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ANNOTATION

- [Text] This book is written on the problems of the theory, engineering
analyeis and calculation of the dynamic characteristics of liquid and
solid-fuel engines. Primary attention has been given to the low-frequency
dynamics of the engines.

A discussion is presented of the methods of describing the dynamic
characteristics of the units and the engines as a whole and also the sensi-
tivity of the dynamic characteristics to external and internal disturbances.

- A study is made of the wave processes in the pipelines, the compression
and rarefaction wave propagation in complex lines. A static analysis of
the engine dynamics is presented on a performance level. The methods of
calculating the engine characteristics under transient conditions are
given, and a detailed discussion is presented of the process of the ignition
of solid fuel in the solid-propellant rocket engine.

This book is designed for scientific workers and specialists in the field
of rocket engine building. It can be useful to teachers, postgraduates and
students in the advanced courses at the higher technical schools in the
corresponding specialties.

There are 32 tables, 151 figures and 52 references.

1
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FOREWORD

The improvement of rocket engines caused by the solution of new problems
in the field of rocket and space engineering is proceeding along the path
of the further complication of the schematic and structural solutions
and improvement of the parameters of the operating process.

The most complex from the point of view of the occurrence of the physical-
chemical processes are the transient and nonsteady-state operating condi-
tions of the rocket engines. At the same time the transient operating
conditions basically determine the operating reliability and the operating
stability of the engines. Therefore extremely great significance is
attached to the investigation of the nonsteady state processes in the theory
and practice of engine building.

At the present time there are a large number of papers in which the
dynamics of rocket engines are investigated. B. F. Glikman, Yo. K. Moshkin,
V. A, Yakhin, M. S. Natanzon, and so on have made a significant contribu-
tion to the resolution of the problems of the dynamics of liquid-fuel
rocket engines. Some of the problems of the ballistics of solid—fuel
rocket engines and nonsteady state combustion of solid fuel have been
investigated in the papers by R. Ye. Sorkin, Ya. M. Shapiro, B. V. Orlov,
B. T. Yerokhin, B. A. Rayzberg, Ya. B. Zel'dovich, and so on.

However, scientific and practical experience in the field of dynanics,
especially the dynamics of solid-fuel rocket engines, has been discussed
and generalized clearly insufficiently. The available individual articles
and monographs are basically on special problems.

This book is one of the first in which the problems of the dynamics of

- liquid-propellant. and solid-propellant rocket engines and the interrelation
of the operating processes in the engine systems are discussed from unique
points of view in systematic form,

The liquid-fuel rocket engine is a dynamic system consisting of a branched
network of gas and liquid lines connecting the engine power units.

The dynamic characteristics of the engine are determined to a great extent
by the characteristics of the lines; therefore a great deal of significance

2
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is attached to the wave processes in the lines in this book. On the
organizational level an effort is also made to discuss the most complex

and the least investigated statistical analysis of engine operating
dynamics,

The authors, understanding the complexity and the insufficient degree to
which @ number of the problems of nonsteady state processes in engines
have been studied, have not set the goal of exhausting this topic. The
book discusses the methods of analysis, and in some cases also synthesis,
of the low-frequency dynamics of rocket engines.

Special attention has been given to theory. The experimental data on the
dynamic characteristics known from the literature are called on when
necessary to substantiate the mathematical models or to confirm the correct-
ness of the theoretical conclusions.

The formulas and numerical values are presented in accordance with the
International System of Units.

The bibliography at the end of the book is not a bibliography of the prob-
lem at large, but, with little exception, only a list of sources from
which information was borrowed.

B The authors express their appreciation to Candidate of Technical Sciences
A. S. Kotelkin for the materials made available to write Chapter 3, and
they express their appreciation in advance to the readers for critical
remarks and suggestions which it is requested be sent to the following
address: Moscow, B-78, l-y Basmannyy per., 3, izdatel'stvo Mashino-
stroyeniye,
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SECTION I. DYNAMIC CHARACTERISTICS OF 7,IQUID-FUEL ENGINES

The dynamic characteristics of an engine determine the interrelation of
the working processes in the units under nonsteady~state operating condi- -
tioms.

The nonsteady-state operating conditions of the engine include the condi-
tions under which the parameters of the operating process are time func-
tions, that is, B

{y;} =var, where, ¥i(t)=Px, M, n and.so on.

The engine is characterized by several nonsteady-state operating conditioms:
the starting mode, the shutdown mode, the transient mode (switching of
the thrust stages), and regulation of the parameters of the operating pro-
cess. During the nonsteady~state modes, the structure of the engine is
under significant mechanical, thermal and erosion load gradients which in
- the case of unfavorable combinations of parameters of the operating process
and bearing capacity lead to emergencies and failures. Therefore the
study of the behavior of the units and the engine as a whole under non-
steady-state conditions, that is, the investigation of the dynamic char-
acteristics, is an extremely important problem of engine building theory.

The dynamic characteristics include the following:

The dynamic equations of the relations between the parameters of the -
operating process;

The time constants, the boost factors, the frequency and transient char-
acteristics of the units and the engine as a whole; -

The characteristics of the starting and shutdown process;
The quality and stability of the adjustment process; :

The characteristics of the high-frequency and low-frequency vibrations.
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The engine in which nonsteady-state processes take place is a complex

dynamic system made up of a number of elements interconnected in a defined
way.

The dynamic element of the engine is considered to be the assembly or
element having the characteristic features of the operating process which
can be described analytically,

The basic dynamic elements of the engine are the thrust chamber, the gas
generator, the turbopump, the lines and the automation units. The
dynamic characteristics of the engine are determined by the characteris-
tics of the elements, Therefore initially an analysis is made of the :
dynanic characteristics of the individual elements and then, using special
methods, closure of the characteristics of the elements 1s carried out,
and the dynamic characteristics of the engine as a whole are investigated,

The initial material for analysis of the dynamic characteristics is a

system of differential equations describing the nonsteady-state operating
conditions of the units.

The set of differential equations of the units together with the compati-
bility conditions forms the dynamic mathematical model of the engine,

Depending on the specific problems of dynamic analysis, the type of equa-=
tions of the units can be different. Thus, when analyzing the starting
and shutdown processes, when the parameters :of the operating process

vary significantly with time, nonlinear differential equations are used,
and computers are used to solve them.

For analysis of the transient processes when the parameters of the operat-
ing process vary insignificantly, and the dynamic processes are character—
ized by low frequencies, linear differential equations are used, that is,
the linear model of the engine.

In subsequent chapters primary attention has been given to the low-fre-
quency engine dynamics,

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000200090053-2



APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000200090053-2

A MAN VL AU UOL UYL

CHAPTER 1., DYNAMIC CHARACTERISTICS OF THE ENGINE UNITS

1.1. Thrust Chamber

1.1.1. Nonlinear Equations

Complex processes of preparing the fuel mix and conversion of this mix to
the products of combustion take place in the thrust chamber, When investi-
gating the dynamics of the chamber, the following processes are taken into

account:

The accumulation of mass and variation of the internal energy of the gas
in the half-closed volume of the chamber .

Combustion; : ‘
Escape of the combustion products from the chamber cavity,

All of the enumerated processes are interrelated in space and time, and
their mathematical description is extremely difficult.

When investigating the low-frequency dynamics it is possible to make the i
following assumptions: i

For gas formed in the combustion chamber volume, the equations of state
and comservation of energy are valid;

The pressure waves are propagated in the chamber instantaneously, which
makes it possible at each point in time to take the gas pressure identical
for all points of the combustion chamber (from the injector head to the
nozzle entrance) ;

The conversion of fuel to the products of combustion is characterized by
the burn-up curve,

Since the conversion process is realized in the chambers in thousandths
of seconds, this process is assumed to be inertialess for significant i

6
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simplification, that is, the fuel is converted instantaneously into the
products of combustion,

Heat exchange of the products of combustion with the external environment
does not occur,

Making the indicated assumptions, the nature of variation of the pressure
in the combustion chamber pk(t) can be obtained by applying the laws of
thermodynamics for a gas in a constant volume

A=l o5 Mgl — by et (1.1)
1 (2)

Key: 1. formed; 2. escaping

where du is the change in internal energy of the 8as; ifgrmeds lescaping
are the enthalpies, respectively, of the gas formed and the gas escaping

from the chamber; fgormed; Degcaping are the masses of the gas formed in
the combustion zone and escaping through the nozzle, respectively,

When using the equation of state and the thermodynamic functions, the
internal energy is determined as follows in terms of the chamber parameters:

(1
u=c, Mg ’uﬁp 2—" cpTodp;

. . 1.2)
1"“=;._—_-iR; C,=l_1R;
(2) v
—_— e . == PV N
=y MBS

Key: 1. formed; 2. escaping

where My 1s the mass of the gas in the combustion. chamber volume Vj;
Tx 1is the average gas temperature; Cps ¢, are the heat capacitances of the

v
gas; R is the gas constant.

