
all poles of b5(p) lie in the left semiplane. Substituting (3.29) and (1.86) into
(3.36), we will write the multiplier standing in front of ¢g(p) as:

Yip) =K} 2"t o 4+t an b

UEd}

P
- (—")"a.\p"-#-(—l)"" a,p"'l + . 4nla, ! |
' (=0T ot TP+1 =T+l

(3.37)

4 k2B

W#ren p is replaced by -p in expression (3.37), it does not change, so we can repre-
sent it as two cofactors Y(p) = YH(p)Y (p), where y+(p) has all zeroes and poles in
the left semiplane, while Y (p) corresponds to it in the right semiplane:

Y () = buaad”™*? + bnop™ 4 4 by

7T+ 1) ' | (3.38)

Yo(p) = (=" by ™2 £ (=)™ by, 0™ £ 4,
(=" " (—Tpp + 1)
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In order to determine the unknown coefficients b; it is necessary to find the roots
of the algebraic equation

(_l)nup'zm'z(l _ T;p'.‘) szq'-}-
+ B (=1 ap" + (=1 ap™ + .. £ nla,] ¥ (3.39)
# (awp" + ap™' + .. +nta,) =0,

and then carry out factorization of the polynomial in the left side of (3.37).

Let us divide the right and left sides of (3.36) by Y (p):

Y* (p) Dy (p) ~ K, (K, =) %p‘) T j(p)i(—p) = 52, (3.40)

l=

where

( o 14 ) " B
.I\/(K,‘—IZ; )’?’ry'('(pr)!(/7)1(—;7)=,‘(,.([(I._E%pz);<
) =1

x Lo’ @p" bl a) (= 1)" 0 4 (=) @™ ot ag]
lnl [( I)nﬁlb ,zﬂn” + (— I)nﬂ b pnﬂ + b,

Breaking down the rational-fraction expression into elementary fractions, we have

- K,(K,—Z%p‘)—“’;s%;li(p)i(—p)=

N (=1

. . v, .
s /«,[({Q—Z%’-p')—,#(—;—’ (p) i (—-p)] (3.41)
S\ (=1
+ K, [(K ~ Y e )—%—Vy — ;(n)i(—p)] .
1=\ -

where the function in the first square brackets has poles in the left semiplane on-
ly, while the one in the second square brackets has them in the right semiplane on-
ly:

/ n
Vo (—0) _ -
K,[(K,——Z )—#WIP)/( p]
l=1 * (3.42)
=K (G-t o),
p p
here the expressions for the unknown L; can be found, by the method of indeterminate
coefficients, by expansion into the simplest fractions.

Substituting (3.42) into (3.40) and taking into consideration the requirement that
X(p)/¥" (p) be analyzable in the left semiplane, we obtain the final expression for
for the transfer function of the optimum forming filter for the acceleration meas-
urement channel's signal:

D, (p) = K, Tt DL+ L™ + - 4 L) (3.43)
™ A b+ + by _
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Thus, when the law governing the change in linear acceleration and the instrument's
parameters are known, expression (3.43) makes it possible to reduce the instrument's
dynamic error by realizing optimum (under the indicated conditions) filtration of

the output signal. For example, if the linear acceleration at the instrument's in-

put changes rapidly (j = ag), the expression for the optimum filter's transfer func-
- tion has the form

Dy (p) = Tt 1 :
8T 8 i (3.44)
TP R V"*' 7P T!

The realization of such a filter presents no significant difficulties. Filtration
effectiveness and feasibility can be determined for any specific problem. 1In order
to do this, after the parameters of the filter are computed, it is necessary to re-
evaluate the instrument's dynamic errors. It should be mentioned here that a syn-
thesized filter is optimal only for specific disturbances and instrument parameters,
for which their mathematical expectations can be used. For a conclusive evaluation
of the effectiveness of filtration, the sensitivity function for changing disturban-
ces and instrument parameters should be derived and the additional dynamic errors
appearing in connection with these disturbances should be evaluated.
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CHAPTER 4. STABILIZATION SYSTEMS UTILIZING ROTOR VIBRATIONS GYROSCOPES AS THE BASIC
SENSITIVE ELEMENTS

4.1. Stabilization System Equations of Motion, Structural Diagrams and Transfer
Functions

The specific nature of RVG's, which are small, highly sensitive measurers of abso-
lute angular velocities, determines their basic area of utilization as sensitive el-
ements in the construction of systems that are stabilized in inertial space. These
systems are installed in ships for the purpose of creating a reference system of co-
ordinates and are usually built to operate with gyroscopic sensors of different
types. There are two fundamentally different ways of using RVG's in stabilization
systems.

The first way involves the use of RVG's as the basic sensors that measure the devia-
tion of a stabilized platform from the position it initially occupied in inertial
space and generate and send an appropriate signal to the system that controls the
stabilizing engines, which must compensate for the effect of the disturbing moments.
This way provides for the creation of relatively more accurate and cheaper stabil-
ized platforms than platforms based on gyroscopes of the classical type [15]). The
use of RVG's makes it possiblé to miniaturize platforms, which for many objects is
extremely important. In this case, a number of demands are made on an RVG acting as
a sensor for a stabilization system. In addition to a low sensitivity threshold, it
must have rather broad ranges of measurable velocities and frequencies, as well as
high accuracy when operating on a base subjected to a broad spectrum of disturbances.

The second way involves the use of RVG's to increase the accuracy of gyroscopically
stabilized platforms (GSP) by integration with “raditional two-stage gyroscopic sen-
sors.

The simplest stabilization systems that can be built using RVG's are unaxial stabil-
ized platforms (OSP). 1In this case one of the RVG's sensitivity axes coincides with
the axis of stabilization. As a result, at the output of the instrument's appropri-
ate channel there forms a signal that is proportional to the platform's angular ve-
locity of rotation around the axis of stabilization in inertial space. The absolute
angular velocity of rotation of the platform around an unstabilized axis that coin-
cides with the RVG's second axis of sensitivity, leads to the appearance at the

- RVG's output of an error signal because of the cross-coupling that takes place in
the PVG itself.

A structural diagram of an OSP is shown in a linear and stationary approximation in
Figqure 25. The following definitions are used in the system: Mp = disturbing
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Figure 25. Structural diagram of uniaxial stabilization system.

moment acting on the platform along the stabilization axis; a; = angle of rotation
of the platform in inertial space around the stabilization axis; u = signal at the
RVG's output; u, = signal on the stabilizing engine's control winding; Mop = moment
developed by the stabilizing engine; Wy = absolute velocity of the platform relative
to the unstabilized axis that coincides with one of the RVG's sensitivity axes; wg =
= RVG error signal, reduced to an equivalent angular velocity at the instrument's
input; f, = interference signal, reduced to equivalent noise at the RVG's output;
Wg.0(p@), Wg.n(p) = transfer functions of the RVG for direct and cross signals, re-
spectively; Wy x(p) = transfer function of the correcting circuit in the stabilizing
circuit; wp(p) = transfer function of the stabilizing engine. :

An analysis of the system represented by the structural diagram in Figure 25 makes
it possible to study its basic properties (in the first approximation) and realize a
preliminary synthesis of the regulator's parameters. For a more detailed investiga-
tion of OSP's based on RVG's, their specific features should be taken into consider-
ation. As was shown in Chapter 1, the signal of a modulation RVG (an MRG) contains
two compcnents: a slowly changing one (the signal on the zero frequency) and an
amplitude-modulated one that has a carrier frequency equal to the doubled frequency
of rotation of the rotor. For structural considerations the latter component cannot
be overly high and is usually 200-400 Hz. . This component must be filtered reliably,
for otherwise it can cause an undesirable angular vibration of the platform on fre-
quency 2“0' It is obvious that for large amplification factors, the filter for the
doubled frequency of rotation can have noticeable effect on the system's dynamics.
Therefore, the OSP's basic characteristics should be defined precisely, allowing for
the nonstationary nature of the RVG's signal.

The structural diagram of such a system, allowing for the RVG transfer functions de-
rived in Chapter 1, has the form shown in Figure 26. For an MRG there is only one
nonstationary parallel connection between the instrument's input and output, which
in the diagram is reflected by the presence of multiplying elements that modulate
the signal on frequency 2wg. For RVG's with double modulation and single modulation
by motor PD1, for which condition (1.22) is not fulfilled, there will be (generally
speaking) an infinite set of such parallel connections. In connection with this,
modulation frequenc%es n will be both multiples of frequency 2wy and composites of
frequencies wy and $). The cross-couplings from the instrument's second measuring
channel will also contain a full set of amplitude-modulated signals, which in the
structural diagram are shown by the signals Ugys...,0gp at the RVG's output. The
errors caused by disturbing moments with the appropriate modulation frequencies are
allowed for in the form of equivalent angular velocities W e
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Figure 26. Structural diagram of OSP, allowing for the non-
stationary nature of the RVG.

Real OSP's based on RVG's are not linear systems, so when determining their proper-
ties we should allow for the effect on their operation of the basic nonlinearities.
Above all, this means nonlinearity of the type of saturation in the measurer of the
RVG's rotor's angle of rotation. It is caused by the presence of arresting devices
that limit the rotor's angle of rotation and protect the torsion bars against frac-
turing, as well as the limitation on the range of the change in voltage in each in-
dividual channel of the signal processing system. The second essential nonlinearity
is the moment of dry friction in the platform's suspension axis. It can be particu-
larly large when a direct-current moment sensor with a brush commutator is used as
the stabilizing engine. When saturation in each channel of the signal processing
system and the moments of dry friction are allowed for, the structural diagram of an
OSP with an RVG takes on the form depicted in Figure 27.

The analytical expression for nonlinearity of the saturation type in the signal pro-
cessing system's channel can be approximated with a piecewise-linear function of the
type
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Figure 27. Structural diagram of OSP, taking the basic nonlinear-
ities into consideration.

u for Iu‘<“"; )
for u>uy (4.1)

u" = llm,
for u<<—u,.

Uyo

"Dry" friction is usually approximated by so-called Coulomb friction [22], which--

depending on the platform's and base's.relative angular velocity--is described by a
relay characteristic that is indeterminate at zero. We will predefine this charac-
teristic in the following manner:

— My for a,— >0
M, = M. for @, — ws<0; (4.2)
M, + M., for a4, — g =0,
where w~ = absolute’.angular velocity of the base relative to the axis coinciding
with the platform's suspension axis.

A problem of particular complexity is allowing for the presence of arresting devices
that limit the angles of rotation of the RVG rotors. Limitation of the rotors' de-
grees of freedom leads to a change in the equations of motion, which become essen-
tially nonlinear, so that the MRG transfer functions derived in Chapter 1 lose their
meaning,

Taking into consideration the nonstationary nature of the RVG and the described non-
linearities that are inherent in OSP's and RVG's, we are now able to investigate an
OSP's basic properties.

Let us examine the special features of the description of multiaxial stabilized
platforms. Figure 28 is a diagram of a triaxial stabilized platform (TSP). Either
two or three RVG's can be used in its construction. In view of the fact that each
RVG is a two-dimensional measurer, the first variant makes it possible to achieve
duplication of one channel, while the second makes it pcssible to duplicated all
three stabilization channels. The most natural orientation of the RVG's on the

platform is the one in which their axes of sensitivity coincide with the stabiliza-
tion axes.

In order to describe such a system, we will use a vector-matrix apparatus. In this
case, given assumptions that enable us to regard the system as being stationary and
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Figure 28. Diagram of TSP based on RVG's.
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Figure 29. Structural diagram of TSP based on RVG's.

linear, its structural diagram can be represented in the form depicted in Figure 29.
In the structural diagram we have introduced the vectors of the system's generalized
coordinates and the disturbances acting on it, as well as the transfer matrices of
its basic elements. When constructing the platform's transfer matrix Wg;(p), along
with the cross-couplings between the channels with respect to the platform's cen-
trifugal moments of inertia [22], the cross-couplings with respect to the gyroscopic
moments should also be taken into consideration. The latter arise because of the
fact that the rotating parts of each RVG, which are rotor PD2, have some kinetic mo-
ment h;. Allowing for this, the elements aj 5 of the platform's transfer matrix are
written in the form

ty T(%) = Uxyp - Ta)(Txvp = YW (D)W o (0N W (p);
|
Uy = m Ihl + /"1 (I,\'\'/) + l’-’l) ‘Vun (/))I Wlll (p) W/n! (/7):
|
Ya T T dp) [y Ty p — ) W o (D)W (0) + W 0 (0 W 0 ()

l r
tn = — gtk by vy = B W (DI Wi () Was ():

| Y ;
Uas = g [ - AW () Waa (0)] W (p): (4.3)
| 7 .
U= =7 xyp — g — RAW (DN W0 (0) Waa ()

t ,
Uy = o thi(Tvp - hg) Wy (p) +- 1] W g MW (P
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!
M= =g Uarp + s — Wy (D)W iy (0 oy (1),
| 2
% = 77 1+ 0Way (D) Wy (0)] W,y (),

where 9 n
d(p) =1 4+ W, (p) W (p) + haWa (p) W3 () +
+ W3 (9) Way (p) — (/ xvP) Waa (p) W3 (p) +
+ 20l xyp Wi (p) Wog () W 5 (0);

|
Wailp) = Top Fhm

The measurers' transfer matrix Wg (p) allows for the operation of each of the three
RVG's on two channels and the presence of internal cross~-couplings between the chan-
nels that is inherent in RVG's. This matrix has the form

Wo(p) =
?
! u73- " (/)) + ‘Vgo!(p) \Vs nl (/)) —uys n? (P) !l (4,4)
"Ws. rll(p) W/}.,.L(P) + Ws.n.‘l(/)) W . U}) ’ .
Wy n: () ~Wemp)  Wio (of + Wy (0]

Matrix Wy x(p) can be an arbitrary overator matrix with 3 x 3 dimensionality. 1Its
elements must be selected in such a manner that for a given unchanging part of the
system, desirable dynamic characteristics are obtained in it. In particular, when
the cross-couplings are weak, this matrix can be a diagonal one.

Matrix BWp(p) allows for the transfer functions Wpi (P) of the regulators in each of
the channels, as well as the cross-couplings between the stabilization channels with
respect to the stabilizing engines' moments [22]. 1In the general case this matrix .
is written in the form

Bwp (p) =
Wpl(p) 0 O
i 4.5)
= sinftgh, Wy (p) cosPW,(p) sinfysech,Wn(p)|, (

f cosBytgB. W, (n) —sinf Wa(p) cosPisecP, W a(p)|

where Bl, 85 = relative angles of rotation, respectively, of the platform and the
intermediate suspension ring and the intermediate and outer suspension rings.

The cross-couplings in the regulator are eliminated almost completely when a device

that realizes spatial conversion of the coordinates is used (24). Plane conversion

of the coordinates eliminates cross-couplings caused by the platform's angle of ro-

tation 3) alone. It should be mentioned here that in some cases the structural fea-
tures of an RYG make it possible to simplify substantially the solution of the prob-
lem of plane conversion of the coordinates. When RVG's with signal reading in a ro-
tating system of coordinates and single signal modulation are used in a TSP based on
two RVG's (RVGl and RVG3) in which only the signals from RVG3 are used for stabili-

zation along the 2-2 and 3-3 axes, it is sufficient to attach the receiving coils of
RVG3's GOI directly to the intermediate ring. In this case, even when the platform

rotates through angle B; the sensitivity axes of RVG3 will always coincide with the

suspension axes on which the corresponding stabilizing engines are mounted.

Allowing for the nonstationary nature of RVG's in multidimensional systems when nor-
mal instrument transfer functions are used leads to an extremely cumbersome form of
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both the equations of motion and the system's structural diagrams.

Therefore, it is
more convenient to use the complex RVC transfer functions derived in Chapter 1.

In order to do this, let us introduce additional matrix transformations of the sys-

tem's coordinates:

@ i
(;)ﬂ = G)a i JCL",
@y
where
i 01
J=4i{ 0 |
0 1 ]

(4.6)

Vectors wl, wz, w3 are absolute angular velocity vectors lying in the plane of sen-~
sitivity of the first, second and third RVG's, respectively. The vectors of the
output signals from each RVG are “l' uz, u3. The transition from these vectors to

complished by the following transformation:

ol |4
= anfife  ai |
iy ujz
where
—t —i 0 —i —i 0
A =] 1 Tl A=l 1 0 |
0 1 —i 0 | S

A e ] -
g R T

0 L2t

lu'“,

- Figure 30. Structural diagram of TSP, allowing for the non-

stationary nature of the RVG's signals.

the vector of the signals going from the RVG's into the stabilization system is ac-

(4.7)

When transformations (4.6} and (4.7) are taken into consideration, the TSP's struc-

tural diagram can be represented in the form depicted in Figure 30.
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unidimensional case, for systems with single modulation by the PD2 motor and systems
with modulation by the PDl motor, for which condition (1.22) is fulfilled, in this
system there is only a single nonstationary, parallel coupling with modulation on
frequency 2wy. For other RVG setups there is an infinite set of such couplings with
- modulating frequencies that are both multiples of 2wy and composite frequencies.
Transfer matrices Wg(p), (p) and wg x(p) are diagonal matrices, along the main di-
agonals of which the correspondlng complex RVG transfer functions are located.

Let us discuss a method of representing, with the help of a matrix structural dia-
gram, a TSP in which the basic nonlinearities of the type of saturation in the RVG
(4.1) and the type of dry friction in the suspension axes (4.2) are taken into con-
sideration. In order to do this, we will introduce so-called nonlinearity units BH1
and BH2, which are diagonal matrices of dimensionality 3 x 3 in which the piecewise-
linear functions uy; and Mp; , as determined by expressions (4.1) and (4.2), are lo-
cated along the respective main diagonals. The input for BH2 should be the vector
of the platform's relative angular velocities in the suspension axes. When the base
is immobile, the conversion from the absolute angular velocities of the platform to
- its relative velocities in the suspenE}on axes is accomplished by multiplication
from the left of matrix BT by vector G; [22]. When the system of coordinates is
given as indicated in [24], the relationship between the vector of relative veloci-
ties in the suspension axes and the base's angular velocities is determined by ma-

trix By:
cosfl, cosfl, sinf,cosP, —sin ﬁzl
- By =| —sinp, cos f, 0 . (4.8)
0 0 l

R lTIe
Weip) L ! —é— Weip) (= BHI
Ly a’
. mm,:;L__ 8,

iy

e

k]

Watp) 5] War(p) 1=
¥

Az'-t—1-)(-

Figure 31. Structural diagram of TSP, with basic nonlinearities
allowed for.