After joint transformation of the equations (1.1) and (1.2) we obtain the
equation of the rate of pressure variation in the combustion chamber
which is the energy equation for a variable amount of gas 1n the chamber
volume

LD [RT ) (1)~ RT s () e 1) .3
T (2)

Key: 1. formed; 2. escaping

The combustion of the fuel components coming through the injectors into
the combustion chamber is characterized by a conversion law or the burn-up
curve y(t) (Fig 1.1).

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000200090053-2



APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000200090053-2

FOR OFFICTAL USE ONLY

Considering the burn-up functions, the arrival of the formed gases 1is
defined as follows:

IR I
Mygp (t)=S my (1—1")%(:’-%1:"
T

1 o
Key: 1, formed

where t is the process time; t' is the integration variable; t; 1s the
fuel ignition time; ty is the burn-up time.

#(t)
!
0 T ry
1
Figure 1,1. Fuel burn-up function
Key:
1. conv

The determination of the analytical function of the burn-up curve Y(t)
presents significant difficulties. Therefore on the basis of the third
assumption, the actual burn-up curve is replaced by a step function (see
Fig 1.1), assuming that on expiration of the time T.ony the fuel coming

into the chamber is instantaneously converted to the products of combustion,
that is,

‘p(t)=0 for ¢ <fupv
b(£)=1 £ > Ty
$(f)=1for £> )

Key: 1., conv

Then the amount of burned fuel or gas formed Mormed (t) in the interval
O0-t will be defined as

! B ) .
Moty (8)= [ gy (1) dt={ "[iney(6)+ i, (D] i, (1.4)
RO 6@ (3

Key: 1. formed; 2. oxidant; 3, fuel

where ﬁoxidant(t)’ ﬁfuel(t) are the consumptions of the oxidizing agent
and the combustible component of the fuel per second.
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The upper integration limit t-Teopvy 1S taken because the fuel (the oxidant
and the combustible component) entering into the chamber up to this time
still has not burned as a result of the presence of the conversion delay
Tconv:

Differentiating equation (1l.4) with respect to the integration limit, the
gas formation rate is determined

(1 'dty
Glo{1 -

)['.rsti)(t_rnp)-l'r}'r(t_tup)]' (1 -5)
Key: See (1.4). (3

The conversion time depends on the quality of the mixture formation, the

propeities of the fuel components, the pressure in the gas chamber and
other factors.

The basic factor determining the conversion time is the pressure in the
combustion chamber. Accordingly, we have [20]

A
Top Px
and
dhup __ __Av_ dpe
at v a (1.6)

The gas flow rate through the nozzle is defined by the function

9 () F t) 1.7)

Miyey () = A2l ).
Key: 1. ecr wer(£) VR (6)

If we assume that the flow rate coefficient ¢ and the index of the adiabatic
curve x depend weakly on the pressure in the chamber, it is possible to

set the complex ¢bF.r=c, which is definedin terms of the chamber param-
eters in the steady state mode:

B=?b(1)FKp= ml;-RT‘ H f;=f—.ﬂm‘+f;r.
(3

Considering the remarks that have been made, the flow rate through the
nozzle will be defined as follows:

b — Pe(t)
zr;.;,(t) B_——_Vm' (1.8)

Key: 1. escape

Substituting equations (1.5-1.8 and 1.6) in the initial (1.3), we obtain
the nonlinear equation of the thrust chamber

9
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. L . dpe(t) —
[1 — 5. Ry () ’"(‘_V“")] at (1.9)
. T‘ LRT 5, () [, (¢ — Vo) g (¢ —T0p)] — BV RT ey () 11 ().

Depending on the purpose of the investigation, equation (1.9) can be
converted to the corresponding form.

Thus, for small variations of the value of Tconv» Which occurs during
operation of the engine under steady-state conditions (pk varies insig-
nificantly), it is possible to assume that Tconv=const and dtoopny/dt=0.
In this case, which hereafter will be considered, equation (1.9) assumes
the form

dul) y _* o1/ BT 1A =
202 BV RTe ) 2ul8)

- RToGp (t) [”.lox (t _7np)+"ir(t —‘rnp)]' (1'10)

Vi

RT depends on the ratio of the fuel components K and the pressure in the
combustion chamber., However, the last function can be neglected, especially
at moderate pressures, and it 1s possible to set

RTI=RT (K)r
where K=ﬂ'.i .
m

It is possible to define the analytical function RT=RT(K) by the results
of the chermodynamic calculation of the combustion of specific fuel
components for various values of K and py.

The following functional relation can be obtained by approximation of the
calculations:

- RT (K)= A+ A K+ AK?,

where Al’ Ag, Aj are the constant coefficients defined basically by the
properties of the fuel components.

Since in the combustion chamber there is a period of conversion of the
fuel components to combustion products Teonv and a finite time that the
gases stay in the combustion chamber Tstay before the escape time

(Tstayarconv)’ the following expressions are valid for the fitness of the
gases:

10
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et
RT )= Ay Ak 1)+ A — &)

Rrucr (¢)= A+ AK (¢ -—-'l.'"p)--}—AsK2 (t_rnp)~ (1.11)
(2) 4)

Key: 1. formed; 2. escape; 3. stay; 4. conv
Considering the equations (1.11) and the function K(t)=m__(t)/m (t)

the nonlinear equation of the thrust chamber is written iﬁ the ngiowing
form:

x .n t-—- 1, m3 t— 0
«r;:;:<r)+‘Z B[A1+A2"f“( )1 gy o= o) ] Pu(t)=

me (¢ — Tup) Somi—tap)

Mg (£ — Tns — Tnp) m2 (f— Tpg =1,
——-:%[A,—{—Az .uu né p +A3 ux( 1] np) ]

me(t — Ty — Tnp) m,z. (t — Tng — Tnp)

X [y (£ —Tp) F- g (£ —2,)] (1.12)

For the steady-state operating mode pk(t)=const, ﬁ(t)=const, from the
equation (1.12) we obtain the static characteristic of the thrust chamber:

B Y/ RT, (1o + )

ARV,

- Equation (1.12) is a nonlinear equation with variable coefficient; it is
used for significant variation of the parameters of the operating process

and, namely, for analysis and calculation of the start-up and shutdown of
the engine,

1.1.2. Linearized Equation of the Chamber

For investigation of the engine dynamics in the vicinity of the steady-
state operating conditions (adjustment, transient processes), it is
possible to reduce equation (1.12) to the linear equation and represent it
in linearized form in relative deviations.

If we introduce the relative deviations of the variables 6y(t)=(y(t)—§7§;
then from (1.12) we obtain

Yibe &y (0) 4RI 3, (1) RT, [t Mol — )+

at Px
b (¢ —T)] M ("f%) KoK (¢ —To)—2 ("f,:" ) KoK x
X (t h tnp - Tnﬁ)‘
11
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The last equation is divided by the coefficient for 8py, and we obtain

the linearized equation of the thrust chamber in the standard form
13pe(f) . .

Tx.,‘ e + apx (t)= Kp" ,'nmamﬂl‘ (t —Tup) +KP|U ,;.ramr (‘ - rnp) +

dt
(1.13)
O Ky [BK ()= 3K (=),

Key: 1. thrust chamber
Vi
*mRTy
ka, X are the pressure boosting coefficients in the combustion chamber
with respect to the x-th input signal.

where T,= is the time constant of the thrust chamber;

=K. =1 .
Pomyx K41 Pom K+1'
K . __ORT

K”"K=_2E"‘_K_tga"' tgea,= 0KK .

The equation of the ratio of the fuel component

3K (£) == Bty (£) — 311, (£). (1.14)
1) 2)

Key: 1. ox=oxidant; 2. fuel [combustible component]

The ratio of the fuel component in the thrust chamber is selected from the
condition of obtaining the maximum specific thrust.