In the suspension axes there occurs summation of the moments of the "dry" friction
forces, the stabilizing engines' moments and the disturbing moments, which should be
regarded as being reduced to the platform's suspension axes. With the help of ma-
trix B, the total moment is converted to the moment acting along the platform's ax-
es.

Saturation is allowed for in the signal processing system by simply connecting non-
_ linearity unit BH1l to the structural diagram, in series, after transfer matrix
wg(p). Figure 31 is the structural diagram of such a system, with BH2 also having
been taken into consideration.
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4.2. Static Characteristics of Stabilization Systems

Let us discuss the simplest OST layout. From the structural diagram depicted in
Figure 25 it is easy to derive the transfer function of an open system:

i | ’
where T; = Jyg/ug. The transfer function of a closed system, with respect to a dis-
turbing moment acting on the platform, has the form

- 1 I 1
K T —— e

_(p) Mo Tap+1t F W (p)’ (4.10)
while with respect to the equivalent angular velocity acting at the RVG's output, it
is

= Y 4.11

K,,!(p)—l+w(p)p. (4.11)
In expressions (4.10) and (4.11) let us make the maximum transition for p +~ 0. 1In
the absence in the stabilization circuit of purely differentiating or integrating
components, for p + 0 the maximum of the product Wk.k(p)wp(p) is Kp.

As has already been stated, in connection with dynamic tuning an RVG can be charac-
terized by two operating modes. The first of them is the integrating mode, which
occurs in the initial period of the.transient process in connection with the effect
on the instrument's input of a discontinuity in the angular velocity. Since the
length of the transient process is quite long for highly sensitive RVG's, for a GSP
this mode will be caused by the effect of the disturbance resulting from some static
error appearing after the conclusion of the short-period component of the transient
process in the stabilization system. The second mode is a differentiating one and
is the RVG's steady-state reaction to a constant angular velocity. In this mode the
instrument's properties will determine the GSP's drifts when acted upon by constant
disturbing moments along the stabilization axes.

In the first case, with respect to the base's absolute angular velocity the follow-
ing relationship occurs:

W5°(p)::o—K5' (4.12)
and in the second:

K
Wa(p) = — =t (4.13)

J- 23]

When acted upon by a constant disturbing moment, the OSP's static error then has the
following forms:
in the differentiating mode--

Q= —— ——— M,
Pn - Kpfnp (4.14)
h in the integrating mode--
1
% =iy M- (4.15)
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A constant equivalent angular velocity at the RVG s input results in the following
OSP static erxors:
in the differentiating mode--

KeoKp
m,—(!—— De, (4.16)
in the integrating mode--
G = Q. (4.17)

When the RVG is operating in the differentiating mode and the requirements for OSP
accuracy are real, it is necessary that amplification factor K.p be one or two orders
of magnitude greater than when the RVG is operating in the integrating mode. 1In the
case of large wvalues cof » OSP drifts are determined by RVG errors expressed in
terms of the equivalent angular velocities at its input.

Let us discuss the static characteristics of multidimensional stabilization systems.
When a system is represented in linear and stationary form, in accordance with the
structural diagram depicted in Pigure 29, its equation of motion has the form

= E + W, (p) BW, (p) W (p) Wy(p)I™ Wi (p) x

— - (4.18)
M - BWp () Wk (p) ‘Vs(p) ‘”@l'
Let us derive the static characteristics of a DSP [biaxial stabilized platform]
nased on a single RVG. In connection with this we will assume that, in the general
- form, in the system it is possible to realize mixed control of the stabilizing en-
gines; that is, all the elements of matrix Wy k(p) do not equal zero. It is then

the case that, in the differentiating mode,
|

L, A h oz LAY
an= P‘HJK;TH——MF_—M— .‘“—Kn+Kn.5(K:2K32 KcJ Pna)‘
. h = .
K 'T— K:aKaz - l\n.’<Kc2—: Kz::" Kca>~
—KC1__KC1K'I‘)+K 3( cJ—Ka'L ch);
X (4.19)
: B KoK R A
ks i T K g Ko — Kﬂ.s(KcaKza'*‘ K “M)
! A i
. Bna Hazhtng | | =—
b _ A ) —d_M'
Mozl Kmy |

{
2]
1]

| 1
I.ln-_vK1 1naksy

< {[l + K. (T:% + KcaRn/l - Kn.g(Kcz.Kullnxz+ Kcﬂhﬁn))} <

“ [ |+ K, (ul’- — KaKught + Ko, o(KeaKabios — chh)” -
n2 _
- K:Ka[(KaEml-‘- +hK )+ K. a( b + hK, 1K.n)l/<
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K2, K3 = amplification factors of isolated stabilization channels in the closed
state; K p, Ko3 =_amplification factors of open isolated stabilization channels
K3p = Kk32/1'<k33l_K23‘= Kk23/Kk22 are relative transfer factors of cross-signals in
the correcting circuit; Kﬂ.g = Wg.w(o)/wg.o(o) = relative transfer factor of cross-
signals in the RVG.

Let us make some simplifications in expressions (4.19). As was shown in Section
1.6, the RVG's transfer factor with respect to the cross-signal relative to the
base's angular velocity is determined by the detuning of the instrument from the
resonance mode or by a phase shift in the demodulator. In real instruments these
values should be quite small, so in (4.19) we can ignore the terms containing Ky g-
The transfer factor of an open, isolated stabilization channel is usually greater
than unity, so the following relationship is fulfilled:

|
Keo = T

Considering what has been said, let us derive the expression for a DSP's static er-
rors in a simpler form:

Ko 1 o= (o + f)

(-,ln _ Hna \ Rng
_ 3 .
sz [Ksz(l + ,T,:T,T,) + A“}Tn—:ll—n;}
——K:;[/_\‘~13<I lﬁ_,,_’%;>—K2Pnl:—;m] (4.20)
i Ko [1 4 o (5 4 Ko) ]
o o "I ! he — R m
([ + Ky m) (I + K. “—m> + “"2"":‘—,\.‘]3/\1’3 (l 4 m)+
K (I\'QF'“— /\-1,‘_':.1)

’ tozitna

From (4.20) it follows that a DSP's static errors can be reduced by increasing the
amplification factor in the circuit for the direct control of the stabilizing en-
gines and in the cross-control circuit, as well as by increasing the kinetic moment
h. In connection with direct contrcl, it is sufficient to set Ky3 = K33 = 0 in ex-
pression (4.29). In the case of cross-control alone, expression (4.20) is trans-
formed into

. h?
/\ n K:ln Tona
a _ Itna
n- . h? h3
_ | L —~
Kz" ( " Mnajtng + Kan l‘nzl'n3>
|
h? h? |
) — (o ( - e Kml_ln:ll—na>l ’ (4.21)
O & .
KaaKan o
M
\.K K mo h? + (K Kan) e
) TR Hnating m T
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where

Kin = Ka R0 Ka = Ko 2.

2 Kua  Kuas

_ Given the assumptions made above, disturbances applied to the system in the forin of

an equivalent angular velocity at the RVG's input result in static errors described
by the following expressions:

- (l + Th:: Kﬂ) (I *'hKWK?) - K1va3 (I + Fni}"na)
Op == Kaz(K:l_'—K">
— Kk, k
R ( " ) X (4.22)
(14 35 16) s =k = R (14 55
W
+“n - (K, /\'31 '—K1l(21)

From (4.22) follows the trivial conclusion that the larger kinetic moment h is rela-
tive to the stabilization circuits' amplification factors, the smaller the systemat-
ic DSP drifts caused by RVG errors. For small kinetic moments and high amplifica-
tion factors in the stabilization circuit:

l
()ll

that is, for all practical purposes the DSP drifts equal the RVG errors.

iy ==

(4.23)

In an analogous manner let us determine the DSP's static errors when the RVG is op-
erating in the integrating mode. When a disturbing moment is acting along the
stabilization. axes, they can be defined as

1
|

Ke,

3

=
Ry
K
_ = € ——_——:—M, (4.24)
n R | i 2K 52
TR, Kes

while when an equivalent angular velocity is acting on the RVG's input, they are de-
termined from the expression

- 10 | -
_, o T A (4.25)

Pnaltna

Thus, when the RVG is operating in the integrating mode, constant disturbing moments
result in permanent angular deviations of the DSP from the position it initially oc-
cupied in inertial space, it being the case that the higher the open system's ampli~
fication factor, the smaller the deviations are. In connection with this, both di-~
rect and cross control prove to be effective.
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- 4.3. Choosing the Structure and Parameters of a Uniaxial Stabilization System

Let us discuss OSP's that are described by the structural diagram presented in Fig-
ure 25. We will choose the structure and parameters of the correcting circuit on

the basis of the requirement of realizing a given value of in the system while
insuring its stable operation with given indicators for the quality of the transient
processes.

Let us examine an OSP based 6n a single-rotor MRG featuring signal reading in a ro-
tating system of coordinates. 1In the dynamic tuning mode, its transfer function
with respect to the basic signal is described by expression (1.86). As the indica-
tor of the transient process's quality-we will take the value of the cutoff fregquen-

_ cy wy of the open system's LAKh [logarithmic frequency response characteristic] and
its deviation in the area of this frequency, as well as the system's stability re-
serves with respect to phase $3 and amplitude A; [2]. From an examination of the
open system's frequency characteristics it follows directly that it is easy to ob-
tain the given values of the quality indicators by using a series-connected correct-
ing circuit with the following transfer function:

Tuip+ 1.

W o(p) = o

TKl >Tl('." (4.26)
Let us establish the relationship between the values of the time constants Ty; and
Tk2, the regulator's amplification factor Kp, cutoff frequency wp and the values of
the stability reserves relative to amplitude and phase when the LAKh's deviation in
the area of the cutoff frequency is -20 dB/decade.

Considering the fact that for real systems the time constants T; = Jp/u, and T, are
large and that the frequencies corresponding to them are considerably lower than the
cutoff frequency, we obtain the following systems of equations:

- ’ K P‘/Tilmf’:"l 1 | =4
C— ; == = Ay
Jm Tiwi+1 TnTSmf Vri"’i +1

arctg T, 0, — arctg T, 0, — arctg Ty = 0; (4.27)
Ko 1 /TEOIED 1
e ¥V TiLoi+ | TnTgm::: V’T;mé +1

where w; = the frequency on which the open system's phase characteristic equals -w;

Tp = a time constant that allows for the stabilizing engine's inertial lag.

We will assume that the condition 1/T, >> wp is fulfilled in the system. It is then
obvious that the maximum ratio TkZ/Tkl = Vv for which the required stability reserve
with respect to phase is insured is determined by the expression

v=1421g%p; — ) (1 + 2tg2p,)* — 1, (4.29)
while the cutoff frequency is

| =V 4,30
W= Ty ( )

- Substituting (4.30) into the first equation in system (4.28), we obtain the open
system's amplification factor:
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Figure 32 depicts the graphs of the dependence of (Kng/un.)/(l/TﬂT ) and 1/wy on T

for different system stability reserves with respect to phase. Thése graphs and re-

lationship (4.29) make it possible to make a preliminary selection of the correcting
_ circuit parameters (4.26) that provide the desired regulation process quality.

The stabilizing engine's time lag T, imposes additional limitations on the choice of
the open system's amplification factor, 1In connection with this, the stability re-
serve with respect to phase takes on the value

, I I —v
3 = g — arclg - ——7,, (4.32)
while the open system's amplification factor, allowing for the required quality re-
serve with respect to amplitude, satisfies the inequality

o i 9
[y . t)(l=v—1) 2
[ T, (\. l}er (Tp b V(1 = fp)a(Kqu Tﬁu) —L2 (4.33)

\"r; (l —rp') |.lnTnTg 747
where T, =T /Tk < 1. In accordance with (4.33), in Figure 33 we have plotted the

areas of allowable values of L that relate the values of the system's parameters and
its stability reserve Aj.

Calculations made for specific systems show that a correcting circuit with transfer
function (4.26) makes it possible to insure small stabilization errors, as deter-
mined by expression (4.15). When acted upon by real disturbances, however, the
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drifts in such systems (as found with expression (4.14)) can become quite large.
Reducing the drifts by one or two orders of magnitude causes a significant enlarge-
Jent of the system's pass band. As a result, the requirements for the stabilization
system elements that are related to the expansion of their dynamic range are raised
and the noise level in each of the elements is reduced. Thus, the stabilization
circuit structure under discussion can be used as a basis for correcting systems or
systems in which the requirements for the magnitude of the drift are not quite so
high.

The easiest way to increase an open system's amplification factor is to include an
integrating-differentiating element in the stabilization circuit. The correcting
- circuit's transfer function then acquires the form

” Tew £ 1 Tuyp+ 1
Vel = 7557 Foms 1 (4.34)

where Ty4 > Tyx3 >> Tkl > Tk2- In connection with this it can be assumed that the
amplification factor increases by a factor of Tyx3/Txq while the open system's LAKh's
cutoff frequency remains unchanged. The required value of the open system's ampli-
- fication factor also determines the relationship between the time constants Tx3 and
Tk4- Time constant Ty3 should be selected in such a fashion that relationship
T3 >> Ty is satisfied. 1In this case the technique for selecting time constants
Tx1 and Ty, and allowing for the effect of the stabilizing engine's time constant T
is analogous to the one described above. Let us mention, however, that the given
system will have two stability reserves with respect to amplitude; that is, it is
provisionally stable.

As follows from an analysis of the equations of motion, the dynamic characteristics
of a DMG differ substantially from the characteristics of an OMG. Let us discuss an
OSP based on the use of one of the most highly developed types of RVG: a DMG with
single modulation by motor PD2 and signal reading in a nonrotating system of coord-
inates on the zero frequency (a Knaui gyroscope). We will make use of its transfer
functions, as approximated in the band of essential frequencies by expressions
(1.109). An oscillatory component with time constant Ty describes the precession
motion and determines the gyroscope's deflection in inertial space. In connection
with the discussion of a system's stability, this oscillatory component and the com-
ponent with the introduction of a derivative in the area of its frequency cutoff can
be approximated by the expression (T;/T%)/(l/p). An oscillatory component with time
constant T, describes the gyroscope's nutational oscillations and affects the sys-
tem's dynamic characteristics.

One of the simplest correcting circuits in a stabilization circuit, which makes it
possible to increase the regulator's amplification factor KP, is a nonminimal-phase,
series~connected circuit with a transfer functicn in the form

Tap -1 =Tqo+1 4.35
Tap+1 Tap+1 ' (4.35)

Weolp) =

where Tp3 < Tka.
Using (as before) the frequency criterion of stability, let us determine the cor-
recting circuit's parameters and, in connection with them, the maximally achievable

amplification factor of the ogen system. (We will assume that 1/Tx3 and l/Tp are
much larger than the nutational frequency 1/Ty and that the effect of the
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corresponding components on the system’'s dynamic characteristics can be ignored in
the first approximation.)

It is obvious that in order to achieve the maximum amplification factor it is neces-
sary that the open system's phase frequency characteristic take on the value -7 at
frequency wy, as determined from the relationship

Vo= 0Ty = l/é(l —-)q ‘25)2—%)*7'5“ (4.36)

Frequencies w;, on which the amplitude frequency characteristic equals unity, is
then determined as the roots of the cubic equation

Vi = v+ A, VT = v — 38wz = 0, (4.37)
where v; = WyTy. Taking into consideration the fact that &y << 1 and giving (for
example) a stability reserve with respect to amplitude of 6 dB, we obtain the fol-
lowing solution for equation (4,37):

vy~ %-0.173 6 vip~ 72—5--0.766 0 vip~—=.0.9397.

wit

Having obtained Vo and v; from equations (4.36) and (4.37), the values of the cor-
recting circuit's normalized time constants 1) = Tx1/Tyg and Tgo = Tkz/TH can be de-
termined by solving the following system of nonlinear algebraic equations:

2(1 4 7,vptg ) VoS + (Tavy — 18 1by) (t —vis2) )

e = Yo (U4 %avy (g ) (1 —vid,) —2 (v, —1g D
to = 2(1 +1yv,, 12 ) V1 Tky 'f‘ ("n"n =) (1 —"?I%) : 4-38)
vl + vy g ) (1 —vied)) —2(t,v,, — g PVt
where
—py = — —’2‘——{— arctg-lz—_g_"—vv?’-_;l —t = p3 — % + 3fCtg‘,2§T"vvl;—l‘v
s

The open system's amplification factor can be evaluated approximately with the ex-
pression

K vy e L K, (4.39)

T” Tz 5

Figures 34 and 35 show the grapns of the dependence of Tx1 and Tk2 on Tp for differ-
ent values of the reserve with respect to pnase ¢3, while Figure 36 is a graph of
the dependence of (X/Kq) Ty on the platform's time constant ty. From these graphs it
follows that for real instrument barameters and the chosen correction structure, the
maximum value of the amplification factor of the open system of an OSP with a Xhaui
F/roscope proves to be less than for the system with the single-rotor MRG that was
discussed abeve. Its value is determined by the frequency of the gyroscope's nuta-
tional oscillations. Therefore, when designing this type of instrument, one of the
basic requirements is to obtain the maximum possible value of wy., It is also
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posSible to increase the amplification factor
by introducing an additional integrating- N R/ R 7 R
differentiating component into the stabiliza- "
tion circuit. The use of correction of the Figure 36. Dependence of amplifi-
boosting type to increase amplification fac- cation factor on the platform's
tor Kp is hardly feasible, since it éntails time constant,

expansion of the pass band and a correspond-

ing increase in the requirements for all its

components,
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4.4. Dynamic Errors in a Uniaxial Stabilization System

The overwhelming majority of stabilized platforms are intended for operation on mo-
bile objects. The presence of angular oscillations and vibrations is a character-
istic of these objects. Angular oscillations and vibrations of an object at the
point where a stabilized platform is installed contribute to the appearance of har-
monic disturbing moments that affect the stabilization system. The causes of these
moments are residual disbalance of the platform, moments of dry and viscous friction
in the suspension axes, stress moments and so on that result in harmonic oscilla-
tions of the platform. The amplitude of these oscillations determines the stabili-
zation system's dynamic error, the allowable magnitude of which is assigned during
the planning of stabilized platforms. Let us discuss the dynamic errors of 0OSP's
based on MRG's.