The maximum specific thrust is obtained for RTk=(RTk)max; therefore the
value of dRTK/3K for K=K defined by the tangent of the slope angle of the
tangent to the curve RTy(K), is in practice equal to zero, and

Kp‘,l('_"‘-o'

In this case the linear equation of the thrust chamber is simplified sig-
nificantly and assumes the form

T2 L ap ()=K, o Mo l—Tu) K, i ¥t —%)  (1.15)

1.1.3. Dynamic Characteristics of the Thrust Chamber

The equation of the thrust chamber in the Laplace transformations has the
form

(Tﬁs) F10)p(s) =T (K, o S (s)+K, g Bt (S)], (1.16)

Key: 1. thrust chamber
12
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where s=jw is the complex frequency.
The latter equation can be written in terms of the transfer function

- apK (S) —e " np ({ an' ,-noxbfnux + ‘VPK- ”-'ram,), (1 A7 )

P ™
where W . —=_ 7K
P ™l Teas 41

is the transfer function of the pressure in the

thrust chamber with respect to the i~th fuel component,

Sy .
1 Wor, iy (5)

e “3Tnp lﬁ‘,.

Sin,
D — w"K . ".’r (_r)

Figure 1.2, Structural diagram of the thrust chamber

The structural diagram of the chamber as a dynamic element constructed by
equation (1.17) is shown in Fig 1.2,

Thus, with respect to its dynamic structure the thrust chamber is a set of
inertial and delay elements.

The transient characteristic of the thrust chamber, that is, the variation
of the output signal 6pk(t) with step variation of the input signal
Sm=h-1(t); h is the magnitude of the input disturbance; obtained by
solving the equation (1.16), and it has the form

t—%gp
- 1.18
pr([)=llex‘,;,l(l—e L ). ( )

The transient characteristic is illustrated in Fig 1.3.
The dynamic characteristics, in particular, the inertial properties of the

chamber, are defined by the time constant

Vb, 1 '
Tx. == x—x =— Ty 1.19
Key: (1) Thrust chamber (13 mxRT, % " ( )
Consequently, the value of Tthrust chamber is proportional to the time
the gases stay in the chamber.

13
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- b (%) Fro B,
Since m=3—(—)___;xp—p‘-, then T L
V RT,

thrust chamber 2*conv’

35\~ v,
where a=(gb(x)V RT,)™Y 1,.,,=-l,_,—'l is the reduced length of the chamber.
xp

8p.
8o
N T e
i) Wy i (9) L1 &
Kr L Lo
t Tp | |lg t
L 3Tka _f1)

Figure 1.3. Transient characteristics of the thrust chamber
Key:
1. thrust chamber

For a=const the time constant is basically determined by the configuration
of the chamber. With an increase in the chamber volume Vi or a decrease
in the area of the critical cross section of the nozzle F., the inertia
of the chamber increases (see Fig 1.4). The boost factors of the thrust

- chamber depend on the ratio of the fuel components. For

k=0, K = 1. . pone - Lsy.
0 Pk, tox 0, Kpk"ﬁfuel 13 for K=, KPk"‘ox L, KPka Mfyel 0 (Fig )

Kpgr ity

0 K
\ PxrMox [ (1)
L]

(1)

05 <
. -
Kp}umf (?)
Tp (2) 0 ' 2K
Figure 1.4. Time constant of the Figure 1.5, Boost- ' factors as a
thrust chamber as a function of function of the fuel component
the reduced length and working ratio
capacity of the gas Key:
Key: 1. ox
1. thrust chamber 2. fuel
2. conv

For a conversion (delay) time constant Teonv—const, the characteristic
equation of the chamber Tiphryst chamberStl=0 has one negative root

$=-1/Tthrust chamber’ £OT Tthrust chamber>0; therefore the process in the
chamber is stable.

14
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However, in the general case the conversion time depends on the pressure
iu the thrust chamber, which in turn leads to a flexible positive feed-
back with respect to pressure in the chamber, With an increase in pres-
sure in the chamber, the conversion time decreases, and additional gas

formation is obtained; the so-called intrachamber instability can occur.

- Let us determine the region of stability of the combustion chamber,

Considering the function Tconv=A/P1\:, the dynamic equation is obtained for
the thrust chamber (1.9).

After linearization of equation (1,9) the characteristic equation of the
thrust chamber assumes the form

(Tea—Tap¥)s+1=0, (1.19a)

}")‘ >

where T,=
—1

_—

Tk.x— Tnp+V

but its sign is determined by the ratio of the terms in the denominator.

The characteristic equation (1.19, a) has one root §=

For ?COIW'\thhrust chamber the root of the equation becomes positive, and

the thrust chamber loses stability. The chamber is at the stability limit
when the root of the characteristic equation s=0.

Thus, the condition of the stability limit is

w1 (1.20)
Tea v

The satisfaction of the condition Tihrust chamber>?conv'v insures
stability of the thrust chamber as a dynamic element.

1.2, Gas Generator

The operating processes of the gas generator are similar to the operating
processes of the thrust chamber, Therefore when describing the dynamics
of the gas generator it is possible to use equations obtained for the
thrust chamber.

On the basis of equations (1.9), (1.11), (1.12), the corresponding equa-
tions are written for the gas generator:

The equation of the gas capacity of the gas generator

&)y )

T vy RTei (0 e (gt )~

- r.HCT (t) ”“f (t)}-

Key: 1. gas generator; 2. gas formation; 3. gas escape; 4. conv; 5. fuel;
6. ox

(1.21)
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The work capacity equations of the generator gas follow: .

RT 0y ()= f1[K' (t—tup)]; (1.22)

RTr.nu )= f? [K, (¢- T"IG - ":'P)]'

(1
Key: 1. stay

The equation of the fuel component ratio is
Mae (1)

= (1.23)
m. (1)

K't)=

When determining the gas flow rate from the gas generator to the turbine
mp(t) it is necessary to consider the structural diagram of the engine
and type of turbine used.

In the engines without afterburning of the generator gas, the generator gas
escape is subcritical

= VR P (1.24)
Prr ¥V RT:

In the engines with afterburning of the generator gas, jet turbines are
used, and the generator gas escape takes place to the thrust chamber; in
this case the subcritical escape conditions are insured:

. - '/ D7 _h_?
m = il RT,»pm. Pir g Pie ,Ll
//- Bie \a e \ o el ;:; '
= L\ (P \T o (1.25)
Prr 1 (prr ) (prr ) VRTr.ucr

where pjp is the generator gas pressure at the exit of the turbine guide
vane.

Consequently, the gas generator is described by the system of equations
(1.21-1.24) and (1.25).

As a result of linearization of the equations (1.21-1.24) for small devia-
tions of the parameters, we obtain the linearized equation of the gas
generator

Trrd——aprr(t) +5Prr(t)=2 KP - ﬁ-'&h; (t—t;p)"f‘
dt e
ot (1.26)
+ Kl-'rrv P [26/\” (t —T:‘p) — 3K’ (l —‘t,"s'—‘l:;p)] +Kﬂrr- Plrsph (t)
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In operator form

(Tres+ l)bp,-r(s)=z K,,”. ,-,,',e_“"va,h; (s)+
Key: (1 1 ~0,r ¢
- ey: (1) gggerator & ! (1.27)

+ Koy xe (2 - e_""o) 3K (s)+ K prr P3P (sh

VecPer
where Tep=—-7=LLFC is the time constant of the gas generator;
' RT ;mqq,
—1
qr=_-|_2_’_’2“"'“)(-”“//’rr)l. is the coefficient which depends on the
% M-

- = escape conditions,
1= (el pr;)

For the critical escape conditions when

- - 9 2
l)n/l’rrr-Ph/l’rr:(x__, +1)‘ ~l=const, g.=I.

= Kﬂrr" are the boost factors which are determined by the functions

R 1

o K =T )
K"I‘I"mox ge(K' +1) Prome qo(K' +1)
I_<'I
= ——tg .
Kprl-.K 2¢.RT: g @

tg Of o1 15 determined by the ratio of the fuel components.

dang .
hoer K #rea i 855,

e -STmp

Figure 1.6. Boost factor of the Figure 1.7. Structural diagram
gas generator as a function of of the gas generator
the ratio of the fuel components

The ratio of the fuel components fed to the gas generator differs sharply
from stoichiometric. Therefore for a reducing gas generator
tg afuel>0 and KPI‘I" k'>0, and for the oxidizing gas generator, on the

CONErary, tg ofye1<0 and Kpgas generaﬁor’ k'<0 (Fig 1.6)

il

K Prp Pye a
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For the critical escape mode of the gas generator gas qfuel=l and

I(p p =0; in this case the equation of the gas generator
gas generator® F1T

becomes similar to the equation of the thrust chamber.
The structural diagram of the gas generator is shown in Fig 1.7,

The transfer functions which figure in the structural diagram are defined
by the expressions

Kprr";'; W Kp P
(8= . = e fir
"rr"”/( ) Tos+1 ' Py p,,(s) Tost1 '
-’1,
. Kp K (2_e nd)
"Vp,,vk" (s)= = .

Tees+1
1.3, Hydraulic Channels

1.3.1. Nonlinear Equations

The liquid—fuel rocket engine assemblies (pumps, chambers, turbines, gas
generators) are connected to each other by hydraulic and gas lines; the
assemblies themselves have channels with liquid and gas flow. Therefore
the basic steps in the operating processes defining the engine characteris-
tics take place in the flow sections (channels) of the units.

The analysis of the dynamics of the hydraulic channels is performed using
the equations of hydromechanics which are compiled on the basis of the
laws of conservation of mass, momentum and energy.

If the movement of the liquid or gas takes place through the channel with-
out heat exchange with the external environment, then it is sufficient to
use the mass conservation law (the continuity equation), the law of con-
servation of momentum (the equation of motion) and the equation of state.

If the movement of the gas with supply or removal of heat is considered, it
is necessary to add the equation of comservation of energy.

In addition to what has been indicated, when investigating the fluctuations
of the channels it is necessary to consider the distributed nature of the
parameters, that is, the finite propagation time of the disturbances, and
this process is described by the wave equations.

Thus, in the general case the movement of a liquid or gas in the channels
is described by the partial differential equations,

For analysis of the dynamic characteristics of the channels of liquid—fuel.
rocket engines, especially in the low frequency and vibration amplitude
region it is possible to make the following assumptions:

18
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The heat exchange with the external enviromment is absent

The viscosity of the liquid is taken into account only in the local
hydraulic drags;

The motion of the liquid is uniform, that is, all of the parameters (veloc-
ity, pressure) at different points of the transverse cross section of the
line are identical;

The liquid is incompressible;
The distribution of the parameters is absent.

Considering the assumptions, the motion of an incompressible liquid in a
cylindrical line is described by the equation of the pulses taking into
account the inmertia of the column of liquid, the pressure force at the
ends of the line, the force of the hydraulic drag and external forces.

AUy, {
o Thte—

Q (1.28)

2
2 1%
Frip—p)=m 2”‘ Fr,
where € is the frict.:ion coefficient; m is the mass of the liquid; v is the
liquid velocity; V=m/pFT.

Using the last equations, equation (1.28) for a section of ‘the main is
reduced to the form

Am g 2
o =P n+ . Gt P (1.29)

where £ is the hydraulic drag coefficient of the line; Px is the additional
pressure gradient occurring as a result of the effect of gravitational
forces and g-loads.

The equation of motion (1.29) for individual sections of the line can be
combined into one equation. The liquid flow rate for all sections is

identical; the losses to friction and local drag and losses to inertia of
the liquid are summed, that is,

vid—l;l-=i’g-ﬂ.ux+(ﬁ+eu)—’;l—2-+p,, (1.30)
dd F7y dt W @)

Key: inp; 2. out

where }:}L’—-=R' -~ tle coefficient of inertial resistance of the line
Ti

determines its inertial properties; £ is the total hydraulic friction
drag; £y is the coefficient of total local losses.

19
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Thus, without considering the compressibility, the equation of motion of
the liquid in the line has the form

RAm L Gbm P (1.31)
at ¢ 1 @

Key: 1. inp; 2. out

Let us consider the peculiarities of the equation of motion for the intake
and delivery lines.

The delivery lines are the lines connecting the TNA [turbine pump assem-
bly] pumps to the thrust chamber and the gas generator together with the
injectors.

For the delivery lines the gravitational forces and g-loads can be
neglected, that is, p,=0.

The pressure at the entrance to the line is the pressure after the pumps,

that is, pinp(t)=pdel(t). The pressure at the output of the line is the
pressure in the thrust chamber (gas generator)

anl]x-?t)=px(t)' plﬂl([)=9ﬂ'>(!)‘
Key: 1. out; 2. gas generator
Thus, the equations of motion of the fuel components through the lines
connecting the pumps to the thrust chamber or the gas generator have the

form

. : .2 ¢
Ring 2210 4 30O p, )=y 0 1.32)

where i=ox, fuel; j=k, gas generator.

For the steady-state operating conditions
m(t)y=m; 220 ~0and £ ma—p, —p,

that is, the known static equation of the line is obtained.

Since the delivery lines feed the fuel components to the thrust chamber
or the gas generator, the input variables of the lines are the pressures
after the pumps and the hydraulic drags, and the output variables are
the mass flow rates of the fuel components.

For the intake lines connecting the tanks to the pu{nps the value of py
cannot be neglected, and it is defined by the pressure of the column of
liquid above the pumps and the axial g-load.

20
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Pa(t)=guly [sin 4401,

where 2y is the length of the lire (from the pump to the fuel surface in
the tank); 6 is the pitch angle; jx is the projection of the rocket
acceleration on the direction of the line.

The intake line determines the Pressure at the entrance to the pump:

Pal)=pu(0) -5 2O RED o, [sino LO] 1.33)
Q dt | g

1.3.2. Linear Equations

For the delivery line

Jam (1)

To == dim()=K, dp:()—K;  3p; )=k, B, (g 34y

() v

where TAr—'ﬁ?(Q-) is the time constant of the line; Kﬁ are the
2 H »X

boost factors

T . . =__1_;
Ko 0= Ty Ko/~ 5 )

KI;I,E=0’5; ﬂ“=%;—'; j=Kv IT.

For the intake line

u b= K adn =K, [s/n O+Tx 1”%] + Ko 03058 (1.35)

where 2
K’:x'%:nﬁ’ KP“H'.I_ e |

1 W) s
ey g ——

b

Key: 1. input

The equation of the delivery line in the Laplace transforms is written in
the form

(Tus+1)dm(s)=K;, 2dPu(5)—K;;, o8P (8) = K; B5(s), (1.36)
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or &m (s)=W, o 2Pu(8) =W, Bpy(s)—W . B¢

m, py

where Wﬁ x(s) are the operator transfer functions;
’

—— P X

L Tys+1"' 2= Py Oys Prrs E

(s),

The structural dlagram of the delivery line is shown in Fig 1.8.

8o i Tw ”'76;’<"77
' Wit oy =
— m
- Mg >m
(]
8p; ) omi
.__7 Wi, o |
0%
Bid we
w’"z,&'j 7%
Figure 1.8, Structural diagram of Figure 1.9, Function
the delivery line Ty=Ty (R/T)

Thus, the delivery line is a set of inertial elements. The dynamic
characteristics of the line are determined by the time constant and the

boost factors.

Km,1 e
29 ﬂ— Wope. i
JKﬁ’IPN (=)
L \ dps 25, (1)
Kp o 1 Waye. s
mpj \
! X
4"",2 \ &p.
1 Wy 04
0y 19 Ty
Figure 1.10, Boost factors of the Figure 1.11, Structural diagram of
line as a function of pressure the intake line
gradient Key:
1. input
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The time constant of the line depends on the length, the pressure gradient
in the line and the mass flow rate. With an increase in the pressure

gradient and the length of the line, the time constant increases, and the
boost factor decreases, Fig 1.9, Fig 1.10,

- The equation of the intake line

al’n (s)=KP“- P63p6 (s)—Kp'x, p;;(l +TMS) 8';1 (s)'l“Kp“, p)px (3). (1 '37)

The structural diagram is shown in Fig 1.11,
The intake line is a set of inertial and forcing elements.

1.3.3. Consideration of the Compressibility of the Liquid and the
Elasticity of the Walls

In certain cases, the condition p=const, and the equality of the flow rates
at the input and output from the lines are not observed. Violation of the
indicated conditions occurs in long thin-walled lines and in lines with
elastic sections.

In this case the equation (1.31) will contain three unknowns ﬁ, P, p and
for closure of the system it is necessary to add additional equations,

the equations of the capacity and the equivalent state for the liquid
density.

The equation of the line capacity
dm . .
=M —my, (1.38)

where m is the mass of liquid in the line;,ﬁl, ﬁz is the flow rate of the
liquid at the entrance and exit of the 1ine, respectively.

The equation of state for the motion of an isothermal drop liquid is
written in the form of Hook's law

e=q, l—k-fl:fﬁi} , (1.39)

Key: 1. mean; 2, liquid

where Pmean 1s the liquid densitylfor mean pressure

Pep= & -;h H

Kliqu d is the coefficient which depends on the elasticity of bulk of the
- liquid and the pliability of the line walls.