In engineering practice, dynamic errors are determined with the help of a system's
transfer functions. In order to do this, the closed system's transfer function with
respect to the stabilization angle caused by the disturbing moment is found either
analytically or with the help of closing nomograms. The modulus of this transfer
function for each frequency equals the amplitude of the platform's angular oscilla-
tions when acted upon by a unit disturbing moment along the stabilization axis. For
an OSP, the closed system's transfer function is determined by expression (4.10)
In our analysis of dynamic errors we will discuss three characteristic frequency
areas: low frequencies, where [w(p)|>> l; resonance frequencies, in which modulus

p=iw
{W(p){ is commensurate with unity; postresonance frequencies, for which the rela-
p=1iuw .
tionsnip [W(p)| << 1 occurs.

p=iuw

Let us first discuss an OSP based on an OMG with VP and signal reading on the PD's
rotation frequency. Taking into consideration the correcting circuit transfer func-
tion (4.34) that was derived in Section 4.3, the closed system's transfer function
in the low-frequency area can be approximated by the expression

, _ | (T + D (Tup+ 1)
K(p) = KKo P (Twp =1 (4.40)
be

Thus, when the disturbing moment's frequency is increased to approximately
B 1/max (Tgr Txq)+» the closed system's transfer factor and, consequently, dynamic er-
ror Jecrease. Then, approximately to the frequency min (l/Tq, l/Tk3) or to frequen-
ey 1/Tyy (if Tg > Txq4)s the system's transfer factor does not change for all practi-
cel purposes, but beginning with frequency max (l/Tg, 1/Tyq) it increases if T_ > Txq-
However, if Tg < Tx3. then, beginning with frequency l/Tk4 the transfer factor de-~
creases., For frequencies higher than max (1/Tg, 1/Tkq), the transfer factor's value
again remains practically constant. The expressions for evaluating the system's
transfer factor with respect to a disturbing moment can be derived quite easily from
(4.40) and have the following form for Tg > Tkg:

I . v
o< | K (fw)] = Ko - (4.41)
! e ol A (4.42)
—T:>€0> TS' | K ({0)] =~ KSK".
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| : T .
> 0>, IK(M)I%ﬁr—“‘w' (4.43)
K3
H Tnu
m>—f:, 1K ( L(:))‘&’T Tes (4.44)
When Tg3 < Tg < Tx4: the expression for the second band of frequencies takes on the

form

1 .
= >“"r‘l;7 LK (iw)

Q2

T
|~ %= (4.45)
¢

while when Tg < Tx3r the expression for the transmission factor in the third band of
frequencies also changes:

{ ! . 1 T ks
—7-_5'>10>TK.1“1 ll(h('))l:K_g!(—pz;—TT}' (4.46)

When analyzing the closed system's transfer function in the area of cutoff frequency
wy, its expression can be written, with an adequate degree of accuracy, in the form

K(p)=
”'Ta(Tpﬂ+ D (Teep 4+ 1) (4.47)
K(‘Kp ’"hré' T TK*P + mlq T3 pl\: pPP4m ’";;Apz_l_ Tap + 1

K%’p
where m = T4/Ty3.

In (4.47), expressing the values of the system's parameters in terms of the correct-
ing circuit's time constant Tx1s we obtain

K(p) =
= 15 (T“"’”""”T““"””) (4.48)
7KK v o ' '
9“!’ af{v) le +a(v) xl (T +V)p +a(v) Tam +Tar+1
_ 1=V 5 —2v -+ v3
where a(v)= = ﬁﬁ?ﬁ%'

For the sake of simplicity, we will ignore the stabilizing engine's time constant t
and introduce normalized operator p = Tx1P. Expression (4.48) will then take on the
form

Tyt vp-{-
K(p) = %
Ao ¥y L p+n+l

a(v)

(4.49)

- Substituting into (4.49) the values for v and a(v) that occur for real system sta-
bility reserves with respect to phase, it can be shown that the discriminant of the
cubic equation corresponding to the polynomial in the denominator of (4.49) is al-
ways Jgreater than zero. This means that the polynomial has one real and two imagi~
nary roots. When this is taken into consideration, transfer function K(p) can be
represented by the following expression:

Ten v 4 |
K Qn ) .,‘ .
(p) Agl P rleﬁ + |) (r:‘eﬁ- + Z.E-_'J:;ﬁ + |) (4.50)
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Figure 37. Dependence of T er Toe
£2e On system's phase-stability re-
serve.

and

The dependence of Tl
system's phase—stabliity reserve 1s shown
in Figure 37. It is obvious that frequency
l/(rzeTkl) is the OSP's resonance frequen-
cy, while the value of relative damping
factor €2 determines the height of the
resonance peak in the closed system's AChkh
[amplitude-frequency characteristic]. 1In
accordance with this, the closed system's
transmission factor on the resonance fre-
quency can be written as

‘// v 4 tgc:

Tie T3,
In the area of postresonance frequencies
the stabilization system's effect on plat-
form oscillations can be ignored and the
closed system's transfer function is as-
sumed to be equal to that of the platform.
The exemplary form of the OSP's closed sys-

» Tye and 52 on the

1 T yn
res 2§ze KgKn

K (4.51)

tem's transfer function is shown in Figure 38.
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Figure 38. LAKh of a uniaxial GSP based on a DMG.

The expressions that have been derived make it possible to determine the dynamic er-
rors of an OSP when real disturbances act on the platform, as well as to select dur-
ing the planning stage those stabilization system parameters that insure that the
magnitude of the dynamic errors does not exceed the figure given in the specifica-

tions.

Let us discuss the dynamic error in an OSP based on a DMG with VP and signal reading

on the zero frequency.

Considering the simplified gyroscope transfer function de-

rived in Section 1.6 and the correcting circuit transfer function obtained in Sec-
tion 4.3, we can write the open system's transfer function as

Kd“p | Tlp 41
W (p) = e 2 )
b T T T (T2 %4 2 oph 1) (Tap 28T 041 (4.52)
o Twan+ 1 —Typ+1 Typ | ! .
Twp+41 Tap41 Typ+1 Tpp+1
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As we did previously, for simplicity's sake we will assume T, and T3 to be suffi-
ciently small values and ignore them. Let us now obtain the transfer function of
the closed system for the different frequency areas.

In the low-frequency area, the expression for the closed system's transfer function
with respect to the stabilization angle takes on the form

K () = L Too? - BopTagP | Tup 31 (4.53)
()= T RRgTwp+ 1 Tup+]

As follows from (1.111), depending on the state of the MRG's parameters, the rela-
tive damping factor Enp of the precessional oscillations can be either smaller or
greater than unity. In the second case, the second-order component in the numerator
of (4.53) decomposes into the product of two first-order components. The values of
transmission factor K(w), as a function of the ratio of the time constants of the
dynamic components of transfer function (4.53) in different ranges of changes in the
disturbing moment's frequencies, are presented in Table 2.

200g]K()|-Kym,
-20 - [
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\\\\\ E-107
=5 \\\\ :
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: -7
-M - "
92 g¢ a8 48 I 12 1§ 16 18 _ 2

Figure 39. AChKh of a uniaxial GSP based on a DMG in the area of
resonance frequencies.

In the area of resonance frequencies, the closed system's transfer function can be
written, with an adequate degree of accuracy, as
K(p)=
_ (Tip® + 2, T p+1) (Tp -+ 1) (4.54)
ln,rI (Tﬁpz + QEMT"P + l) (Txlp + l) '*'Kp"l (T‘(?p + l) (_TKIp + I) '

where TkS/Tk4 = m.
Taking into consideration the expression for the open system's amplification factor

(4.39) and introducing dimensionless time constants related to the nutational oscil-~
lations' time constant, as well as operator p = Typ, we obtain
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K{p)= —— (P + 28 + 1) (Ty + 1)
Kpm 1 o Tea . . T —
5 TkaTka? + = (I 4 Eu27) 5% 4 22 (1 4 280 5 4+
1 Vit i

(4.55)
+ (‘%1 - frd) TP+ (s ~Ta) p+ | -

By substituting in (4.55) the values of the correcting circuit's time constants Tl
and 1y, and the dimensionless frequency Vi1ir as found in the preceding paragraph, we
can construct the system's AChkh in the area of resonance frequencies. These cha-
racteristics are presented in Figure 39.

In the area of frequencies considerably higher than the resonance ones, the stabili-
zation circuit can be regarded as opn, while the OSP's transfer function equals that
- of the platform itself.

e Ui ifr, 1t M, W ®
AU L — r— ,

40

-7},
60}
90} \
-0}
10t
-120 |

Figure 40. AChkKh of transfer function of OSP's closed system.

The exemplary form of the OSP's closed system's transfer function's AChkh is shown
in Figure 40.

4.5. Effect of Non-Steady-State Feedback on the Operation of a Uniaxial Stabiliza-
tion System

It has already been said that a characteristic feature of an RVG is the presence at
its outlet, along with the slowly changing component of the signal, harmonic compo-
nents with amplitudes that are proportional to the input angular velocity and fre-
quencies that are close to being multiples and composite frequencies of rotation of
the PD. Since stabilization systems based on RVG's assume the realization of ex-
tremely high amplification factors in the stabilization circuit, when inadequate
filtration is present the signal from the RVG can cause oscillation of the platform
with inadmissibly large amplitudes or even loss of stability on the part of the sys-
tem. Therefore, when designing such systems it is necessary to analyze their sta-
bility and dynamic accuracy, with due consideration for the non-steady-state

134
FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000500040010-1



APPROVED FOR RELEASE: 2007/02/09: CIA-RDP82-00850R000500040010-1

FOR OFFICIAL USE ONLY

HE N

-]

= s 24t

Figure 41, Structural diagram of OMG
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the RVG's resonance tuning.

ure 41.

feedback contributed by the RVG, and make
the correct choice of the filter used at
its outlet.

Let us discuss the effect of non-steady-
state (or transient) feedback on the opera-
tion of an OSP based on an OMG with VP and
signal reading on the rotor's rotation fre-
quency. In order to do this, we will use
the technique of reducing equations with
periodic coefficients to stationary form,
as explained in Section 1.5. First, let us
derive the RVG transfer functions with re-
spect to the basic signal without any as-
sumptions about filtration of the harmonic
component, but with due consideration for

In accordance with expression (1.81), the structural
diagram of an instrument with the carrier frequency eliminated is presented in Fig-
The values of the operators in the structural diagram are determined by ex-

pressions that are derived directly from the OMG transfer functions described in

Section 1.6:
T2

ET

;4L
W, () K..(z 1+ V1T =%

Wi(p) ==

[
1

(=

~
=

unf e

2 l—x /1
Valp) =% 13 (—2-1—)4

ﬂ”+|+l;l-___§-,n+l)(’fgn S (4.56)
?(%%‘/J“%-,T—;ﬂz-l-ﬁw-l-l)%

Tt i)

TTg iy — P T+ 1 (4.58)

Wo(p) =2 3 Tgp (o Ty + 1) (4.59)

pliayt
Wa(p)
M, &
. Wy(p) =1 W, () W, (p) W ()
y -
W, (p)
f e
Wo(p)

Figure 42. Structural diagram of an OSP, allowing for the non-
steady-state nature of the signal from the OMG.

The OSP's structural diagram then takes on the form shown in Figure 42, where we
have also introduced the definition of the RVG's transient part's operator:
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| .
W, (p) = = (W.(p) + Vs (p)l. (4.60)
while the system's equation of motion in operator form is written as follows:
. . R L
2K on +Wo (D W «(P) V2 (p) (W.(p) cne 20t +W.(p) e P ] = M,. (4.61)
Let us reduce equation (4.61) to the form of (1.31), by introducing the definitions

@, (p) =pK (D)W, (D)W, (P)W,. .. (0) W2 (p):
- ®y(p) = pK (MWL (P Wy, (D)W « (P)W3(p); (4.62)
R (p) = pK (p).

In accordance with the technique for reducing equation (1.31) to stationary form, we
derive the operators that determine the first-step equation:

O (p) =1 — pK (D)W, (0) W « () W2 (p) W (p) (p — i200) %
W K(p— 200 W, (p — i200) W, (p — i200) Wy (p — i20) ¥ (4.63)
X W3 (p — i200) + Wi (p) (p + i2w0) K (p + i2w0) <
X W, (p 4 i200) W, (p+ i200) W, (p + i200) W, (p + i200)}:

D3 (p) = p(p — i200) K (p) K (p — i200) W (p) W (p — i20%) X (4.64)
x W, (p) Wp (p— 20 W, (D)W, (p — i20) Wa (p) Wy (p — i20y);
@4 (p) = p(p + i200) K (p) K (p + i200) Wi (p) Wi (9 4 i20m) X (4.65)
x W, (p) Wy (0 + i200) W, (P) W, (p + i200) W2 (p) W2 (p + i200);
- - Ay (p)+ By (p) = pK (p): (4.66)
AN (p) = pK (0) W (0) W () Ve « (9) W2 (p) (p — i200) K (p — (200); (4.67)
B (p) = p (p + i200) K (0) K (p + i200) W (D) W1 (0) W «(P) W2 (p). (4.68)

Introducing the additional definition W, (p) for the transfer functidén of the sta-
tionary part of the system from the RVG's input to the stabilizing engine's output,
we will rewrite expressions (4.63), (4.67) and (4.68) as

Valp) Wa(p—i2v,) .
®{" (p) =1 — pK (D)W (p) [ﬁ AT

. . . W W, (p 4 (2 ,
X (p — 200 K(p — i20) W (p — i20) + W, ((:)) W’x((pitﬂ(::)) (4.69)

< (p -+ 1200) K (p + 200 We(p + m»o]:

AV (p) = -‘X,’—'l((‘;;— (p — i2m0) K (p — i2a0) pK (p) W< (p). (4.79)
B\ (p) = {5: EL (p + i20m) K (p + i200) pK (0) V< (p) (4.71)

Ignoring the effect on the system's operation of oscillations at frequency dug (that
is, by limiting ourselves to the approximation obtained in the first step), we ob-
tain the characteristics of the platform's settled motion when a constant disturbing
moment is acting on the axis of stabilization. The OSP's settled motion is composed
of the constant deflection velocity in inertial space and the harmonic oscillations
relative to the stabilization axis. The platform's constant deflection velocity can
be found from the expression
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s i 2KAP)
o = lim oy M- (4.72)

‘which, when the values of the operators in terms of the system's parameters are sub-
stituted into it, takes on the form

[9p — KuRe Wy  (i200)] Re W,y (i2w) — -1
— (14 Ky Im W, i (i200)] Lin Wi, « (i200,)

- O == I +4K" [’lp—Kn Re Wy (i2ig)]? +
4 [+ Ky Im Wy, (i20)]2 (4.73)
| |
g ” KoK, M,
/.
where
K l—%x 1 K P

NS T R Ty ey I = 20T,

_ The amplitude of the platform's angular oscillations with frequency 2wy will be de-
termined from the expression

- A" (p) M (4.74)
A'l mOdvmin (#) lp=i20, @y
Substituting the value of operator A{l)p from expression (4.70) into (4.74), we ob-
tain
[}
A~ L] ! T, '
Tn 205 \Tgy + Ku Re Wy ((20g)]F + (1 — R Im Wre  (20g)]7 ) (4.75)

x mod W, (i2w,) M.

Thus, the effect of the OMG's non-steady-state nature on the system's static charac-
teristics is determined by coefficient Ky and coefZirient q,, which characterizes
the width of the stabilizing engine's pass band relative to frequency 2wy, as well
as the values of the amplitude and phase of the cérrecting circuit's frequency char-
acteristic on frequency 2wy. The smaller coefficient Ky is (and it has smaller val-
_ ues for platforms with large moments of inertia and when the OMG's rotor has high
frequencies of rotation), the less the effect of the non-steady-state nature. The
significant reduction in the effect of the non-steady-state nature is explained by
the fact that when the parameters of the OMG's rotor are chosen appropriately
(® - 1), the oscillations on the doubled frequency of rotation of the rotor are at-
- tenuated. Narrowing the stabilizing engine's relative pass band (increasing q,) al-
so reduces the effect of the non-steady-state nature on the OSP's settled motion.
Expressions (4.73) and (4.74) make it possible to select the correcting circuit's
parameters in such a fashion as to insure the obtaining of the OSP's required static
characteristics,

When the stabilizing circuit's parameters are selected in accordance with the recom-
mendations made in Section 4.3, without allowing for the effect of the OMG's non-
steady-state nature, tine static characteristics will acquire the form

ap {14 g (14 v 4+ ) —q (1 —v) (1 - vig)] — |1

- —Kull + ¢ (1 =02 + )]
a, =1 -} 4K, TFvg@Fq(l —v) Ku* X (4.76)
¥ + lgp (1 4+ v¥¢») — Ko (1} + ¢?) )2
l .
" T Ry M;
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fom b (1 + g2vays \7
2T Tn 205 \igp (T ) + KT+ @R+ (T F v —Kg (T —viFj ™ (4.77)
[+¢
1+ vig M,

where q = Zonkl.

Coefficient q characterizes the width of the steady-state stabilization system's
pass band. The broader the system's relative pass band (the smaller q is), the
greater the effect of the OMG's non-steady-state nature on its dynamic characterist-
ics.