From the equation of the propagation rate of sound (the formula of
N. Ye. Zhukovskiy)

23

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000200090053-2



APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000200090053-2

DU UPPFLULAL USE UNLY

Ky=—"5—, (1.40)

Key: 1. liquid

where K';; .14 is the modulus of the elasticity of bulk of the liquid

without considering the pliability of the walls; E is the modulus of

elasticity of the wall material; X 1s the parameter which depends on the
- shape of the tube which is defined as follows.

The values of the modulus Kliquid' are presented in Table 1.1 for certain
fuel components.

Table 1.1
Fuel component K'liquid'10-5, Fuel component K'liqui ‘10‘5,
newtons/m newtons/m2
Nitrogen tetroxide 31577 Kerosene 11830
NDMG 18397 Ethyl alcohol 8918
Hydrogen (liquid) 4419 Tetranitromethane 17315
Oxygen (liquid) 9296 Water 21360

Assuming that the line wall material operates in the-elastic deformation
region, it is possible to write

d—dy__ ¥ p—po .
- dy 2 E . (1.41)

The increase in force trying to rupture the tube on variation of the
pressure by the amount Ap=p-pg is dRAp. Consequently, the increase in the
tensile stress in the longitudinal cross section of the wall

__disp __ Apd
b==n — &

The relative elongation according to Hook's law

Ad Ae d [p—po
————— ), 1.42
d E QB(E) ( )

Comparing the equations (1.41) and (1.42), we obtain

a
X-]--

For tubes of great thickness, there are more complex functions for [10]
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22
d+2b+—d—

x=2‘;+ (1.43)

32
d+2—d~

The flow rates at the entrance and exit of the lines are found from the
equations of hydraulic drags of the ends of the investigated section

my=pF, V2 (pu—p1); (1.44)
,;;2=sz le

where uly, uF,y are the effective through cross sections of the local drags
at the boundaries of the line sections,

When considering the compressibility of the liquid, the average flow rate
is substituted in the equation of motion (1.31):

rh=ﬂ%. (1.45)

After substitution of p from expression (1.39) in equation (1.38) and
proceeding to the equation in small deviations, we obtain

1) . .
abpf 1) 3rm, — by, (1.46)
M at
Key: mean
FrlpegQep
where TM==_:;Kv is the time constant (capacitive) of the
»

section of the line;

= ]/ Put gy, _ PLg. .
dmy=pF, A‘il-al’m ap 33 (1.47)
dmy=pF, % X%%-—;%ﬁp.a,

where py; and p o are the pressures in the capacitive sections of the lines
(adjacent units) in the rated operating mode; Apq, Ap, are the pressure
gradients in the hydraulic drags at the boundaries of the adjacent sections
in the rated mode.

When it is necessary to consider the compressibility,.equations (1.31),
(1.46), (1.47) are solved with respect to &py, 8py, émy, émy of each
section of the line.

1.4. Gas Reservoirs

Let us consider the process of pressurizing Wwith gases forcing out the
fuel components, Fig 1.12.
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The mass of the gas in the reservoir is defined by the function

n$,1=) PRTrVr (1 .48)

Key: 1. gas

- Lf we neglect the heat exchange and the choke effect and use the mass
balance equation dmg=mgdt, then considering the function (1.48) we have

dp av, - (1.49)

V.RT, Sk + pRT, = =,

The variation of the gas volume in the reservoir
dv, —_ dV, =__’;’_:5_ (1 .50)

at dt Quyq
Key: 1. liquid @

The arrival of gas in the reservoir is determined by the pressure gradient
and the flow conditions in the choking cross section Fg.

In the case of subcritical conditions
: 2ep} [ : (p =
me=F, ‘/ RT(x—1) (Pﬁ) Po) K @.51)

for critical conditions

I

‘/ 2_vH s
W .y P B A
m,=F, x(x_H) o (1.52)
The liquid (component) flow rate from the tank

(1 YA

ms‘=)=FmV20(P—Pnp)'(2) (1.53)
Key: 1. liquid; 2. choke

After substitution of equation (1,50) in the initial equation (1.49), we
obtain the equation of the gas tank

d . . -
VrRTr_’f‘r‘mr—z_:‘m‘M' (1.54)

where ﬁg and ﬁliquid are defined by the functions (1.51)-(1.53).
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Pan(2)
" (3)
Figure 1.12. Diagram of the gas reservoir
Key:
1. gas 3. liquid
2. choke 4. tank

The last equation in linearized form is written as follows:
RT.p d . .
%-{%’:am,—amm. (1.55)
mep
Here we have in mind that in the steady-state mode
ﬂ:ﬂ
e O
From equation (1.51) we have

1, =F, —0,50RT, +(1 +a) 35+ abp (1.56)
or from (1.52)
3, =8F . — 0,53RT - +-3ps-

From the equation (1.53)
1 1

" == L . - 6p
=S 2(-_1_—1) o
Txp
where ’
2 - xl,
P . W—( D ’
M= = M=
P s X Ps
2 z
2;(:1,—::6 ) .

For the critical flow conditions a=0. Substituting the last relations in
equation (1.55), we obtain

T, dit(‘) +38p(t)=K), FIF(6)—=K), ’)xaF”‘ -

-— Kp, RTrBRTr (t) ’I“I(p_ pob;nﬁ (t) +Kp, f'|patvkp (t)'
°F (Ts+1)3p(5)=F K, 3x(s), (1.57)
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where

dx=3F,3F,, 8RT,, 37,

T.= QV,;RT;(I — Rgp) '
m,

For critical flow let us substitute I;lg in Te -- we obtain
T,=2 L& (1 — )b,
Fr
VRT,

(_'e_)r

x+4+1

Thus, the gas reservoir is an inertial element with significant time
constant which depends on the pressure gradient on the hydraulic drags.
With a decrease in hydraulic drag of the fuel component lines T, a1,
the time constant decreases.

b=

The boost factors are also defined by the pressure gradient on the fuel
component choke (line):

Kp,Fr=Kp, Fm=l<p.P6=2Kp.RT=2(l"‘“-\P);
Kp, pyp="p-
1.5. Pumps
1.5.1. Nonlinear Equation of the i~th Pump
The pump equation determines the relationh between the pressure of the
fuel component and the exit from the pump and the rpm, the flow rate, the

pressure at the entrance and the geometric dimensions.

The laws of mechanics are used to derive the pump equation, neglecting the
cavitation phenomena which are considered specially.

The calculated pump diagram is shown in Fig 1.13,

From the velocity triangle of the liquid on the blade of the impeller
we have the expression:

Cq=U—wCosP; c?=y?—2uwcosp4 w2, (1.58)

where c, w are the absolute and relative velocities of the liquid in the
channel between blades respectively; u is the angular velocity; ¢, is the
angular component of the absolute velocity.
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The angular momentum of the liquid flowing through the channel between
theblades is defined by the function

S2 S
M,=j reweFds = r(u—~w cosB)oFds, (1.59)
LN 3

where r is the radius of the element ds in the channel between blades;
o is the 1liquid density; F is the total area of the channels between
blades between the cross sections s] and s,5.

Figure 1.13. Calculated diagram of the pump
The torque applied to the impeller is defined as follows on the basis of
the theorem of the variation of the momentum:

M= dMy
dt

=r (4—w cos B) gwli -+
5 (1.60)
du dw -
- ——— — — S ,
}-Sr(dt a P)Ql-ds
S
The first term of equation (1,60) is the static moment, and the second
term is the dynamic component of the moment. The kinetic energy of the

liquid in the impeller is
LY

E=S§S %2 dm=% S(u"’—‘zuw cos B4-w?) oF ds.

3

The power as the derivative with respect to time of the kinetic energy,
is defined by the function

N=% =—;-(u’ —2uw cos B w2} -

L]

Ty A (ydw | de) o dw
+S[ud_t_(a i TP )CQS’_*-W at ]QFds' (.61)
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In the general case the total moment of the external forces is made up of
the moment of the surface forces, the moment from the effect of the impeller
on the {solated volume of liquid and the moments of the surface forces
acting along the bounding surfaces 81 and 87 (at the entrance and exit of
the impeller).