M ) ol pK(p) 2 In order to evaluate the effect of the
OMG's non-steady-state nature on the OSP's
stability, we will present its structural
#p)-1 diagram in the form depicted in Figure 43.
- The system consists of two series-connected
Figure 43. Equivalent structural dia- components. In order for it to be stable
gram of OSP based on an OMG. it is sufficient that each component indi-
vidually be stable. The first component is
a closed stabilization system that does not allow for the OMG's non-steady-state na-
ture. Its stability is insured with the help of the methods explained in Section
4.3. The second component, in which the effect of the OMG's non-steady~state nature
is allowed for, is a component with positive feedback. Its stability can be inves-
tigated with the help of frequency methods. The corresponding open system's trans-
fer function has the form

Woas (p) =" (p) — 1. (4.78)
Substituting the value of ¢{l)(p) from (4.69) into (4.78), we obtain

W pan (5) = — 20K (5) W, (1) Re [MM——?—’} .

Wi (p) Wy (0 —i2u,) (4.79)

- X (p—i20) K{p —i20) W (p — iQm,,)].

Expressing the operators in (4.79) in terms of the system's parameters, its transfer
function in the open state can be written as
f T3 | ET

Wo(p) = —2 Mo TR "T T TR
23 Tb"F pim Tt Lerpr Top 71
1T | tT
s W (p) KeKp 72 T¥x n ‘F'g—m r41 5
- Top + 1 ] R _irzp1+_é‘_grp+|
-l T N[ T L
X e P ) | polg ( n—x'“”_‘)(7’7+7+‘> y
’ - 2 T+x 7 T7+x "
T,
X 2rl-x 3 % . X — (4.80)
= H { [}
—% "t ! TT”_"*'TTT
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oT o
o TP i+ ! Wi (p — i200)
] ] . E T+l "
3 TP“‘+'q—p" —2-Tp—-t+T &
e l+ﬂ T ' T m .
9 ! i o M
3 Tp—i+ 7 T "
T R - -1
9 T—x 7Tty Wi, u (P — i204)

) gy 7

From (4.80) it follows that the necessary condition for stability of the system is
the fulfillment of the inequality

Kumod® Wy (i2wy) + Im W i - i
4K H K. K ‘ 0 Ko K (l?(‘lo) Jp Re W, . (l 2w, )
" T R I W (120001 F 9, — Kn Re Wy w (g~ < b»

which, when the stabilizing engine's pass band is infinite and there is no special
correction on frequency 2wg, takes on the form
AKR
|+ K

(4.81)

<l (4.82)

An analysis of transfer function (4.82) shows that for most systems with real param-
eters, these conditions are adequate. Expression (4.82) imposes an additional limi~
tation on the value of the open stabilization system's transmission factor. If this
inequality is not fulfilled, it is necessary to design the correcting circuit so
that inequality (4.81) is fulfilled. In connection with this, the designer should
check to see what effect this correcting circuit has on the stability and quality
indicators of the closed system described by transfer function K(p).

4.6. Multidimensional Stabilization Systems Using Rotor Vibration Gyroscopes

At the present time, OSP's are in extremely limited practical use. The construction
of OSP's operating on nonstabilized bases with RVG's as sensitive elements makes
practically no sense. This is related to the specific nature of the RVG's them-
selves. Actually, they are fundamentally two-dimensional measurers of the base's
absolute velocities with identical sensitivity along both measuring axes. There-
fore, for a highly sensitive instrument even comparatively small angular velocities
of the base along an unstabilized axis either saturate its single-channel part or
result in contact between the rotor and the stops, which has a strong effect on the
instrument's basic characteristics or makes it generally incapable of fur.ctioning.
At the same time, the two-dimensional nature of the RVG makes it possib.e to use on-
ly one instrument for the construction of a biaxial stabilized platform. Such plat-
forms are widely used in different branches of technology, such as for the stabili-
zation of the sighting line of radio engineering and optical devices, for the deter-
mination of the plane of the horizon on a moving object, and so forth.

Let us discuss the special features of the dynamics of a DSP based on a single RVG,
assuming the system to be stationary and linear and using the vector-matrix descrip-

tion presented in Section 4.1. 1In this case the platform's transfer matrix has the
form
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- hz\fr"((p)w ; anz (P) Wna (p)
_ W, _ n2 (p) Way (p) I+ h3Wny (p) Wy (p) 4.83
(p) —h Waa (p) W, (p) Was () ' ( )
1+ hWh, (p) Way (p) I+ h3W a (p) Wy (p)
while the RVG's transfer function is
W W, .
Walp) = p®  Vyalr) (4.84)

- W,. n (p) W,) (p)

The outer diagonal elements of matrices (4.83) and (4.84) characterize the cross-
couplings between the stabilization channels that appear as a result of the presence
of kinetic moment h of the RVG's rotating part and cross-couplings in the signals
read from the RVG, Assuming that the RVG is operating in the resonance mode and the
level of the cross-couplings in its signals in the band of essential frequencies is
insignificant, we will first examine only the couplings with respect to the gyro-
scopic moments. If the correcting circuit and the requlator do not have specially
‘ introduced cross-couplings and are described by diagonal transfer matrices, the
closed system's transfer matrix has the form

K(p)= Lﬁ)— X
1+ h'W o (0) Was (p) + Wa (p) — AW, (p) W, (p) w (4.85)
- W oa (P) W (1) L+ 0, (0) W, () + W, (p)] (P

where D(p) = (L + Wy(p)) (1 + W3(p)) (1 + h2pK, (p)Kg (P)): Walp), W3(p), Ky(p), K3(p) =
= transfer functions of the open and closed stabilization channels, respectively,
without allowing for cross-couplings.

For stable operation of the system it is necessary and sufficient that each element
of the matrix that is the first cofactor of the product in the right side of (4.85)
be stable. These elements are determined by the expressions

L+ hWas (p) Ky (p) .
) Ka(p) = 0K+ 0) Tk ot

W: (p) 1 .
Kz (p) = — hpK, (P)-_'—"l TV, T+ hnik, (5) K (o) "

WI (p) 1 .
Kn(p) = hpKalp) 7515 T+ AR, (P K; (7)

| + hWo, () K, (p)
Kaa () = PKs (P) T3k oy K 7
Let us assume that the structure and parameters of each channel's stabilization cir-
cuits have been chosen in accordance with the recommendations presented in Section
4.3. In this case, transfer functions Ka(p) and K3(p), as well as W3(p)/ (1 + Wy(p))
) and Wy (p)/(1 + Wp(p)) have bands [sic--possibly pcles] only in the left half-plane.
Then, for stability of the closed circuits relative to the summary moments that act
along the stabilization axes and are described by transfer functions (4.86), it is
required that the closed circuit that corresponds to the following transfer function
pe stable:

(4.86)

|
Ko P) TrmmR ke (4.87)

In order to determine the stability of the closed circuit with the transfer function
X4 (p) it is possible to use the stability criterion for the open system's frequency
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characteristics, the transfer function of which has the form

Wy (p) = h*p*K, (p) K5 (p)- (4.88)

Let us discuss how kinetic moment h affects the stability of DSP's based on differ-
ent types of RVG's. 1In order to do this, we will make use of the transfer functions
for closed systems that were presented in Section 4.4. The precise values of h for
which a system loses its stability can be obtained either graphically or with the
help of computational methods. We will limit ourselves to approximate evaluations.

For an OMG with VP and reading on the rotation frequency, the phase characteristic
corresponding to transfer function (4.88) can equal -7 in the area where the ampli-
tude characteristic reaches its maximum value. Thus, in order to insure a system's
stability it is sufficient that the amplitude~frequency characteristic corresponding
to transfer function (4.88) be less than unity. This occurs when the following con-
dition is met:

2 1/ Tt
h< TK)Kng2§2:t2g ‘/ mm, (4-89)

When condition (4.89) is fulfilled, The effect on a DSP's stability of the cross-
couplings with. respect to the gyroscopic moment that arise because of the presence
of kinetic moment h in the MRG's rotating part can be ignored.

For systems based on RVG's that have a transfer function that is the same as that of
a DMG with VP and reading on the zero frequency, an analogous estimate can be ob-
tained from the closed system transfer function described by expression (4.54). 1In
connection with this, the sufficient condition for the system's stability will, ob-
viously, be the fulfillment of the inequality

h < max [mod (iw) K (iw)]. (4.90)

Having determined the maximum value of the system's AChKh, we obtain the limitations
imposed on the MRG's kinetic moment. When these limitations are observed, the ef-
fect of h on a DSP's stability can be ignored.

Let us assume that the kinetic moment of the MRG's rotating part is small and that
its effect on a system's stability can be ignored. WNow we will discuss the effect
on a DSP's stability of the cross-couplings in the MBRG's signal that are determined
by the outer diagonal elements of matrix (4.4). In this case the closed system's
transfer function has the form

| 1 +Wi(p) —%Wz(p)

K(P) = 3571
d(p) | ‘f’;on(,()/;) Wip) 1+ Wa(p)

W, (n). (4.91)

Where
d (p)=(1+ W (o) (1 + Vs (p) + |2 | W, () Ws ().
¥

It is obvious that the system will be stable if the closed circuits described by the
following transfer functions are stable:
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Ko (p) = ;5’“()) (7 IW W
2 na (p) n(p) )2 2 (p) a2(p)
| W’,.(p)‘ ' % T W, ()
W) W, (0) 1 ,
Kas (p) = WB,. ® T W) TF W ¥
i
Weo.n(p) 12 W, (p) W, (p)
'+[ ﬁ;,(p)] TF W, () TF W,
Ky(p) = Von®) _Watp) 1 (4.92)
. 2 Wols) TFWs(p) T W; )

1

]

X l+[Won(P)]2 W, (p) W, (p) ;
W (0) 14+ Wi(p) 1+ Ws(p)
Ky (p) ? 1

Wna (p) ni(p) 12 Wi(p) W5 (p)
I+ [‘ngJ T+ Ws(p) T+ W,

We will assume that stability is provided in each stabilization channel by the meth-
od explained in Section 4.3. The closed circuits described by transfer functions
(4.92) will then be stable if the open system's transfer function

Wo(p) = [%]2P2K2 (M K3 (P W . x2(n) Wy, x2(p) ¥

X Woi (£) Wa (1) Wap ().

meets the stability criterion with respect to the frequency characteristic of the
open system.

(4.83)

In the right side of (4.93), let us substitute the expressions for the transfer
functions of a system's components, allowing for possible minor detuning § of the
MRG from the resonance mode. For an OMG with VP and reading on the rotation fre-
quency we then obtain

( I 4| ), T

& \?2 2% Klp+l

W, ()= (L :

w0 = () \ -7 (Tiep + D) (Tl By Tgp +1)

Jey 281
% Typp + | [
(Tie + 1) (The,p? + Bp, To,p+ 1) (Toep + D (Tpap +1)°

(4.94)

The system's stability is determined by the behavior of frequency characteristic

Wg (iw) in the section where the phase characteristic takes on the value 7. In con-
nection with this, a sufficient condition for stability is the requirement that the
frequency characteristic's absolute value remain less than unity at all times. From
(4.94) it follows that for minor detunings of the instrument from the resonance mode
(8§ << £), when the approximation of the MRG's transfer functions is made competently
the detuning has practically no effect on the DSP's stability. An analysis of the
frequency characteristic in the area where its absolute value reaches a maximum,
with due consideration for the basic relationships derived in Sections 4.3 and 4.4,
shcws that the signal cross-couplings existing in the MRG as the result of the plat-
form's angular accelerations also do not affect the DSP's stability.

By using the transfer functions for different RVG layouts that were derived in Chap-
ter 1, in an analogous manner we can--with the help of the transfer function (4.93)
of some open system--evaluate according to the frequency criterion the effect of
cross-couplings in the RVG on the DSP's stability.
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An investigation of cross-couplings in a DSP showed that for sufficiently large val-
ues of h, the correction discussed in Section 4.3 may not provide the system with
the required amplification factors and dynamic characteristics. A special case of
such systems is an astatic gyroscope, corrected with respect to deflection velocity
with the help of signals from an MRG installed in the gyro chamber (7]. Therefore,
let us discuss a DSP with due consideration for the cross-couplings between channels
with respect to the gyroscopic moment. For the sake of simplification, we will as-—
sume that the values of the stabilization channels' parameters are approximately the
same. It can be shown that nonfulfillment of this condition within quite broad lim-
its does not lead to substantial quantitative changes in the results that are ob-
tained. At the same time, such an assumption makes it possible to use the previous-
ly mentioned method of complex transfer functions and to reduce the order of magni-
tude of the investigated system by a factor of two. The structural diagram of a DSP
constructed with the use of complex transfer functions for the components and vector
coordinates, without allowing for transience, is presented in Figure 44.

a2 -
W, (p) v”?_—l Wg(p) Kym Wex(p)
@

]

Iq

Mor

Ug

Wo(p)

Figure 44. Structural diagram of a DSP with identical channels.

- The platform's complex transfer function has the form

! i
Wo(p) =+ T ETE vl . (4.95)

where T, = In/h; X = up/h. The MRG's transfer functions were derived in complex
form in Section 1.6 and can usually be approximated in the band of essential fre-

_ quencies by simpler expressions. In the diagram we have introduced the demodula-
tor's vector transmission factor

K= 5¢" (4.96)
which allows for a possible phase shift ¢ in the demodulator or (which is the same)
rotation through angle € of the MRG's sensitivity axes relative to the stabilization
axes. If there are no cross-couplings with respect to the MRG's signals between the
channels, £ determines the nature of the control of the stabilizing engines. For
€ = 0 we will call it cross control, while for e = n/2 we will call it direct con-
trol and for 0 < e < m/2 it is mixed control. In general form, the correcting cir-

- cuit can introduce additional cross-couplings between the channels for the purpcse
of obtaining maximum amplification factors in the stabilization circuit. The regu-
lator's transfer function describes the dynamics of the stabilizing engines.

Let us discuss DSP's based on an MRG of a different type. When an OMG with VP and
reading on the rotor's rotation frequency is used, when Tp << Ty and the amplifica-
tion factor equals unity, the frequency characteristic of the open system takes on
tne form depicted in Figure 45. From Figure 4S5 it follows that when the open sys-
tem's amplification factor is
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Figure 45. LAKh of open system for a DSP based on an ‘OMG with
identical channels.
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the closed system is absolutely stable. Without using correcting elements in the
stabilization circuit, for large amplification factors DSP operational stability can
be insured only in the case of direct control of the stabilizing engines (¢ = 7/2).
However, the system is then almost at the limit of stability, so that allowing for
small time constants for the stabilizing engine, amplifiers and other elements in
the system leads it into instability.

The achievement of stable operation of a system by including series-connected cor-
recting elements in the stabilization ciréuit can be accomplished in two ways. The
first presumes that the system's cutoff frequency is higher than the frequency 1/Tq4
of the platform's nutational oscillations, so that it is advisable to use direct
control of the stabilizing engines, while the correcting circuit's structure should
be the one explained in Section 4.3. This way makes it possible to realize extreme-
ly high amplification factors in the stabilization circuit, but at the same time it
broadens the system's pass band considerably. Therefore, it is used primarily for
"heavy" platforms (with large moments of inertia I;) based on an MRG with a small

- kinetic moment h. For "light" platforms with a high nutation frequency it is possi-
ble to use a nonminimal-phase correcting circuit with a transfer function of the
type of (4.35) and a time constant Ty * /ET". In this case, the stabilizing en-
gines should be cross-controlled. With such correction and amplitude stability re-

serve A; = 6 dB, the open system's amplification factor can be estimated from the
expression
. 4004 ( L8V 4.98
) .l\m]/l,0.0l(ﬁ). | (4.98)
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The increase in the amplification factor is achieved by the appropriate choice of
time constants Ty3 and Ti4 of the integrating-differentiating component.

Let us discuss a DSP based on a DMG with VP and reading on the zero frequency. For
our analysis we will use its approximated transfer function (1.109) For a unit amp-
lification factor, the open system's frequency characteristics have the form shown
in Figure 46. An analysis of the frequency characteristics shows that in the case
of a "heavy" platform, for which 1/T; << 1/Ty, the correcting circuit's structure
and the technique for selecting the parameters remains the same as for an OSP. In
connection with this, direct control of the stabilizing engines is realized.

(e pldegt AdB
180 ¢

120160
40

!
TQ a h ot
3 v

N R ] -1 =07 2 7 5, i 100 wee
-60 40
-120 % -60
o] %

-100
-240 ¢ -120 A (\
- 140

-J60

Figure 46. LAKh of open system for a DSP with identical channels
that is based on a DMG.

At
S~

For a "light" platform, where the frequencies of the MRG's and platform's nutational
oscillations are close to each other, preliminary so-called "phasing in" of the sys=-
tem is required. This is achieved by additional cross control of the stabilizing
engines (e # 0). 1In order to insure stability of the phased-in system it is possi-
ble to use a series~connected nonminimal;ghase correcting element with transfer
function (4.35) and time constant Ty; 3 V3T for 1/Typ < 1/Ty or Ty = /EEH for

1/Ty < 1/T4. In connection with this, the system's amplification factor can be
found from expression (4.39), while the increase in it is achieved because of the
appropriate choice of Txj and Ty4-

Let us discuss the effect of cross-couplings with respect to the gyroscopic moments

- of the MRG's rotating part and the MRG's signals on the stability of a TSP. From
equations of motion (4.18) it follows that if we ignore the other cross-~couplings in
the TSP and assume each separate channel described by transfer function K (p) to be
stable, the system coupled with respect to the MRG's gyroscopic moments will be sta-
ble when the component with a transfer function of the following type is stable:

- - . 4.9
Ke(p) - 7K, (p) Ky (p) - hip* Ky (p) K (p) + 132K, (p) Ka (P) (4.99)

If the TSP is based on two MRG's, then--depending on which channels are duplicated--
one of the h; must be set equal to zero. The stability of this element can be
checked with the help of frequency methods, according to its transfer function in
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the open state:

Wy (p) = hfﬂgK_l (0 K2 (p) + hip*K 1 (p) K3 (p) + W3p*K2 (p) K3 (p). (4.100)

The sufficient condition for stability that states that the absolute value of

Wy (iw) not exceed unity can serve as an approximate evaluation of the effect of the

MRG's kinetic moments on the TSP's stability. In connection with this, if the chan-
- nels are assumed to be identical, several understated maximally allowable values are

obtained for h, as determined by the inequality

Vhf-l—h%-}- h3 - max[mod K™ (iw)]. (4.101)
When three identical MRG's are used, this equality takes on the form
he< ﬁ%irrnaxlmod Kt (iw)], (4.102)

while when the TSP is based on two identical MRG's, it is
I Vli—maxlmod K=t (iw)]. (4.103)

The limitations obtained for the magnitude of the MRG's kinetic moment differ from
the analogous limitations for a DSP only by coefficients 1//3 or 1//2. In view of

- this, the condition.under which we can ignore the effect of h on the stability of a
TSP based on an OMG with VP and having stabilization circuits with the structure de-
scribed in Section 4.3, is obtained from (4.89) by premultiplying the right side of °
the inequality by 1/¥3 or 1//2, depending on whether the system is based on three or
two MRG's. Thus, when condition (4.101) is fulfilled, the effect of cross-couplings
with respect to the gyroscopic moments of the MRG's rotating parts on the dynamics
of a TSP can be ignored.

The necessary and sufficient condition for stability of a TSP with cross-couplings
with respect to the MRG's signals, when stability of each separate channel is in-
sured and other cross-couplings are ignored, is stability of the component with the
ransfer function

!
Ky (p) = > ’
—Wam@)? .
+ We. o1 p) W 02 (9) Kei (p) Kea (P) -+

{(Wp. as (0)]3 o
+Wm Ker(p) Kea (p) +

(We.ny (0)]2
Wa. 01 (p) WS_ 03 (0) Kea (p) Kea (p)

where K.; (p) = Ki(p)wg_oi(p)wpi(p) = transfer functions of the closed, separate
channels with respect to the stabilizing engines' moments. Its transfer function in
the open state corresponds to this component:
w (Wy. ny (p)]2 .
d (p) = W? o1 17) Wg.oz )] Kcl (p) Kc2 (ﬁ) T

) [, 0g (2))? (4.105)

T ¢ . Wo. n3 (p))2 .
+ Wg~01 ) Wg 03 (P) K:l(p) I\ci(p) + m?m Kc!(p)KCJ (/))'

on the basis of which the system's stability can be investigated with the help of
frequency methods.

For identical MRG's and values of the separate stabilization channels' parameters
trhat are about the same, transfer function (4.105) differs from the analogous func-
- tion for the DSP only in that its absolute value is premultiplied by a factor of
- thrze when three MRG's are used and two when two are used.
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Thus, as was the case for a DSP, when a platform is based on an OMG with VP, cross-
couplings with respect to the MRG's signals have practically no effect on the sta-
bility of a TSP when detunings of the signals from the resonance mode are quite
minor.

4.7. Effect of Transient Feedback on the Operation of a Multidimensional Stabiliza-
tion System

A mathematical description of a linear, multidimensional stabilization system based
on RVG's, with due consideration for the transient signal components existing in the
RVG's, was presented in Section 4.1. 1In this section we will concentrate in more
detail on the investigation of the effect of the non-steady-state nature (tran-
sience) of the sensitive elements' signals on the operation of multidimensional sta-
bilization systems. In connection with this, we will limit ourselves only to sys-
tems based on RVG's with single modulation and VP and with single modulation and KP
for which condition (1.22) is fulfilled. Figure 47 is a structural diagram of such
a system. In accordance with this diagram, the closed system's equation of motion
can be written as:

{ E — & Wa(p) W, (0) Wa, o (P AWa(p) I* - AW, (1) /1} G —
- = 5 Wa (9) Wy () W () 1AW () Ipeioont 4. (4.106)
- + AlW,;(p) *Gaeiot | = W, (p) M,
We(p) | Wytp) |— @

Tg -{2uyt

7
_ 7h— ¥
W, (p) W (p) "% j_
LA,

Figure 47. Structural diagram of a multidimensional GSP, allow-
ing for transience of RVG signals.

In order to investigate the effect of the transience, we will make use of the tech-
nique explained in Section 1.5. 1In order to do it, we rewrite equation of motion
(4.106) in a more convenient form:

&y — @, () Gyeitost — Dy (p) =% = K (p) M,, (4.107)
where

K(p) = { E— %Wn‘(/’) Wo (P) Wee. w (P) [AWg (M) 1° 4 AW, (p) IJ}" Wa(p)

is the transfer matrix of the closed stabilization system with respect to the angu-
lar velocity vector of the platform's motion in inertial space,

D2(p) = 5 K (7) W (9) W (1) A W3 () 1
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O3() = K () W, (2) W ) AW, () I

Using the indicated technique, as the first-step equation, which allows for the
pPresence in the system of oscillations with a frequency of 2wg, we will have

[E — @, (p) ;3 (p—i200) D3 (p) D, (p + i20,)] — B, (p) @, (p + i20,) X
X Goe, et D, () D3 (p — i20) Apeitont =
=K (p)ﬁ;-}- D, (p) K (p_— i200) M chiont -1
+ B (5) K (p + 1200) Fye-t.

(4.108)

If the system's filtering properties are such that we can ignore the components on
the left side of (4.108) that contain harmonic factors changing with frequency duq,
then for the analysis of the system's properties we obtain a stationary linear ma-
trix equation that is investigatable by well-known techniques. 1In this case, when
acted upon by a constant disturbing moment Mg, an SP's steady motion is composed of
the SP's permanent deflection velocity in inertial space, which can be found from
the expression

@ cr = E — D, (0) Dy (—i205) — Dy (0) D, (12w,)|™ K (0) M,, (4.109)

and the SP's harmonic oscillations with respect to the stabilization axes with fre-
quency 2”0' which oscillations are described by the expression

ity = [E — D (i29) D3 (0) — D (120) D, (iduoy)[! B, (12ary) (K (0)
X —l-ﬁnc‘:”-‘ —[E — @, (—i2w,) D3 (—idwe) — @y (—i2w,) -

2w, (4.110)

X Oy (0)]* B, (—i2w,) K (0) ﬁ W,e-io0,

When investigating the effect of RVG transience on a stabilization system's stabili-
t7, the latter can be represented as two series-connected multidimensional systems.
One of them is described by the transfer matrix K(p) of a closed stabilization sys-
tem, with no allowance for RVG transience. This system's stability is insured with-
out fail when the parameters of the regulators and the correcting elements in the
stabilization circuits are chosen properly. Therefore, in order for the SP to be
stable while allowing for RVG transience, it is necessary and sufficient that the
multidimensional closed system with the following transfer function be stable:

" (p) = [E — D2 (p) D3 (p — i209) — D1 (p) D, (o= i20.)], (4.111)

If che system's filtering properties are not sufficient so as to be limited by al-
lowing for the second harmenic of the PD's rotation frequency in accordance with the
technique explained in Section 1.5, it is necessary to derive the second-step equa-
tion and so on, until the accuracy required for the investigation is achieved.

Let us discuss in more detail a DSP based on a single MRG. 1If the values of the

stabilization channels' parameters are about the same and the differences between
h can be ignored, the system should be investigated with the help of the tech-
nique developed in [16]. By introducing complex transfer functions and system co-
ordinates, we will represent its structural diagram in the form depicted in Figure
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Kim = Wex(pX

Wa(p)

-t

Wp(ﬁ)

Figure 48. Structural diagram of DSP with identical channels,
with transience of RVG signal taken into consideration.

- 48, where Wg (p) is a settled and Wg (p) a transient transfer function of the RVG, the
expressions for which were derived in Section 1.6. In accordance with the structur-
al diagram, the eguation of such a DSP takes on the form

a,—K (p) Rdm‘?’é(p Fi200) W  (PWp(p)ane” ™" =2 K () Mas (4.112)

where K(p) is the closed system's transfer function with no allowance made for the
MRG's transience. By writing complexly conjugate equation (4.112) and applying the
operator e~12W0t to both its sides, we obtain a second equation that, when solved
jointly with the first, gives the system's stationary equation of motion:

(1 — K (p) K* (p + i200) Kip Kis Wy(p) Wy (p + i2000) x
X Wy, « (p) Wi« (p + i200) %

X Wy (D) W3 (p + 1200)) & = K (8) My + K (p) K* (p -+ i209) (4.113)

X K l?é {0+ i200) W « (D)W, (p) Mae™ 2.

- From equation (4.113) it is not difficult to determine the characteristics of the
DSP's settled motion when it is acted upon by a constant disturbing moment. The DSP
will have a systematic deflection in inertial space with velocity -

= K(0) M.,
BT TR O K (20)) K g Kan¥ 5 (00 W (i209) Wy (0) X ’ (4.114)
XV (20,) ¥, (0) W (i20,)
and will also perform angular oscillations relative to the stabilization axes ac-
cording to the rule

- K (—i20) K™ (9) R,,,\w”/;m) W, (—i20) W, (—i2wy) o

= - l—K (—i?wo) K ()] Kt'mpa"nﬁ” (—12‘”“) X
xW o) w, (_ig(,,o) W';' 0w, z—”‘”o) v, {0) (4.115)
LM e
~ 2wy e,

Provided that the stationary closed circuit is stable, the DSP's stability with the
MRG's transience allowed for is easy to determine with respect to the frequency cri-
teria for the open system's transfer functions with complex coefficients:
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Wo (1) = K (p) K* (p + i200) Ky KiaWy(n) W2 (0 + i2u0) x
XWe. (0) W (p + 1200) W, (0) W} (p + i2u), (4.116)
(the feedback is positive).

From static characteristics (4.114) it follows that there exist two ways for a sig-
nal to pass through the system. This makes it possible to raise the question of
creating a static DSP that does not have systematic deflection when acted upon by a
constant disturbing moment. Actually, when the condition

K*(p + i2y) — 00 . (4.117)

is fulfilled and the system's stability is insured, the rate of platform deflection
moves toward zerc and the settled motion is characterized by the platferm's angle of
rotation in inertial space:

A, or =

l
g0 PK* (0 + 2wg)
X 1 - (4.118)

— . = ~e 3 ry IM
Kin Ki Wy (0 W (i200) W, (0) W (i20,) ¥, (0) W, (i2m,) "

X

and its angular oscillations with frequency 2wy are determined from the expression

— hvi i

= 1 1",
l_(;nwg(—i%,,) L)) W, 0) 20

e-iduel (4.119)

a, =

Condition (4.117) is fulfilled when there is simultaneous fulfillment of the equali~
Ly

ReW:(i20) = —1; ImW: (i200) = 0, (4.120)

where W.(p) = transfer function of the DSP's open, stationary circuit.

et us discuss the possibility of the simultaneous fulfillment of conditions (4.120)
and the conditions for stability of a DSP based on an OMG with VP. Since for such
an instrument there is equality of the operators describing the stationary and tran-
sient parts of the transfer function, 'we will rewrite the system's equation of mo-
tion in the following form:

T+ We (o) + W (p'+ i2wo) 3 = (1 + We (4 i2¢ 1V, (p) H, +

, . . - (4.121)
FWa() Wi ip+ i2uy) Kaa¥ 3P + 1200) W s (1) W (1) T 00t
#eplacing (for the sake of convenience) the sign in front of wo with the opposite
“rz, we will make use of the expression for the open system's transfer function
. . ; KNKP | Twp—i N
. Velp)=—i e 32 o o g
Wi x (p) | .
Tpp+l rnp""i'ln

(4.122)

>

ve will examine two cases. In the first, we will assume h to be quite small (h <<

We wil

<< I;2wq). This will make it possible to ignore the cross~couplings between the
©3P's channels with respect to the gyroscopic moments created by the rotating part
I the MRG. Conditions (4.119) then take on the form -

-

— et arctg Wi« (—i2uw0) — arctg gy = 4 v, & = .2 (4.123)
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When the system's parameters are known, expressions (4.123) make it possible to de-
termine the additional requirements for the correcting circuit in the stabilization
circuit. What these requirements come down to is that on frequency 2wy the circuit

st amplify the signal and form the required value of its phase. Since h is small,
system stability is insured (without allewing for transience) by the methods de-
scribed in Section 4.3 when direct control of the stabilizing engines is used.
Then, provided that the stabi.izing engine's aperiodic lag is compensated for
(qp << 1, arctg 9p s0)» as an additional correcting circuit it is possible to use a
series-connected resonance amplifier with the transfer function

1

Wy (p)= . 4.124
’ o Pt ( )

The system under discussion will be stable if the open system's transfer function
fulfills the condition for stability with respect to the frequency criterion:

Wy (p) =W (o) + We(p — i20). (4.125)

Transfer function (4.125) has complex coefficients, so in order to judge the sys-
tem’'s stability it is necessary to examine the corresponding frequency characterist-
ic in the frequency band -« < y < =, From expression (4.125) it is obvious that
when correcting circuits (4.34) and (4.124) are used, the behavior of frequency
characteristic (4.125) in the band w < -w;, where wy is the cutoff frequency of the
steady-state system's frequency characteristic, meets the stability criterion.
- Since frequency characteristic (4.125) is symmetrical relative to frequency wg, of
- which one can convince oneself from (4.122), it is sufficient to examine its beha-
vior in the band of essential frequencies of the system's steady-state part. In
this range (w < W), mod WE(iw - i2wg) < 1. Let us determine how component
W& (iw - i2wg) affects the frequency characteristic's behavior near the steady-state
system's cutoff frequency wj.

On frequency w = wy, the value of frequency characteristic wé(im - i2wg) can be de-
termined from the expression

. . KnK 1
. e =iy Naftp
We(iwg — i20,)) = —eg'n FRaS [ ey e gy

Va | — Tyqi 2 (1 — v,) + |
VT 2wg (I — vg) + 1
ivg+ ;_E §2 (I*V2)+‘+? vTi2on ( va)

I l
K.. LY. —iqp (I —vg) -1

X

X

(4.126)

F— (1 —va)3 —i —

where v, ‘= wy/2wy characterizes the pass band of the open system's steady-state part
relative to the rotation frequency of the MRG's rotor. Allowing for the assumptions
that we have made and substituting the values of the system's parameters from Sec-
tion 4.3, we find the modulus of frequency characteristic (4.126):

* - vV
mod We (iny — i20,) ~ 2a(v) TII—V,TX
X V4v’v3+<l =il =
VI (=9l =y X (4.127)
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X l
4 l—xv | —v
N V(2 —va)? +V—’[G(V) iFxE T#]

which, when v < 1 and v, << 1 can be evaluated with the help of the inequality

2

mod W3 (10, ~ i200) < B 1 E X, (4.128)
Fram (4.128) it follows that in the area of frequency wy, where mod Wo(iw) of the
frequency characteristic of the steady-state part of the system takes on values
close to unity, mod W;(im2 - i2wg) << 1. Therefore, when determining stability the
second component in the right side of the open system's transfer equation (4.125)
can be ignored. Thus, for the chosen correcting circuit parameters, the presence of
RVG transience does not affect a DSP's stability.

Let us discuss the static characteristics of a DSP based on an OMG with VP when ad-
ditional correcting circuit (4.124) is used. When acted upon by a constant disturb-
ing moment, the platform is deflected from its initial position through a constant
angle that is determined from the expression

G o 1V +itey) —

T e M (4.129)

- 3y discovering the values of the operators in expression (4.129), we obtain the de-
pendence of the DSP's static error on the stabilization signal's parameters:
. Ky
iv 4 — —_
P 2% M, ) (4.130)
n. cT = K..w-,‘ - _K}Kp

When the given operational accuracy and the known values of the disturbances are
taken into consideration, from expression (4.130) it is possible to find the re-
Juired amplification factor in the stabilization circuit.

A constant disturbing moment also leads to harmonic oscilla:ions of the platform
with frequency Zwo. The expression describing the rule governing the platform's
oscillations has the form
& = ;Kda®n (-i:)w,,)lwn \(x?) w?‘(O) WK’_K (‘—i’.’(o,,) W, (—i20) E;_c-m».f‘ (4.131)
+ W (—i209) + W (0) 2w,y
Allowing for the accepted change of sign for Wy and substituting into (4.131) the
operators' values expressed in terms of the system's parameters, for Tp = 0 we ob-
tain

Maeitmat, (4.132)

- , ]
From (4.132) it follows that in order to compensate for real disturbing moments, a
platform must perform angular oscillations with frequency 2ug, the amplitude of
which is on the order of angular seconds and can reach tens of angular seconds.
When such oscillation amplitudes are not allowable, it is not feasible to use cor-
recting circuit (4.123) to eliminate systematic platform deflections caused by con-
stant disturbing moments.

when platform deflections caused by the effect of constant disturbing moments are
2liminated, the platform--as follows from (d4.113)--will still have a systematic
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deflection if the disturbing moments are of a harmonic type with frequency 2wgy:
) M, = M, =20, (4.133)

The expression for determining the magnitude of the deflection as a function of the
disturbing moment's amplitude is found easily from (4.113) and has the form

= Wo(i2wg) W (i20,)
Ay =

Ve
The dependence of the platform's deflection on MﬁA, expressed in terms of the sys-
tem's parameters, is determined quite accurately by the simple expression

My (4.134)

- . ! | —x% .
a“%lml—ﬁ/"fm\. (4¢l35)

RVG errors can also lead to both systematic deflections of the platform and the ap-
pearance of a constant angle of its deflection from the position it initially occu-
pied in inertial space.

As was shown in Chapter 2, MRG errors can be represented in the form of an equiva-
lent angular velocity W, acting on the instrument's input. The effect of angular
velocity W, on an MRG's input is equivalent to the effect on the stabilization axes
of equivalent disturbing moment

My. o = Kin W () Wi () [Wg(n) - ﬁ”é(p + i2wg) e=110%] @,. (4.136)

We will discuss only those errors that result in the "equivalent angular velocity de-
scribed by the expression

Bp = Dy + De g™, (4.137)

where Géo = constant angular velocity, while BEA = amplitude of the angular vibra-
tions with frequency 2ug. In this case the expression for the equivalent disturbing
moment will take on the form

Ma.e = Kanl, (0) W (0) (W (0) ey — 5 (i200) Bl +
+ Riall (—1200) W (—i200) [V (—i200) 6y — (4.138)
- \VE (0) @yq) eitwet,
By substituting (4.138) into expressions (4.131) and (4.134), we obtain the depend-

ence of the velocity of the platform's systematic deflection and its angular deflec-
tion in inertial space on MRG errors:
. | — % - -
G, =2 (—",;‘”el—“’eo);

T (4.139)

. a",c,m2(1~v+’<—§") (20 + :—jr-,-fca,,.). (4.140)
Thus, when the method under discussion is used to construct a stabilization system,
the platform's systematic deflections are determined by the base's linear and angu-

_ lar vibrations with frequency 2wy, the angular vibrations of the MRG's rotating part
in the main rotation supports relative to its axes of sensitivity on the same fre-
quency, and the errors in the MRG itself.