On the basis of what has been discussed and in accordance with the law of
conservation of energy, it is possible to write the condition

N = Mo+ pFyw,— p,Fyw,, (1.62)

where pj, p, are the liquid pressure at the entrance and exit of the
impeller; w is the angular velocity of the impeller,

The liquid mass flow rate through the impeller is
- .=QFw_ (1.63)

Inasmuch as .
m u y U
Fl'wl=F2'WQ=—y w=-—and—=-=
Q r n n

after substitution of equations (1.60) and (1.63) in equation (1.62) we
obtain the equation for the pressure difference at the entrance and exit

of the impeller
S

rimp= oy [ —wd) - ()] —o | (52 - & cosp)as.  (1.64)

L1

By analogy with equation (1.64) let us write the equations for the
pressure difference in the entrance and exit lines of the pump. Here it
is necessary to consider the relations u=0, w=c. For the entrance line
of the pump

LN
Q 2 2 de
P—Pu= (ch—ci)—e S 'jd;(-lf;&
: S8x

Key: 1. entrance

If we consider that °=“.‘/9Fentrance’ then the last equation is written in

the form
L1 N
—p =2 (2 __ 2 __( ds dm
Pr— Pux 2 (Cnx Cl) S TTt- . . (1.65)

oy

For the spiral casing and diffuser
$,

H
__ Q2 2 de
pa—pr=— (ci—c3) QS ds. (1.66)
S
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Thus, the total pressure gradient created by the pump without considering

the effect of the finite number of blades and travel

by the equation

Pu— Pu=(Pu— P+ (P — P) (1 — Pu)i

or

pu= P (63— D)+ =)~ (u—wl) 4 (ch— ) -

5

S . 8
—Q S'd—cds—os (ﬂ-—%—cosﬁ) ds—%':-'- S

S 5 dax

In the steady-state operating mode (statistical characteristic)

de dw dm du

— D et I s B e =0,

dt dt dt dt
the pressure gradient of the pump

(Pu— Paer =2 [(cF — 2" +- (i — ) —(dd—wl) +{ck—c?)).

losses 1is defined

(1.67)

(1.68)

In equation (1.68) it is possible to proceed from the flow velocity to

the geometric and the regime characteristics

c?:u?—{-w}—%jwl cosPy; w;cosl=mw,=

m -
W, =Cjp=——1 F,==nDbk;
==, 1015

2y,

- kj—_- —— li==—— ] (==~

nDysing; T 60 "

where j=l, 2 is the entrance and exit index of the impeller; n is the

rpm of the impeller; D is the diameter of the impeller; b is the width of °
the impeller blade; § is the blade thickness; z is the number of blades.
The equation (1.68) is obtained without considering the reduction of the
pressure gradient as a result of a finite number of blades and hydraulic

losses in the flow section.

The pressure gradient defined by equation (1.68) is obtained under the
assumption that the number of blades is infinite. In rotating circular
gratings (finite number z) the angle of deflection of the flow does not
coincide with the profile angle of the blades. This occurs as a result

of the effect of the centrifugal forces of inertia occurring as a result
of the curvature of the profile and the effect of the Coriolis forces of
inertia. The greater the density of the gratings (the greater z), the
less will be the difference in direction of the flow from the blade pro-
file. The sparser the grating (the smaller z), the greater the deflection

of the flow.
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As a result, the pressure gradient of the pump with a finite number of
blades (ppump=Pinp)gy Will be greater than (Ppump=Pinp)st for z==.

. * .
The ratio (ppump'pinp)st/ppump'pinp) st 9plade 18 called the finite
number of blades factor.

The value of dhlade depends on the number of blades, the.ratio of D1/D2
and the angles orf setting of the blades.

The analytical relation between Qplade @nd the indicated parameters is
defined complexly. For the pumps useg in the liquid-fuel rocket engines,
qblade=0.75—0.9.

In addition, the effective pressure gradient in the pump is less than that
defined by formula (1.68) as a result of the pressure losses to overcome
the hydraulic drag in the entrance tube, in the impeller and the diffuser.
These losses can be approximately considered by the function

Apr’—‘—z— rh"

where § -— the coefficient of hydraulic losses -- is determined experi-
mentally. :

After considering the indicated losses and the transformations, the static
characteristic (1.68) assumes the form

(p._pn)"=AQn'~'—Bnn‘z—CI.n’. (1.69)
. n\2 0 02
where A=gq, (E) b (l —F’l) ;

2
_4_a(_1___1_ .
60 \bokotgBa byl tga)’

C=£-0,5, (-Fl,-- L ) .

2
an

In order to determine the dynamic components of the pressure gradient
during operation of the pump in the steady-state mode it is necessary to
consider the dropped terms in the equation (1.67)

2 . (1.70)
d d
li=e\ —Zrds=(D.+D) =%,
dt dt
where S5
Cds _s M ogs s
D =\ — =~ ¢ N D = _____S =L
¢ S F  Fe x S F F
S , (l) L/
Key: 1. spiral casing
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Sc» Sy are the length of the midline of the spiral casing and the
diffuser; Fgps Fq are the average area of the through cross section of
the spiral cdsing and the diffuser,

S S 81

dw du dw du
Iy= —_—— =Q\ —co —Q \ — .
2=0 S( T )cosﬂds QS 2 Cos Pds—e & 5 cosbds
i $ 8
If we make the substitution of variables

m nD
W= e = . '=—_
oFsing u 60 F=nDbk,

then the last equation is rewritten in the form

I,=D, dm _ podn

, (1.71)
* at e
where o S
ds 0
= i E=-—=\ DcosBds.
D, S Fsinp 60 } P
LN ]

These integrals can be defined by numerical integration with respect to

sections of the midline or approximately
1
D _ds 2 AS;
"_—S Fsing Fjsing; ’
- 5 P=1

5 !
E::%? S DCQS?dS::%OQ— E D/ C(?Sﬂ/ASI,
1 J=1
where ! is the number of sections

1

dm

1.72
ly= " ¢ )
= where

ds Sa
D = — TS e——
5 Fy Fn.cp

.

After the substitution of the e
the nonlinear equation of the p
steady-state operating mode

quations (1.70)-(1.72) in (1.67) we obtain
ressure created by the pump in the

Pa(t)=Puc () AQn2(£) — Br (¢) m (£) — crd(t) — (1.73)

_.D_d%‘)_gﬂ';(‘_’l; D=D.+D,+D,+D,,
where the coefficients E and D depend on the geometric dimensions and
the profile of the flow section of the pumps. With an increase in the
overall dimensions of the pumps the coefficients E and D increase.
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The coefficients E and D determine the inertial components of the head
with respect to the flow rate and the rpm. The values of the coefficients
E and D are much less than the values of the coefficients A, B, C;
dn/dt and dm/dt are the input signals for the pump; they are given by the
operation of the turbine and the lines.

The value of py(t) is calculated when starting one of the engines [6],
where dn/dt and dm/dt have maximum values. ‘

In Fig 1.14 we have the results of the calculation which indicate that
even in the start mode consideration of the dynamic components dn/dt and
dm/dt has an insignificant effect on the accuracy of the calculation;
therefore it is possible to neglect the last terms in equation (1.73).

The moment of the pump can be defined by the function (1.60) or by the
theorem of the angular momentum with respect to the axis of rotation

M=\ (curpdm— (cur)lm‘n+§,%:”dv+m,, (1.74)

Py P,

where F, F, are the bounding surfaces; (cyr)y and (cur)2 are the velocity
moments at the entrance and exit of the impeller; M; is the moment of
the tangential forces caused by liquid friction; this moment will be
neglected hereafter; (d(dL;")dV is the variation of the angular

)

v
momentum inside the flow section.

Pulby -

10 1712 ==
A\ Lo

08 /

0,6 /

04 vy
/
/,
ya

e 0,2 y /
A

0 0,2 04 0§ 08 %

Figure 1,14. Effect of the inertial components on the pump head:
1 - dn/dt=dm/dt=0; 2 -- considering dm/dt and dm/dt

Considering the nonsteady-state nature of the absolute motion in the
impeller we find the mean mass value of the moment of the angular component
of the velocity

5‘ (eur)dm
L S, (1.75)

e r= -
# m
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Considering the function (1.75) the first two integrals in equation (1.74)
assume the form

[ (carlodm—{ (c,ry) din=n|(Eary— (777, (1.76)
Py Py

The elementary volume of the flow section and the angular component of the
velocity are defined as follows:

dV =2nrbdr, ru=u—%r};, (1.77)

where a== — .
nooktg B

= The geometric dimensions b and B depend on the radius, but without making
large error these values will be assumed constant and equal to the mean
values,

Since u=7Dn/60 and dr/dt=0, considering the functions (1.77) the last
integral equation (1.74) is defined as follows:

td(c,r) a? 4 H©n d o "

'§ T:‘IV: ES'bcp (r2—r) T:- = 2ab,0,, (r'Z—rQ)—a;'T" . (.78)

Substituting the functions (1.77-1.78) in the initial equation (1.74) we
finally obtain

: . dn dm
— 21 L g, i
My=anm —aym?la, T " (1.79)

T2 oy .
where a'*?ﬁ(’?“”)' a37= Uy —ay;

2 4 4 2
ag=—b,(re—rl); gy=—m-2___
- T ( ¢ Qkcp tg Bep

The power intake by the pump is defined as the product of the moment times
the rpm Ng=Myw. In the equations (1.78-1.79) the coefficients al, ap, aj
and a4 define the imertial components of the head and the moment with
respect to the mass flow rate and rpm, and they depend on the configura-
tion and the dimensions of the flow section of the pump, and with respect
to magnitude they are appreciably less than the coefficient of the static

components.