Let us discuss the possibility of eliminating systematic DSP deflection caused by
the effect of constant disturbing moments on the stabilization axes when the MRG's
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rotating part has a large kinetic moment. From Section 4.6 it follows that in this
case it is advisable to use cross-control of the stabilizing engines (€ = C), while
in order to achieve system stability for large amplification factors it is possible
to use a series-connected, nonminimal-phase correcting circuit with transfer func-
tion (4.34). It is obvious that when Xy < 1 and the aperiodic lag in the stabiliz-
ing engines is compensated for, conditions (4.120) can be fulfilled by (for example)
the additional connection in series in the stabilizing circuit of a resonance ampli-
fier and a nonminimal-phase correcting element. The transfer function of such an
additional correcting circuit takes on the form

|
— P+ |
Ky

4w,

Wy (ﬁ) =

p+_1' (4.141)

I i
— —_—nl
oy P et
As in the case of small values of h, it can be shown that when the amplification

- factors are sufficiently large and 1/T; << wg, the inclusion of such a circuit does
not have any substantial effect on the system's stability.

L T Uyt For values of the frequency of the plat-
Teptx form's nutational oscillations and frequen-
cy wg/ (1 +w) (1/Ty < wg/(l + %)) that are
7 close to each other, when Ky % 1 condition

(4.120) is fulfilled by using an additional
two—dimens%onal, series-connected correct-

= =1 e ing element with the transfer function
i |
. e

Vo 5’7 Yt Wy (p) = Ko Top—i+ A ' (4.142)
Figure 49. Structural diagram of two- where (1 + u)/wo < Tg < Ty, while Ay << 1.

dimensional correcting circuit. Such an element can be realized by intro-

ducing into the system direct control of
the stabilizing engines (€ = -m/2), reducing the open system's amplification factor

by a factor of Ky, and including in the stabilizing circuit a correcting element
with the structural diagram shown in Figure 49. If these frequencies are so close
together that the additional correcting circuit has an effect on the dynamics of the
entire system, the choice of the structure and parameters of the stabilizing circuit
must be made from the very beginning with due consideration for MRG transience.

The elimination of systematic DSP deflections because of the effect of constant dis-
turbing moments takes place only when conditions (4.120) are fulfilled exactly. 1In
practice, however, the precise realization of a system's desired frequency charac-
t-ristic and its maintenance during operation are impossible, since the parameters
of the system's elements can change in time, depending on the temperature and other
operating conditions. This leads to a change in the values of the modulus and argu-
ment of frequency characteristic Wé(iw) on frequency w = 2wg. Let us give these
changes in the form of small increments of the rated values:

mod We (i2u) =1 + A;
arg Wi (i2w)) = —n + Arp.
3y substituting the values of the modulus and argument of Wé(iw) from (4.143) into

zquation (4.113) and directing p to zero, we determine the systematic DSP deflection
caused by constant disturbing moments when conditions (4.120) are not fulfilled

(4.143)
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accurately:

= —A-ildp e
aQ, = K,K; ‘wan. (4'144)

Inaccurate realization of the open system's frequency characteristic with respect to
amplitude leads to DSP deflections relative to the same axis around which the dis-
turbing moment acts, while a phase exror results in deflection with respect to the
cross axis. Expression (4.144) makes it possible to evaluate the requirements for
accuracy in maintaining the values of the system's parameters as a function of the
acting disturbing moments and the allowable systematic DSP deflections.

Thus, the special MRG features, which consist of the presence at its output of two
useful signal components--one slowly changing, while the other is amplitude
modulated, with.a carrier frequency that is double the rotor's frequency of rota-
tion--makes it possible to realize a fundamentally new approach to the construction
of. a stabilization system. It presumes the creation of those conditions for the
passage through the system of a signal on the doubled frequency of rotation of the
rotor for which there occurs full compensation for the constant disturbing moments
acting on the system. Such an approach makes it possible to reduce significantly
the systematic deflections of an SP based on a RVG that are caused by constant dis=-
turbing moments, without any substantial increase in the amplification factor in the
stabilizationlcircuit, which usually entails a number of technical difficulties. "
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CHAPTER 5. ROTOR VIBRATION GYROSCOPES IN THE DEFLECTION CORRECTION CIRCUIT OF A
GYROSCOPIC STABILIZATION SYSTEM

5.1. Description of Stabilization Systems With a Deflection Correction Circuit

In Chapter 4 we discussed the possibility of using MRG's as the basic sensitive ele-
ments in stabilization systems. It was shown that the construction of such systems
with deflections on a level close to the MRG's threshold of sensitivity involves
overcoming a whole series of difficulties engendered by the requirement for realiz-
ing high amplification factors in the stabilization circuit.

1) en2

Figure 50. Kinematic diagram of GSP.

Key:
1. sp. 3. G. [gyroscope]
2. RVG.

There is another way to use RVG's in stabilization systems: the construction of an
additional GSP deflection correction (KU) circuit. In this case the GSP is built
according to the well-known principle, using two-stage gyroscopic units of the tra-
ditional type. On the platform there are additional RVG's that measure its rate of
deflection in inertial space. Figure 50 is a kinematic diagram of such a GSP. The
signals from the RVG's are fed into DM's [demodulator] mounted on the precession ax-
es of the corresponding gyroscopes or on the stabilizing motors in such a fashion as
to compensate for the GSP's deflections.

Such integration in a system of traditional gyroscopes and RVG's makes it possible
to obtain a whole series of advantages. In the first place, the accuracy
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requirements for the GSP's basic gyroscopic units are lowered, which makes it possi-
ble to use small and inexpensive gyroscopes, since the realization of the required
deflection value is insured by the KU circuit. Secondly, the accuracy of the RVG's
operation is improved because they are mounted on a stabilized area and the basic
disturbances are countered by a stabilization circuit with a traditional gyroscope.
In the third place, the division of the basic functions between a stabilization cir-
cuit with a traditional gyroscope, which provides the system's required dynamic
characteristics, and a KU circuit with an RVG, which provides the required systemat-
ic deflection value, makes it possible to realize both circuits with simpler means.
Finally, there is an improvement in the system's reliability because if the RVG goes
A out of order there is no cessation of the GSP's functioning.

The shortcoming in this way of using RVG's is the limited possibility of miniaturiz-
ing the GSP, since the system's instrument complement includes three traditional
gyroscopic units with moment sensors and at least two RVG's. The use in the system
of a single RVG, for deflection correction with respect to the platform's two most
critical axes, can be assumed.

Let us examine a single gyroscopic stabilization channel. Its structural diagram is
represented by two closed circuits [2], of which the inner one reflects feedback
with respect to the gyroscopic moment, while the outer one reflects it with respect
to the stabilizing engine's moment. Such a layout is easily reduced to single-
circuit form and is usually analyzed as a unidimensional system with two inputs with
respect to the disturbing moments acting along the stabilization and precession ax-
es. Possible circuits for external correction and control of a GSP usually differ
substantially with respect to the frequency pass band, so their operation is dis-
cussed separately only within the framework of precession theory [25], which simpli-

- fies the investigation considerably. When building a GSP KU circuit, as has been
shown in a number of works [7-9], in order to reduce the deflections to values close
to the RVG's threshold of sensitivity, it is necessary to realize high amplification
factors in the KU. This makes it impossible to discuss the operation of the KU and
stabilization circuits separately, since such an approach can result in fundamental-
ly incorrect results.

i©,
Wg(P) ’ W, (p)

1 & Wy, (p)

7 21 (p

Wy, (p)

Kyup %, Waa(p)

Figure S1. Structural diagram of GSP stabilization channel with
a deflection correction circuit.
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With due consideration for the remarks that have been made, let us examine, in a
linear and steady-state formulation of the problem, the structural diagram of a sin-
Gle GSP channel with a KU circuit, as depicted in Figure 51. A GSP channel with a
KU circuit is a two-dimensional, two-channel system with cross-couplings. The input
of one channel in the system is the disturbing moment Mp with respect to the stabil-
ization axis, while its output is the platform stabilization angle a,. The second
channel's input is the disturbing moment Mp; with respect to the gyroscope's preces-
sion axes, while its output is the gyroscope precession angle 8. Between the chan-
nels in the object being regulated there exists a negative, antisymmetrical cross-
coupling with respect to the gyroscopic moments. Angles a, and 6 are measured, re-
spectively, by an RVG with transfer function wg(p) and a precession angle sensor
(DUP) with transmission factor Kpyp: The signals from the RVG (U;) and the DUP (Uj)
anter a regulator, which in general form can also be represented as a two-
dimensional element with direct cross-couplings.

Let us discuss in more detail the physical meaning of the transfer functions that

describe the regulatox. Function Wy;(p) is the transfer function of the stabiliza-

tion circuit, which contains transforming and amplifying elements, a correcting cir-

cuit and a stabilizing engine. Function W,,(p) reflects the feedback that can en-

ccmpass the gyroscope itself. When a GSP is based on integrating gyroscopes, there

is usually no feedback. However, when angular velocity sensors (DUS) with an elec-
- tric spring are used as the basic sensitive elements, this connection describes the
properties of the circuit forming the electric spring. It can also be used to
change the GSP's dynamics and, in particular, to limit the precession angles.
Transfer functions W;;(p) and W,; (p) describe the circuits in the KU circuit. The
signal from the RVG can be used simultaneously for deflection correction through the
circuit described by transfer function W51 (p) and to counter disturbances acting
along the stabilization axis, as occurs when an RVG is used as the basic sensitive
slement of a stabilization system, through the circuit described by transfer func-
tion Wy1(p).

fan

Wp(n)

Mer

Figure 52. Vector structural diagram of GSP stabilization.
circuit.

lince a GSP channel with a KU circuit is described as a two-dimensional automatic
requlation system, in order to investigate a GSP with a KU circuit it is advisable
to use a vector-matrix mathematical apparatus. A vector-matrix structural diagram
ccrresponding to the structural diagram of a single GSP channel with a KU circuit
{see Figure 31) is depicted in Figure 52. The following definitions are introduced
in this diagram:

sector of the disturbing moment with respect to the stabilization channel--

M, ‘I‘

7,
. l M,
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vector of the platform's angular rotation with respect to one axis--

n %n |l
ay = e '
vector of the signal at the measurer's output--
[ = |
- = f
U,

vector of the stabilizing moment with respect to the stabilization channel--

— M, .
Mcl = [‘/’K ’
transfer matrix of the platform with respect to a single stabilization axis--
[ 1
_ w —_—
ﬂ(p) H1+“"“" p P
. ! Inp + Itp H (5.1)
Tols o . Tobe ¥ Toiin —H  Iptul
At P A gy P T R T
transfer matrix of the stabilization channel's measurer--
Wapy 0
w. =‘ 4 (5.2)
i (p) K yup
- transfer matrix of the stabilization channel's regulator--
w w
W, (p) = 1u(p) 12(p) : (5.3)
Wa () Wy(p)
vector of the stabilization channel's interference signal--
2_’_‘
[ (5.4)
fn

Since each GSP stabilization channel is a two-dimensional system and is described by
matrix transfer functions, in order to describe bi- and triaxial GSP's it is com-
pletely natural to use block matrices for the purpose of achieving greater compact-
ness and better visibility [1l]. In order to do this, we will introduce the sys-
tem's coordinates in the following manner:

the vector of the GSP's angles of rotation, in which each element of the column is a
vector column consisting of the platform's angle of rotation in inertial space rela-
tive to the corresponding stabilization axis and the angle of rotation of the gyro-
scope operating along this stabilization axis and around the precession axis--

3

&= la,

a3

the vector of the control signals, in which each element of the column is a vector
column consisting of the signal from the KU circuit's sensitive element and the sig-
nal from the precession angle sensor for the gyroscope along the corresponding sta-

bilization channel--
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i

B

ﬁ= g;

R

3

the vector of the control moments, each element of which is a vector column consiste
ing of the moment with respect to the corresponding platform stabilization axis and
the gyroscope's precession axis--

MC]

the vector of the disturbing moments; which contains as elements vector columns con-
sisting of the disturbing moments with respect to the stabilization and precession
axes of each of the stabilization channels--

M=

SIS

3

The connections between the system's coordinates is described by the following
vector-matrix relationships:

=W, (p)(M+M,); ]
i=W;(p)a,
Mc = W, (p) U,

(5.5)

where W_(p), W;(p), w (p) = block transfer matrices of the platform, the measurer
and the regulator, respectlvely. Let us explain in more detail the meaning of the
elements of the block transfer matrices of a GSP with a KU circuit.

Along the main diagonal of the platform's transfer matrix W, (p) there are transfer
matrices that characterize for each stabilization channel the relationship between
the vector of the platform’s deflecticn angle @ and the moment acting along the
corresponding stabilizing axis (M; + Mqi). The nondiagonal elements of matrix
Wi (p) describe the cross-couplings existing in the platform between the stabiliza-
tion channels. These couplings are engendered by the platform's centrifugal moments
of inertia, its motion relative to the gyroscopes' axes of precession and the kinet-
ic moments of the driven motors of the RVG's mounted directly on the platform. In
ccordance with the well-known equations of motion of a GSP (24}, the elements of
macrix W (p) can be determined from the following equation:

Wa (p) = A[E — Wi (p) Waa (p)]7 Wh (p), (5.6)

where w%(p) = a quasidiagonal block matrix, along the main diagonal of which stand

matrices of the type of (5.1) that determine the relationship between the platform's

and gyroscopes' deflection angles and the disturbing moments in the absence of

cross-couplings between the channels; Won (P) = a matrix describing the reverse

cross~couplings in the platform caused by the platform's centrifugal moment of iner-
- tia and the kinetic moments of the RVG's rotating parts:
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wnn(p)_
0 0: up 0: —h.p 0
0 0 0 0 0 0
_ —hp 0 0 0 —Ixyp* +lop O (5.7)
= 0 0 0 0 0 0 .
hup Oé—mﬂ—Mp 0 o d
0 0} 0 0 0 0

A = a matrix describing the transition from the gyroscopes' absolute angles of rota-
tion to their relative angles of rotation around the precession axes; that is, al-
lowing for the cross-coupling between the stabilization channels because of the
platform's transient motion around the gyroscopes' precession axes:

0: 0 0‘:0 0

A =1l cos, 0 0 l';sln}»2 J (5.8)
o 7ol o oi 1 0
sinky 03coshy 0: O 1

where A = angles of installation of the gyroscopes on the platform, which are given
in accordance with Figure 53.

Figure 53. Diagram of arrangement of gyroscopes on a platform.

The measurers' transfer function W, (p) includes the transfer functions of the RVG's
that measure the platform's motion relative to the stabilization axes and the pre-
cession angle sensors, which in the simplest case are represented by amplifying ele-
ments with transmission factors Kpyp ;- Cross-couplings between the channels are
formed because of the cross-couplings in the RVG's:

W (n) =
w’m‘lmﬂl’/@,m) oy Wa gy v
i * N H Y
" buf 1t Y
—w ) 0ol W 0
— 5“l(n : 901("”' 5"’('” (5.9)
) : 0 N
[ ; kDuP 2
\G"} (P 0 : Wr;. m R
) 0o "o "
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The transfer matrix Wp(p) of the regulator can be represented as the product of two
matrices:

W, (p) = W (p) Wy (1), (5.10)

where Wy (p) = transfer matrix of the formulating component, which matrix character-
izes the control law for the stabilizing engines and the moment sensors along the
precession axes. In the absence of special cross-couplings between the channels it
is a quasidiagonal block matrix, the form of the diagonal element of which depends
on the type of GSP and the way the KU circuit is constructed.

Transfer matrix Wo(p) reflects the relationship between the stabilizing and correct-
ing moments acting on the platform and gyroscopes and the control signals entering
the stabilizing engines and moment sensors. Cross signals appear here because of

- misalignment of the suspension axes and the platform's axes and the effect on the
platform of the reactive moments of the moment sensors along the gyroscopes' preces-

sion axes:
Ve 41(p) 0 0 oS AW 444 (1) ¢ sin AWt ma (P)
0 Win1(p) 0 0 0 0
y sin f . .
stnBytg BaWe s (p) sina Wy i(p)i cosBWe 4:(p) 0o o ‘c'gs_ﬁ_‘"‘wc.a:(/)) 08 43Wy 2 2 (P)
Welp) =
9 0 0 Wama (9) 0 0
. . cos P
cos Py tgReWe 1 (p) COSM Wi (p)f—sin BiWe 4o (0) SIN AW im 2(0) | opm Weaa () 0
- 0 0 ! ) 0 0 W ma(p)
(5.11)
where Wo g i(p) = transfer function of the stabilizing engine; Wa.m i = transfer
function of the moment sensor with respect to the precession axis; B; = relative an-

gles of rotation of the platform in the cardan suspension.

Allowing for (5.5), when block matrices are used a GSP's equation of motion in oper-
~tor form takes on the form

@y = [E— Wa(n) W, (0) W, (D) W, (p) M. (5.12)

Such a form simplifies the analysis of the system considerably by making all the
computations more graphic physically, and also makes it easier to formulate algo-
rithms for use with a digital computer.