1.5.2. Linear Equation of Pumps

The linear equation of the pump is obtained from the function (1.73) after
linearization in the vicinity of the steady-state conditions

Bl = K )= K G0+ Ky b O .80)
| ' 1)

Key: 1. inp
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where K are the boost factors;
Ph,x

2A0n? — Bam
Kp".ll= IQn- nm ;
) Py

- —'-2
Brm - 2cm

= — : : -—.é’_
Py m > i Ko =

In the vicinity of the steady-state mode the term cn'12/p defining the
losses in the pump can be neglected. In this case

D= AQ'ﬂ — Bﬂ’h. : (1.81)
- The influence factors are approximately defined by the expressions
1 .
Kp..n"_—' s +1
L
Aon
since _B_";.<< I, then for approximate analysis it. is possible to set
Aon
. Kpyn=2- Ko
Pum - Agn )
I Bm

i

.
20K
s x
10 e A : Al
[ ; Py, ~
2
J e m gn (~)
10 X
3 2 ) n Pun Sen !
4 g \ " oy
[ n .20 & “ﬂ,._ﬁ‘,
Figure 1.15, Boost factor - Figure 1.16. Boost factor Figure 1.17.
of the pump as a function of the pump as a function Structural
of the rpm: of flow rate: diagram of the
1— Ky g 2=y 1=Ky ot 2Ky o pump
TP S Rl TOpan 4T M
3= Kpymi A=Kt iy IR it 1=K
36

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000200090053-2



APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000200090053-2

FOR OFFICTAL USE ONLY

The boost factors KP ,X depend on the rpm and the flow rate. The equation
of the moment of the: pump has the form

i UM, (1= Kt ()= K (1), (1.82)

where Ky, n= ! _ .

asm

a\n

Ky cmmlet .
M.,m 41'-‘ :

llzmT -

The functions Km,x=fi(n, m) and Ky, x=fa(n, m) are shown in

Figures 1.15 and 1.16.
In the Laplace transforms, the pump equations are written in the form

8p,(s)= Ky, ndn(s)+ K, PadPs (8) — Kﬂm ,;.5’;’ (s); (1.83)

3M, (8)=Km,, ntn (s)— Ku, 8m(s).

Thus, the pump is a set of booster elements, the structural diagram of
which is presented in Fig 1.17.

1.5.3. Effect of Cavitation on the Pump Characteristic

In the volute centrifugal pumps, the cavitation phenomenon is observed
which consists in the formation of a break in continuity of the flow of the
moving liquid. The breaks in continuity of the flow (the cavitation
cavities) occur in sections where a pressure drop below the saturated
vapor pressure of the liquid occurs. The presence of dissolved and free
gases in the liquid has a significant effect on the development of cavita-
tion. They are released in the reduced pressure zones and lower the
specific strength of the liquid.

Cavitation occurs in the pump with a pressure at its input significantly
exceeding the saturated vapor pressure. This means that the region of
minimum pressure is located inside the flow section and is connected with
Streamlining around the entrance edges of the blades.

In volute pumps the cavitation cavities occur on the outside diameter
of the entrance edges of the blades.

37

. FOR OFFICIAL USE ONLY

o
\

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000200090053-2



APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000200090053-2

Lo Vi lLLAL VO VINLL

The cavitatlon in the pump channels between blades is a flow of liquid
with a set of moving cavities. The process of cavitation in the pumps is
very complicated; therefore when investigating the dynamic characteris-
tics, the actual process of movement of a two-phase medium is replaced

by an idealized model of movement of a homogeneous liquid.

Significant studies of the cavitation phenomena in pumps have been per-
formed by V. V. Pilipenko, M. S. Natanzon [11]. In accordance with the
studies of the mentioned authors it is proposed that the saturation of
the liquid with vapor phase takes place at the entrance to the pumps,
and further movement of the medium in the flow section continues without
variation of the vapor content of the mixture. On exiting from the pump
instantaneous condensation of the vapor phase and a change in density in
the medium are proposed; the appearance of vapor included in the liquid
is accompanied by a sharp decrease in the speed of sound.

Therefore the changes in pressure and velocity of the flow at the exit
from the pump are transmitted to its input with the speeds of sound equal
te the differences of the undisturbed speeds of sound ajg and agg and

the speeds of movement of the media ¢y and cgp.

The transmission time of these disturbances in the flow section of the
pump is determined from the expression
{

T*=
’
G—ay

where % is the characteristic length of the flow section of the pump. For
the pump, beginning with the nature of the cavitation flow of the liquid,
the equation of the continuity of flow is written in the form

- Valt = [Ficu(t) = Fobua (=), (1.84)
Key: 1. inp; 2. out ¢ (1) (2)
were Cjipp, C,.. are the flow velocities at the entrance and exit of the
pump; F1, Fo are the areas of the through cross sections of the delivery
and forcemains connected to the pump; p is the average density of the
vapor-liquid medium which is found by the expression

_d1 @ (1.85)

¢ 1+v() '

Key: 1, liquid; 2. vapor

where v is the ratio of the vapor and liquid volumes per unit mass of the
vapor-liquid mixture.

In the first approximation the function v(t) can be defined as follows:
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"xpl .

f)=v* L .
YO=V 6

A | ke
G

where h.,. ;| is the minimum required emergy of the flow in front of the
entrance to the pump, insuring continuous operation of it; v* is the
magnitude of the critical vapor content.

oo 20 (1)

v
Key: 1. vapor; 2. liquid QEE;
where Pvapor 1* @vapor are the density and speed of sound of the vapor

phase.

After linearization of equations (1.84 and 1.85) and representation of
them in operator form we obtain

THSQ=chn — K=" Cpzi
Q ==[(3‘V; v= [(4/1 )
hy=Ksp1+Coxs

(1.86)

. . — Qn"‘Qm .
where T,=Vg Ki=Fu Ki=Fui Ks= a+vp’
*h
K§=="vhgm; Ks=—
1

If we neglect the inertia of the pump caused by the vapor inclusions,
which is admissible for the low-frequency range (0-20 hertz), we obtain
the equation of cavitation

K o= Ko

Without considering cavitation the pump equation has the form
Q "3; ] czux
=1 —_H Gy t)=2L% .
b + 2 +H(pi,can) » f 2

where H(py, cp, n) is the head created by the pump,

H=an*— b’lC,u;-
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After linearization, equation (1.86) is written as follows:
Kﬁpl+cn+K6n""K1cmx=[<.5p2+cmx' (1‘87)

For analysis of the dynamic interrelation between the pump and the lines
it Is necessary to have boundary conditions which determine the conjuga-
tion of them.

The relations between the disturbances of the pressure and the disturbances
of the velocity of the flow Z=p(x,t)/c(x,t) which are called the boundary
impedance, are taken as such boundary conditions, In the general case the
impedance can be a complex number. In this case the real part of it
characterizes the active resistance, and the imaginary part, the reactance,
which occurs as a result of the presence on the ends of the liquid flow

of concentrated elasticities (bellows, volumes of vapor-gas mixture).

The pump is installed at the output of the delivery main and the input of
the force main. Therefore for investigation of the dynamic interrela-
tions of the pumps with the mains, the boundary impedance of the entrance
to the pump which determines the effect of the pump on the deliver; main and
the boundary impedance of the engine which is the boundary condition of

the coupling of the pump to the force mains, must be determined,

Let us consider the effect of cavitation on the input impedance of the pump
Zy=py (x)/cinp (x).

Without considering cavitation Zy' is determined from the equation

, aH
z,,:_ﬁl_(H-zn.l__._Qx)_Qm (1.88)
Fa 0Cpyx
where Zd=p°ut(x)/cout(x) is the input impedance of the pump, which is the
load impedance from the engine on the pump. Thus, the impedance of the

pump without cavitation is a real number; consequently the pump is an

active. resistance for the line and does not change its frequency character-
istics.