5.2. sStatic Characteristics of Gyroscopic Stabilization Systems With a Deflection
Correction Circuit
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The static characteristics are one of the most important indicators of the quality
of a GSP's performance. Let us see how the addition of a KU circuit affects a GSP's

static characteristics. We will consider a single GSP channel.

al diagram shown in Figure 52, and has the following form:
&, = [E — W, (p) W, () W; (n)I™ Wa () M,

The solution of a
GSP's equation of motion written in operator form can be obtained from the structur-

(5.13)

where [E - W“(p)wp(p)wi(p)]'lwﬂ(p) = K(p) is the closed system's transfer matrix.
The static characteristics of 2 GSP with a KU circuit can then be found in the case

of a maximum transition to (5.13) for p - O:
(-11 = K (O)ml

(5.14)

Giving the elements of matrix K(0) in terms of the cystem's parameters, we obtain a
general expression that makes it possible to determine the static characteristics
of a GSP with a XU circuit for different types of GSP's. It is obvious that for

K(0) this expression has the form
1

K (0) = , )
T Wy (0) | We(0) [ Ve (D) <
H Wi, (0) + P [ W, (0) Wy (0) — Wq, (0) !
| 4 __—”———____l__wlz'z(o) s
A \Kpup Vi 00 P Wia(0) ] TP

X

! 4, (0)

In Chapter 1 it was shown that an RVG's functioning can be discus
with respect to the

differentiating and integrating modes. 1In connection with this,

' ! ta_ Wp(0)
e | — v I R .
"w-"’u(m[ 1+ g Y 0] 7 v [ AP )

(5.15)

sed in both the

platform*s angle of rotation oy for the first mode, we have the following relation-

ship:
Wg(p)ﬂ»ﬂ = K'.]Pu

while for the second it is

W:}(P)p»o =—K;.

We will also assume that the realization of "pure" integrals and

derivatives is not

required in the regulator, since this is an exceptionally complicated technical
problem. In this case, for a GSP with a KU circuit, in the differentiating mode of

RVG operation expression (5.15) is written as
|

K(0) = X
B Ku | Ko K\ °
T+ Kn“'T’(K:H'K“T,{)
. s | Koo !
| H(K;uo K12+ P Ky HP |

I K | K n
—K_—Ddf K.z (‘p‘; Ko + |) _—KM K,Z(T?K“‘%—J/l_l—)

while for a GSP with a KU circuit, in the integrating mode it 1is
Ko [
| Kia !

I
K (0) = - ———x—
K g o Ka . :
1\:1'%‘“11?1‘2‘\__ K, K K._’&l__q
¢ Kl

K. K_.

RIS o
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Let us examine the static characteristics of different types of GSP's. For GSP's
based on two-stage integrating gyroscopes with ball-bearing supports along the pre-
cession axes (so-called "dry" gyroscopes), the small amount of viscous friction
along the precession axes is typically negligible (ug = 0). In these gyroscopes
there is no positional feedback; that is, Kp2 = 0. The static characteristics for a
GSP of this type that uses a differentiating RVG in the KU circuit take on the form

¢ &1— I,l X
l+ : at
' l| (5.18)
° 7F | M
| KoK | KK Ra )
—roro T ) e (SRR ) M
- K:M"Klz< H ) Kow Klz( T H) ol
while when the RVG operates in the integrating mode they are
0 L)
El= Kk |— K; Ky KKy l /Hnl|. (5.19)

Koo K1a Kour Kpll |
Thus, when a KU circuit with a differentiating RVG is used, relative to the disturb-
ing moment acting along the stabilization axis, the GSP remains astatic, with first-
order astaticism, with respect to stabilization angle a.. When a constant disturb-
ing moment acts along the precession axis, the systematic deflection in inertial

- space of a GSP with KU is n times smaller than for an analogous GSP without a KU

circuit:
n=]+£ﬁn_ (5.20)
] From (5.20) it follows that the realization in the KU circuit of quite large ampli-

fication factors is required in order for a substantial reduction in GSP deflection
to be achieved. Degending on the accuracy of the GSP itself, these factors can
reach values of (103-104)H. A GSP's static Characteristics with respect to the
gyroscope's precession angle do not change, for all practical purposes. The preces-
sion angle of a GSP with KU remains the same as for a noncorrected GSP, but when
acted upon by Mg] it can increase because of the introduction of a feedback circuit
with transmission factor Kii-

With respect to the stabilization angle, a GSP with a XU circuit based on an inte-
grating RVG has second-order astaticism relative to disturbing moment Mg. In con-
nection with this, a disturbing moment along the precession axis leads to a static
error relative to the stabilization angle that is inversely proportional to the cor-
rection circuit's transmission factor KjKy;. The larger the stabilization circuit's
transmission factors KpypKjy are, the smaller the deflections with respect to the
gyroscope's angle of precession.

In GSP's based on flotation integrating gyroscopes (PIG), there is also no position-
al feedback encompassing the gyroscope (Kzp = 0), although the value of kg is quite

large. The static characteristics of these GSP's with a KU circuit are described by
the following expressions:

when the RVG is operating in the differentiating mode--
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a, X
KoKs,
14 7l
g LI 1
7 Ko Ko HP M, (5.21)
1 K 1 y K '
—_—— (1 — _{(tn
Roop Km( +77 Ka) Ko K,,( i Ku) || M
when it is operating in the integrating mode--
0 1 M,
— ] .
oy =-K—l—K—u' _ K;Kﬂ K‘Kll Mnl . (5.22)

Koup Kia Kour Ky

In the first mode, the systematic deflections and static error of a GSP with a KU
circuit are reduced in comparison with a standard GSP by a factor as large as that
that occurs in a GSP based on "dry" gyroscopes. In the second mode, the GSP becomes
astatic with respect to moment Mg, while when a moment acts along the precession ax-
is the static error is inversely proportional to the correction circuit's transmis-
sion factor KjKj;. In both cases, the higher the stabilization circuit's transmis-
sion factor KpypKjz, the smaller the deflections with respect to the gyroscope's
precession angle.

The static - characteristics of a GSP based on angular velocity sensors and having a
KU circuit are determined directly from (5.16) and (5.17). For differentiating
RVG's they have the form

z ! N

. 2)

14 B K +%(KH+KH g::

“H Ky
I K, € M 1
—ITFK—“ H n (5.23)

P
! K I Ky | Bn '
—-R;'Trl(—#f(:l'}‘l) m(Kﬂ—f}—l‘+ H) M,

while for integrating ones they are

Kae
== l
@ = KI I K o h (5.24)
i n . .
Kn + Ky Kz | _KiKy KKy M
Kour K1 K 5yp Kial "

Since the existing DUS's based on traditional two-stage gyroscopes have a high sen-
sitivity threshold, quite high GSP accuracy can be obtained because of a KU circuit
alone. A reduction in systematic deflections (in the case of the use of differenti-
ating RVG's) and static errors (in the case of RVG operating in the integrating
mode) when the system is acted upon by disturbing moments My and Mg can be achieved
by increasing transmission factor KjjKy or transmission factor KjjKg. The effect-
iveness of each of these methods is determined by the ratio of the rigidity along
the gyroscope's precession axis KpypKpp to the stabilization circuit's transmission
factor KpypKjz. The larger this ratio is, the more effective (from the viewpoint of
improving static characteristics) is the use of a correcting circuit with transmis-
sion factor Kjj. As Kj; is increased, there is a decrease in the gyroscope's steady
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angle of rotation with respect to the precession axis when the system is acted upon

by constant moment Mp;, while when Kyj is increased, the same thing occurs when mo-
ment Mg is acting upon the system.

Thus, although for the first two types of GSP's a circyit with transmission factor

K31 played only a negative role from the viewpoint of improving the static charac-

teristics, because it enlarged angle 6 when moment Mpj was present, for a GSP based
on a DUS this circuit turns out to have a positive effect.

Let us discuss the_static errors of a GSP acted upon by an interference signal de-
scribed by vector £. Directly from the structural diagram in Figure 52, it follows
that the dependence of Ei on f is described by the expression

a =K (P W, ()W, (n)F. (5.25)

Giving this expression in terms of the system's parameters and converting to the

limit for p > 0, we obtain expressions for determining the GSP's static errors.

When a differentiating RVG is used in the KU circuit, the expression takes the form
- I

y
Tt b iz +—,§ (Kot K g)

_ | i Kz:Kn e | We
| Bl _HQ[K“ i e S L C R Y | B
(5.26)
K,.K
X + PHP" (l\”+ S’dﬂ )] ,
._.__5_ Hn (ke _
I\Nf K ( }\ll) K" ( H K'.‘2+ l) fn
while when the RVG is operating in the integrating mode, it is
- 1
ay; = — K. X
sz“l-KuTEl
1 KuKu l‘al‘n ( KoK aup ) e
- . Knlts tnlis [K“ + % T St K 0 P (5.27)
i
] B g 0l f
Kyup Km( H “) n

From expressions (5.26) and (5.27) it follows that for a GSP with a KU circuit, when

- the amplification factors in the KU circuit are sufficiently high, the systematic
deflections are determined basically by the magnitude of the RVG's error, as reduced
to an equivalent angular velocity at its output, and cannot be changed substantially
by the choice of the stabilization or correction circuit's parameters. 1In order to
control such a GSP in the presence of external signals, the point of application of

- the control actions must be in the RVG's output circuit. The rate of generation of
the control action is also determined from expressions (5.26) or (5.27).

5.3. Selecting the Structrre and Parameters of a Deflection Correction Circuit for
a Uniaxial Gyroscopic Stabilizer
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As was already pointed out in Section 5.1, the basic purpose of a systematic deflec-
tion correction circuit is to reduce GSP deflections arising because of the effect
of slowly changing disturbing moments. From an analysis of the static errors of a
GSP with a KU circuit it follows that for the successful solution of this problem,

- it is necessary to realize in the KU circuit extremely high amplification factors,

- which usually comes into conflict with the requirement for stable operation of the
system. Therefore, as an original prerequisite for the determination of the KU cir-
cuit's structure and parameters we will adopt the requirement that the maximum pos-
sible amplification factors be obtained in it while maintaining sufficient system
stability reserves with respect to phase and amplitude.

From expression (5.13) it follows that the closed system's transfer matrix can be
written in the form
i Ku(p) Kiz(p)

e ) (5.28)
Dl Ku(r) Ka(p)

K(n) =
where
D (p) = (1ap + 1) Uap + 1) (P (Tap + 1) — W’g(p) W (p)] X
X (p{ap+ 1) = W (P + H (1o 4 1) [Hp 4 Wi (9)] X
X 1p Iy + pa) — We(p) Wi (p)] + H(lwp + pa) (Hp — W () Wa (p)] %
X (p(lap 4 1ta) — Wi (p)) + H [ Hp — W:}(/’) W (M Hp + Wi (p)—
- Wg(p) ((Iap + 1) War (0) — HW 1 (D1 (100 4 1) Waa () + HW o (p)):
K (p) = [(Top -+ 1) [(Tup + 1) [P (0P + 1a) — Waa (0)] + H?p) —
— H*W o (p)ID (p);
K (p) = [H (Lop + 1) [pTp - 1) — Weg (0] + H* W o () +
+ Hpl + (Iap + 1) [(1ap + 1) Wi (p) + HW o (p))} D™ ()
Ka(p) = {— (1p +1,) 5(”)[( P + 1) Woy (p) — HW y, (p)) —
- —HQIHP—‘W (P)Wzl(l))}—“
—H(I..p+un)l(/p+ur)p PYW i (o)) DY (p)s
Ko (p) = {— HW (D) [(1up + 1tn) Wz — HW, (p)) +
+ (Lo 1) Hi{Hp — Wy (p )Wg(ﬂ), +
+ (L + ) (op )W + 1) p — ‘Vg(n). Vi (ol D7 (p).

In order that the system be stable, it is necessary and sufficient that all the com-
ponents of transfer matrix K(p) be stable. This occurs when the regulator is stable
and the system's characteristic polynomial has all its roots in the left half-plane
of the complex plane. We will assume the first condition to be fulfilled and turn
to the analysis of the second. '

Allowing for the fact that for GSP's based on integrating gyroscopes there is no
feedback encompassing the gyroscope, while feedback described by transfer function
W11(p) is not feasible from the viewpoint of the static characteristics, for the
discussion of this type of GSP we will set Wj;(p) = Wp,(p) = 0. The characteristic
polynomial then acquires a simpler form:

D(p) =pl(lwr + pe) (o + 1) + H? {p [(Lap 4 1) (Top + 1a) + HY -+ (5.29)

+ HWy2 () — = W) War () 1 + Wra ()]
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In order to analyze the stability of polynomial (5.29), we will use frequency meth-
ods. In order that D(p) have stable roots, it is necessary and sufficient that
transfer function

_ fp + Wy, (p)
Vo) = P P (/e + ps) (Inp + pn) + H3] + HW,,; (p) W?(p) Waulp), (5.30)

satisfy one of the stability criteria with respect to an open system's transfer
function (36].

Providing the required dynamic characteristics in a GSP depends primarily on the
stabilization circuit, so we will assume that the latter's structure and parameters
have been selected to be the same as those of an uncorrected GSP. With due consid-
eration for this assumption, let us discuss separately two types of GSP's based on
integrating gyroscopes.

For a GSP of an astatic type, the most preferable for of correction in the stabili-
zation circuit is a nonminimal-phase correcting circuit with a transfer function of
the same type as (4.35) for Ty3 = Teo = 0 [12]. Let us write transfer function
(5.30) in dimensionless form, relating operator p to the platform's nutational fre-
quency wg = H/YJ Jg;
. . [w,t., -R’Lf:’ + (“”_Ki —1-() P+ |] WQ(E) W,y (0)
-— 12
W (p) = — — H TN = A '
L X ) pt ~—— X
- owH “"T"—K—l;p‘—*-mo K12 (l * Tn)p + o Kis (5.31)

x (v+ %)5=+w.{’;(l—rxm;‘f,;4)i+l

For normal stability reserves with respect to phase and amplitude, the stabilization
circuit has the following parameters [12]: T * 1.7; Kl2/Hw0 2 0.2; Ty >> 1. For
such parameters and a GSP using an OMG with VP in the deflection correction circuit,

- transfer function (5.31) is approximated quite accurately in the area of essential
frequencies by the simple expression

— _ KQKH | I W“ = ’
- Win =~ W+ yop + 1 T+ | (7). (5.32)

where Ty = 0.944; 269 ¥ 0.13. It follows directly from (5.32) that if the value of
the amplification factor in the deflection correction circuit is

KKI 3 ~
KJ=-4H’—<2,013~ 0,131,}, (5.33)

the system will remain stable without additional correcting circuits in this circuit
(Wy1(p) = Ky1); that is, the correction system has practically no effect on the op-
eration of the stabilization system. Thus, the better the MRG's filtering proper-
ties (the larger T, is), the higher the values of the amplification factors in the
correction circuit that can be obtained without using additional correcting compo-
nents. An increase in the allowable amplification factor K4 can be achieved by the
inclusion in the deflection correction circuit of a series~connected filtering ele-
ment with the transfer function

Wz,(;)=:/’;_=t+_l. (5.34)
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For the formation of such an element in the deflection correction circuit it is pos-
sible to use the time lag of the moment sensor for the gyroscope's precession axis.

If 131 >> 1, the allowable values of coefficient Kg will be determined from the in-

equality

Ky <2%tgtar: (5.35)

By selecting the appropriate values of T21 it is possible to realize practically any
values of Kq in the system, which means that its deflections will be determined only
by the MRG errors. .

In addition to nonminimal-phase elements, aperiodic correcting elements are used for
correcting GSP's of the astatic type. In these cases the closed system's frequency
Ccharacteristics differ little from each other, although when aperiodic elements are
used the platform's nutational oscillations are damped more weakly, so the allowable
values of K3y turn out to be smaller. It is also possible to increase Kq by using
additional correcting element (5.34).

The dynamic characteristics of a GSp with a KU circuit are determined by the closed

Systam's transfer function K11(p). When conditions Tg >> 1, T5) >> 1, 1, >> 1 are
fulfilled, the expression for K11(pP) can be represented as
p (g0 + 1) (521 + 1) L)
Ky (p) = ¥ TFx; Ko@) (5.36)
Tty s, TutTp- | THK, .
‘—ﬁ-l_*_ dp +——31+de+

where Kgl(ED = normalized transfer function of a GSP without a KU circuit. Thus,
along with decreasing a GSP's systematic deflections by a factor of 1 + Kq, a KU
circuit also reduces the amplitude of its induced oscillations when it is acted upon
by low-frequency disturbances. The boundary of the area of frequencies in which the
reduction of the amplitude of the forced oscillations takes place depends on the
transmission factor in the KU circuit. 1If

U (1 —10)?

Kd<7 Tl (5.37)
the denominator in expression (5.36) breaks down into two aperiodic components. In
connection with this, the boundary of the area in which the reduction of the GSP's
forced oscillations takes place because of the KU circuit is determined by the ex-

pression
L ! V L TN 1Ky,
0= [T? + T + (79 Tu) “3‘:1}“’0. (.38)

- If the denominator of (5.36) does not break down into aperiodic components, the fre-
quency acquires the value

o=/ 1tk,

. 5.39
Tgt 0 ( )

The relative damping factor in the denominator of (5.36) of the oscillatory compo-
nent depends both on X4 and on the relationship of the time constants Tg and T5; of
the GSP and the correcting element, respectively:
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gK=%[Vf?—;+ V—:_#';}W']T“KT (5.40)

In order to reduce the effect of resonance phenomena on frequency (5.40) on the ac-
curacy of stabilization, the correcting circuit time constant that is chosen should
be one for which the value of the relative damping factor is at its highest.

If there is no correcting element in th2 KU eircuit, the denominator of (5.36) is an
aperiodic component with conjugating frequency
1+ Ky

9

V=

- (5.41)
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Figure 54. Amplitude-frequency characteristics of a GSP.

The value of V also determines the boundary of the frequency area in which the KU

circuit exerts its influence. Figure 54 shows the approximate form of the frequency

characteristics of a GSP without a KU circuit (curve 1), as well as a GSP with a KU
circuit with and without a correcting element (curves 3 and 2, respectively).
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When a DMG with VP or any other RVG having a transfer function of the form of
(1.109) is used as the sensitive element in a deflection correction circuit, the
frequency of the DMG's nutational oscillations can be greater (wy > wy) or less

(wy < wy) than the frequency of the platform's nutational oscillations. Coincidence
of the nutational frequencies of the DMG and the platform should be avoided, since
this mode {as is obvious from (5.31)) is most unfavorable for the operation of a GSP
with a deflection correction circuit. If Wy > wg, the system's stability is deter-
mined by the behavior of the frequency characteristic corresponding to transfer

function (5.31) in the area of frequency wy. In this case the allowable value of Kq
is

K< 2£,Tuo,, (5.42)

where T, = time constant of the DMG's precessional oscillations.

When wgy < Wy [sic], all the discussions taking place for a GSP with an OMG are cor-
rect, while the allowable values of Xg can be found from (5.33) and (5.35) if 14 in
- them is replaced by the time constant of the DMG's precessional oscillations.

In all of the described cases, it is also possible to increase amplification factor
Kgq by including in the deflection correction circuit a series-connected nonminimal-
phase correcting element of the type of (4.35), with a time constant T} - /3 or, for
wy < wy, Tx = 3(1/wg). 1In this case, however, for large values of Kg the deflec-
tion correction circuit actually determines the GSP's dynamics.

The second type of GSP's in widespread use at the present time are the so-called
static GSP's, which are based on flotation integrating gyroscopes. They are charac-
terized by quite strong damping with respect to the gyroscope's precession axis, in
connection with which the oscillatory component in the numerator of the controlled
object's transfer function usually breaks down into two aperiodic components. In
order to insure stability and the high quality of the requlation process while main-
taining the required amplification factors in the stabilization circuit, series-
cornected correcting components with the introduction of derivatives are used [12].
In the simplest case a component with the introduction of the first derivative is
used; its transfer function is:

Wia(p) = KuF2EL, T,> T, (5.43)

In this case, in the band of essential frequencies of the system, transfer function
(5.30) is approximated by the following expression [12]:

l Tw -1
W = e—— M W 174 S

where 1/Ty is close to the corrected open system's cutoff frequency, which deter-
mines amplification factor Ki2¢ &g is close to unity;

L K KiaT,

=1+ )(1‘\/ 1_4W)'

When an OMG with VP is used to correct platform deflections, a sufficient condition
for stability of the system is the requirement that the modulus of the frequency
characteristic corresponding to transfer function (5.44) not exceed unity in the
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area of frequencies close to 1/T,. When T3 > Ty and there is no additional correct-
ing component in the deflection correction circuit, the sufficient condition is ful-
filled if the amplification factor in the deflection correction circuit satisfies
the inequality

] Te | T K, / / Kis |
Kd<??_—2——7.§(l+',727'1)(1—-]/ 1—41; C-*-_K—“TT) (5.45)
7 .

As in the case of an astatic GSP, an increase in amplification factor K4 can be
achieved by intensifying the correction circuit's filtering properties by connecting
inertial components with (for example) a transfer function of the type of (5.34).

When MRG's having a transfer function of the (1.109) type (such as a DMG with VP)
are used in the deflection correction circuit, the relationship between frequency
1/Ty and the MRG's nutational frequency is of considerable importance. If the MRG's
nutational frequency is considerably higher than 1/Tq, the allowable values of K3
can be evaluated with the help of inequality (5.45). In the opposite case, the sys-
tem's stability will be determined by the behavior of the frequency characteristic
close to frequency Wy. When inequality

-, T t
"\4<17ﬁ%-§—5§2“' (5.46)

is not fulfilled, without the use of additional correcting components the system
either loses its stability or is close to the limit of stability. 1In this case, de-
pending on the specific parameters of the GSP and the RVG, Kq can be increased eith-
er by intensifying the deflection correction circuit's filtering properties, or by
using a series-connected correcting component with the introduction of the first de-
rivative of T3 > Ty, or by using a nonminimal-phase component T3 < Tg-

Let us now discuss GSP's in which the gyroscope is encompassed by direct feedback,
or GSP's based on angular velocity sensors. For simplicity's sake we will assume
that the feedback is realized in an ideal manner; that is, W22(p) = Kyp. This oc-
curs when a mechanical spring having rigidity K2 is installed on the gyroscope's
precession axis. The simplest type of such platforms are direct gyrostabilizers
(NGS) [26], in which the gyroscope serves to reduce the amplitude of the platform's
forced oscillations in a certain frequency band. NGS's are built on the principle
of a mechanical oscillation absorber, so the coupling described by transfer function
Wio(p) is usually absent in them. In practice it is frequently required to have a
simultaneous reduction in the forced oscillations of a platform caused by the base's
low-frequency oscillations and its vibrations, the spectrum of which has explicitly
expressed maximums. The solution of this problem by expanding the stabilization
system's working frequency band meets with obvious difficulties. Therefore, there
is interest in a system realized as if with two stabilization circuits, the first of
which is based on an RVG and reduces the platform oscillations caused by the low-
frequency disturbing moments, while the second utilizes the principle of a gyroscop-
iz oscillation abscorber and reduces the platform's forced oscillations in the given
frequency band of vibrations of the base. The transform function of this closed
system with respect to the stabilization angle is derived easily from (5.28) and has
the form

K(p)=Kig(@) 1l = Wo(p)Wy1(p) Ky (P (5.47)

The transfer function of the direct gyrostabilizer is
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1 T2p> 4+ 2, T o+ 1
T WP TLT BT (T + Talk) P+
F(Tat 26, Tm+T,T20d) p+1
where 1/T = intrinsic frequency of the gyroscope's oscillations that corresponds to

the frequency of maximum suppression of the forced oscillations; Em = relative damp-

ing factor of the gyroscope's natural oscillations; wy = frequency of the platform's
nutational oscillations; Ty = Iw/“n'

K, ,(n)

Since the condition Hz/(InKZZ) >> 1 must be fulfilled for efficient NGS operation,

its transfer function can be represented in the form

T?npz + 2~Emrmp + 1
|

{
K. g(p) =— . (5.48)

HoP (@AT2T 0+ 1) [T?p2+ (%.’*"T';) Tip +1]
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Figure 55, LAKh of stabilization channel.

From (5.48) it is possible to select the NGS parameters for which the given reduc-
tion in the amplitude of the platform's forced oscillations in the required frequen-
cy band is insured. The effect of the reduction in the oscillations' amplitude
takes place in the band of frequencies from (l/ngﬁ)(l/Tn) to a frequency that is
slightly lower than the platform's nutational frequency. Beginning with frequency
1/Ty, the forced oscillations' amplitude is reduced by a factor of wZTZ, while on
frequency 1/T, the maximum reduction, by a factor of mST%(l/zgm), occurs. Figure 55
depicts the frequency characteristics of a platform (curve 1) and a platform with an
NGS (curve 2). The essential shortcoming of the latter is the presence in the
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frequency characteristic of a peak in the area of the nutational frequency, so the
latter must be located in the band of frequencies where the disturbances are mini-
mal.

It is obvious that when designing an additional stabilization circuit using an R[WG,
the goal of which is to reduce the amplitude of the platform oscillations caused by
low-frequency disturbing effects, it is advisable that this circuit's cutoff fre-
quency in the open state w, be made lower than 1/T_. In this case the technique for
selecting the stabilization circuit's structure and parameters described in Section
4.3 is used. In connection with this, instead of the platform's moment ¢f inertia,
in the calculations we should use its equivalent moment of inertia, as determined by
the relationship

lg.n = oRT2],. (5.49)

Since in this case it is as if the controlled object becomes more inertial, the
problem of constructing a stabilization circuit with an RVG is made easier. For the
same amplification factors in the stabilization circuit, there is a reduction in its
cutoff frequency in the open state, which lowers the requirements for the stabiliza-
tion circuit's elements. At the same time, because of the use of an NGS, the closed
system's band of working frequencies in which there is a reduction in the amplitude
of the platform's forced oscillations is expanded substantially. In Figure 55 we
see the frequency characteristics of such a closed system when an OMG with VP is
used (curves 3 and 3'). Curve 3 corresponds to the case of the utilization in the
stabilization circuit of a correcting component with transfer function (4.26).

There is an entire class of GSP's in which DUS's are used as the basic sensitive el-
ements. DUS's with small kinetic moments are normally used for this purpose. The
basic shortcoming of such DUS's is their large systematic deflections, since DUS's
based on the traditional layout have, as a rule, an inadmissibly high threshold of
sensitivity. This flaw can be eliminated by the creation in such GSP's of a KU cir-
cuit utilizing highly sensitive measurers of absolute angular velocities, such as
RVG's. The structural diagram of such a system is derived easily from the structur-
al diagram depicted in Figure 51. In connection with this we will assume that the

direct feedback. encompassing the gyroscope is ideal (sz(p) = -Kjj). From (5.23) it
follows that for sufficiently high values of Koo, cross-control of the platform from
the KU circuit through the DUS is not effective, so we will assume that Wy (p) = 0.

- Considering the assumptions that have been made, the GSP's transfer function with
respect to the stabilization angle takes on the following form:

K(p)=K !
(PY= Ky+(p) M=V oY Wi (o) Ky 10 * (5.50)
where Kg.t = transfer function of a GSP using DUS's as sensitive elements, without a
- KU circuit:
13+ 1pp + Ky
”nP+!‘n)(/nﬂ“‘f'}‘nﬂ"f‘/"n)+H'P+HK::'

1

For GSP's based on DUS's it is recommended that the gyroscope's relative damping
factor be 0.5-0.7, wnile the gyroscope's natural frequency wp should exceed the sys-
tem's cutoff frequency Wep by a factor of 3-10 [12]. 1In the absence of special cor-
recting components in the stabilization circuit, the relationship between the open

3
S
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=+HﬁL (5.51)

© Kss

cp

Allowing for expression (5.51), let us rewrite the transfer function of a GSP with-
out a KU in the form

2

p’+#’-p+w;
3

PR R ),

!
Kg:(p) =55 (5.52)

Since DUS's with small kinetic moments are normally used to build GSP's, the rela-

tionship Wy << Wp usually occurs. Besides this, the parameters of real systems (as
= a rule) satisfy the inequalities :

Kn I W o th
_ In << wcyv T:" I: << my, JIT >> —’}‘:—-.

Taking these relationships into consideration and introducing the dimensionless op-
erator p = p/wT, we rewrite the approximated expression for transfer function (5.52)
as

Pt o+ |
P+npifpo+a ]

- 11
K?.r(0)= T = (5.53)

1 07

n

where N = 1-1.4; A = 0.1-0.33.

The denominator of Kg‘t(p) has one real and two complexly conjugated roots and rep-

resents, correspondingly, the product of an aperiodic and an oscillatory component.

For n = 1 and A = 0.1, transfer function Kg.e(P) is approximated quite accurately by
the expression

K T _zl; -l . 5.54
g+ (”) 1w! 5 10p+ 1 ( )

In the band of essential frequencies, such a system is represented, for all practi-
cal purposes, by an integrating component with a ccefficient of integration Ky =

= lO/(IﬂwZ). The greater the platform's moment of inertia and the DUS's natural
frequency, the smaller Kj, the systematic GSP deflection and its forced oscillations
are when acted upon by disturbing moments. The platform's moment of inertia depends
on the engineering problem that it must solve in each specific case, while the in-
crease in wp is limited by the DUS's required threshold of sensitivity and the qual-
ity of the elements in the stabilization system. Therefore, a decrease in K; is
achieved by introducing integrating-differentiating components without increasing
the open system's cutoff frequency. A decrease in the systematic deflections of a
GSP based on a DUS can be achieved by basing the KU on an RVG. Let us discuss the
special features of such a system when an OMG with VP is used in the deflection cor-
rection circuit.

The transfer function of the open system corresponding to the closed system is de-
scribed by the second cofactor on the right side of (5.50), and in this case has the
form

10K Kg | I !

W—,= =3 - —_— ’
(r) Tnor 100 +1 tp+1 twp + 1

(5.55)
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where 1, = Tqwpi p = T wp. If T, << 1 and the open correction system's cutoff fre-
quency wép is lower than the stabilization system's cutoff frequency, a GSP with KU
proves to be stable and with respect to the stabilization angle has the transfer

function
K.T o, g+ |
K(p)= ——= 7 : 5.56
lOKuK T IumT ~a2 7 | (5. )
,p _I\;"_K?p + 0.1 Kqu"’P‘l‘
It is obvious that the value
. n =10 Kukg (5.57)

l o

shows by what factor the GSP's systematic deflections are reduced when a KU circuit
is created in it. The roots of the denominator of transfer function (5.56) are de-
termined by the expression

—_ Py T= e . s — n
Pra= — 0,05+ 1/2,5 1079 —0,1 T (5.58)

- If it is required that the cutoff frequency of a GSP with an open KU circuit be low-
er than that of the open stabilization system, the following limitation is imposed
on the value of n:

n < 107‘9(1)7-}»2. (5.59)

- Figure 56. LAKh of the stabilization channel of a GSP based on a
DUS with a KU circuit.
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In this case the transfer function's denominator represents an oscillatory component
with a relative damping factor £ > 0.5. For n ¢ 2.5-10'2Tng, the denominator of
(5.56) breaks down into two aperiodic components. A reduction in n leads to a re-
duction in the cutoff frequency of the open system with KU. Figure 56 shows the ap-
proximate form of the frequency characteristic of an unstabilized platform (curve
- 1), a GSP based on a DUS (curve 2) and a GSP based on a DUS with a KU circuit based
on an OMG with VP for different values of n (curves 3, 3' and 3"), while in Figure
57 we see the same for a GSP based on a DUS with a KU circuit based on an OMG with
VP for different values of the OMG's time constant 'I‘g (curves 2, 2' and 3").
Attt W v
T n't T 0’ T w? a1 v
.. — et :

T

~

- Figure 57. LAKh of a stabilization channel based on a DUS with a
KU circuit.

From the graphs it is obvious that when the parameters are chosen appropriately, a
KU circuit makes it possible not only to reduce the systematic deflections of a
- DUS-based GSP, but also to reduce substantially the amplitudes of the platform's
forced oscillations when it is acted upon by low-frequency disturbances. On the
other hand, the presence on the platform of a DUS-based stabilizat’ion circuit lowers
the requirements for the RVG-based correction circuit in comparison with the case
where only the latter is used to solve the problem of platform stabilization. Actu-
ally, in order to obtain identical systematic deflections and dynamic errors, the
amplification factor of the circuit with the RVG and its pass band for a GSP based
- on a DUS prove to be much smaller than for the case of a stabilized platform based
on an OMG with VP. When RVG's with a transfer function of the (1.1.09) type are
. used as the KU circuit's sensitive elements, it is necessary that the frequency of
_ tne RVG's nutational oscillations be considerably higher than the cutoff frequency
of the DUS-based open stabilization circuit. In this case all that was said above
remains true.

Reductlions in the systematic deflections of a GSP with KU can be achieved by in-
creasing the amplification factor in the stabilization circuit or in the correction
circuit and simultaneously adding to these circuits a series-connected integrating-
differentiating component with appropriately chosen parameters. In connection with
this, the pass band of both the stabilization circuit and the correction circuit can
remain the same.
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The examples of the structure of a KU circuit for GSP's of different types that we
have discussed show that when the KU circuit has adequate filtering properties
(which can be provided by axtremely simple correcting components), in it it is pos-
sible to realize high amplification factors. This makes it possible to reduce GSP
deflections almost to the level of the RVG's threshold of sensitivity.

Conclusion

Practical problems encountered in applied gyroscopy have made it necessary to place
on the agenda questions relating to the development of the theory of RVG's and sys-
tems utilizing them. The generalized model proposed in this book makes it possible
to evaluate the prospects for the use of various RVG layouts to solve different
technical problems. The use of operator methods simplified considerably the analy-
sis of the equations of motion and the obtaining in analytical form of the depend-
ences of an instrument's basic characteristics on its parameters, For OMG's and
DMG's these dependences are fully visible and can be used directly in the designing
of such instruments. When synthesizing the parameters of more complex RVG systems,
they remain the basis of the computational algorithms for computers.

One of the main goals of designers is to minimize instrument error under given oper-
ating conditions. The dependences of MRG errors on different disturbing factors re-
lated to motion of the base, inaccuracy in instrument production, and special fea-
tures of instrument operation, as derived in this book, along with the dependences
of RVG characteristics on their parameters, make it possible to work cut a criterion
for selecting an instrument layout and making an optimum synthesis of its basic pa-
rameters.

The results of the theoretical investigations presented in this book make it possi-
ble to determine the possibility of creating KRVG's [expansion unknown] with the re-
Guired technical characteristics, as well as to determine the requirements for pro-
duction accuracy and accuracy in the tuning of element, assemblies and an entire in-
strument as a whole.

The zuestions on the theory of GSP's based on RVG's that have been discussed ir thig
book make it possible, using simple engineering methods, to carry out a preliminary
selection of the structure of stabilization and correction circuits and their param-
aters. he specific nature of systems with RVG's consists of the presence of har-
monic components in the RVG signal and additional cross-couplings between the sta-
bllization channels. In this book we have made simple estimates of the effect of
these cross-couplings on the dynamics of a GSP. We have developed a technique for
allewing for transient feedback that makes it possible to define the basic charac-
teristics of a GSP more accurately, allowing for the harmonic component in the RVG
sitnal.  For stabilization systems using an RYG in an additional deflection correc-

tion circuit, we have obtained limitations on the parameters of the deflection cor-
rection circuit, the observance of which makes it possible to discuss it separately
from the stabilization circuit.

The areza of possible use of RVG's, in which they can compete successfully with gyro-
szores of other types, is extremely extensive, beginning with the creation of meas-
wra2rs and absolute angular velocities and linear accelerations and ending with ISN's
and I30's. Therefore, the need for the creation of a comprehensive theory of in-
sTruments and systems based on RVG's is an unarguable one.
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This book can be regarded as one of the first steps in this direction. Beyond its
scope were such important questions as special features of the use of RVG's in ISN's
and ISO's, questions in the nonlinear theory of RVG's and stabilized platforms based
on RVG's, and many other. The solution of these problems, along with problems ema-
nating from the practical realization of RVG's with the desired technical character-
istics, will make it possible to create stabilization and navigation instruments and
systems distinguished by their high accuracy, small size and low cost.
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