The pump impedance considering cavitation is determined from the equation
(1.86)

F oH
ZH:T;(W"; Qm+zx+ l)e”.—ox-

If we carry out the substitution s=jw, then we obtain

(1.89)

= L1 [ oH -
Z"— Fy (Ohhix Q‘+Zl+l)y T
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Thus, considering the cavitation, the pump is an active resistance and
reactance, and it changes the frequency characteristics of the system.
Let us consider the dynamic characteristics of the system (delivery main
plus the pump) (Fig 1.18).

The relations between the deviations of the pressures and the flow veloc~
ities at the entrance to the tube p1=P(%); vi=v(2) and the exit from the
tube py=p(0); vy#v(0) during the vibrations are defined by the equations

Cog==cC,chk L she
a==Cchk -+ p, ™ shk;

Pr=Qaoc,shk+ pishk, (1.90)
where k::JEL; ay= a ,
ay . 2Qa2r
Y o

ag is the speed of sound in the liquid; E is the modulus of elasticity
of the tube material; §, r are the wall thickness and tube radius.

P,,C,_Z,

Pri€3,2,

L]
Figure 1.18. Line diagram

The boundary conditions at the entrance to the tube (x=L)

p=—Zxn (1.91)

Key: 1. tank
where Ztank=zl is the boundary impedance at the entrance to the tube.

If the main ends in the tank open-ended, then it can be considered
acoustically open, and in this case Ztank=0. If bellows or hydraulic drags
in the form of gratings or flow plates which change the flow velocity

are installed in the tank, then Zgapk=atbjw, that is, the impedance
includes both the resistance and reactance.

The boundary condition  at the exit from the line (x=0) is defined by the
properties of the pump

p2=2562, (l .92)
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where Zy=Z, 1is the pump impedance defined by the expression (1.89).

Substituting expressions (1,91, 1,92) in equation (1.90), we obtain the
characteristic equations of the system

p=et*=g0, (1.93)

where Zs—2Z, . Zy—Zy
?1=———-—— M ?2=
Zs + Z, Za+Zg

i Zy=oag

Using the exponential form of the complex number, let us write the value
of ¢ in the form

== rgr,e/8 ), (1.94)

where

[P (Ze)—ZoP + [Q(Ze))?

[P (Zo) + Zo)2 + [Q(Zo))?
BRI A EACTEA T

"=V Paararrie@n,

The phase 6 and 67 of the complex number ¢ is defined as follows:

Q)
=zaretg-——=
U= @y

where P(Z) and Q(Z) are the real and imaginary parts., If equation (1.93)
is written in trigonometric form considering (1.94) and we equate the

real and imaginary parts to O separately, then we obtain the known formulas
for the damping coefficient and the frequency of the natural vibrations

E=-;—‘I’ Inriry

2 — (1.95)
w=21 (0, 18+2n), n=0, N.

If the main is open on both ends, then Z, ank=2 0,

pump~
__nnag
I

If the main is connected to the pump in which cavitation occurs, and the
entrance is acoustically open (ztank=0)’ then

= 1and E=01 @

Z,=Acoswt*} jA sin wr?, (1.96)
(@D ‘
Key: 1. pump
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From the equations (1.94-1.96) it follows that the pump in which the
cavitation exists can both reduce and increase the frequencies of the
natural vibrations of the main. Thus, if w<wt*<27m, then the pump lowers
the natural vibration frequency of the main w; if O<wt*<m, then it
increases it. If P(Z ump) <0» then Zpum <l. In this case riry can be
greater than 1 and E>8, ghat is, the vigrations of the main become
stable.

1.6. Turbine
The turbine torque and power are related by the expression

. M =30 N
x n

and they depend on the regime parameters of the turbine-pump assembly
and the gas generator.

The turbine power

a Nr=;an¢n"
(1.97)
where ﬁT is the gas flow rate through the turbine.
The adiabatic work of expansion of the gas in the turbine
z—1
La= 'S RT I— Pae = . (1-98)
=1 LT Prp !

where ppr is the gas pressure after the turbine; RTy is the fitness of
the gases at the input to the turbine guide vane, which depends on the
ratio fuel components in the gas generator K'. The turbine efficiency
depends on its characteristics and basically on u/c, [10]:

2
=b, (.i) +8, (L)+ b (1.99)
Ca Ca
where u is the angular velocity of the Totor; cg is the adiabatic escape
velocity
. 2=}
ooV |1 (22)7] 100
rr
or
=V2L,.
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The 1.ass flew rate through the turbine in the general case depends on the
gradient on the turbire, that is,

., Pir
me=f(£%).
’ f(P!r)
From the presented expressions it follows that the turbine torque depends
on the following parameters
Mr=['1(p[‘l‘v Pins P2 1, K').

_ Active Turbine

The supercritical escape regime is characteristic for an active turbine;

consequently
po=pi = ()7
and
- M,=M(pcr, K, n). (1.101)
Let us consider the single-stage active turbine.
The torque
. Mr-*Pa% , (1.102)

where dyp is the average diameter of the turbine rotor; P . is the circum~
ferential force created by the gases. In accordance with the theorem of
the variation of momentum of the gases in the channel between blades,
the circumferential force is defined by

P,=m,(c, cOS a, -} £, COS ay).

From the velocity triangle

C2C0S y=1w, COsfy—u; wWy=1uw;;
__0cosay—u

w
! cos By !
$ —- the relative velocity loss coefficient,
ndn :
=,
60

Considering these expressions, the circumferential force of the gases

P —or ,, €os B2 'j _[ cos By 1o (1.103)
w= e ([ 149222 0, cos o, [ 1 4928 %)
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where ‘t’T is the energy loss coefficient of the gas flow in the flow sectlon
of the turbine, ¢1=0.85-0.95, Since for an active turbine Pir p;,

Per  Prr
then the flow rate of the working medium m.r and the velocity c; are

defined by the expression

: ____;rl/ﬁ Prr .

mr ;n- ]/k?;’ 1=7= V= VRT (1-104)

Substituting (1.103-1,104) in (1.102), we finally obtain
B A’i,-_—prr (rl—F:-n)

N=p.n (m _my ) (1.105) -
- 1= Prr 1 VR
where w,d,mfcl coS @; ( cos Ba ) )
2p,- \ b B
- oo T Im. VAT, peos 82
= 120p”. ( cos By )
my= Q,nd,c,m, cos ul( cos [ ) :
cos By
_ P drml‘ VRTT +9 cos B2
3600;”' ( cos By )
RT=f (K’ (=)
For a two-stage turbine -
Me=9.p;r (“n VRT:—aun+ta:,m —a;, — i ) (1.106)
1, Mt

Jet Turbine

In engines with afterburning of the generator gas, jet turbines are used
with subcritical escape regime,

The initial relations for detemmining the moment of the turbine are the
equation of moment of the turbine (1.97), the power, the adiabatic work
(1.98) and the efficiency (1.89).

For the jet turbine PlT"pzr and the pressure gradient on the turbine
depends on the degree of reactivity

2=1

= B
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where p is the degree of reactivity of the turbine. For the subcritical
escape regime the flow rate through the turbine is defined by the function

" T T
. __‘/ 2+ Prr (_PL)‘ _( Dt ) x ]
M=V =1 R’rs \Pcr Prr (1.108)

From the functions (1.105-1.108) it follows that
M,=M (pl‘l" Par Pres B2, KI)

After linearization of the equations (1.97-1.98; 1.107-1.108) we obtain
M, =3N,—3n;
N, =dm,+3L, -0
3L,=28¢c,=3¥RT,+}-a,8p.r—aBpy.;
3, =bp—0,58RT; +asdpy, — aidprrs (1.109)
M, =ay, (8n—38c,); .
3p1e=a,,3ps —a, 3P,

z—~1

where

(x—1)a" P,
a@= o T Py’
2% [l—— Sy } .
p 2t
__2“: —(x+ 1) =P :
a‘“ - 2 1 ! ¢ Prr
B 2\n} —=n’
[ z
. Prr i 2a, E— +a
Og==— 8 H
8K g Ca v
—Ky KE_J‘T"P J =1
! 5”7 T z -— ._
"m__ T . . Y
i af=(1—0) 2 ; a, —ex, T
K n A=l
90,
. Py

Figure 1.19. Structural diagram
of the turbine moment

Solving equations (1.109) jointly, we obtain the linear equation of the
turbine moment

M (=K, o 3Prr ()F K p,, p, 8022 ($)+ Ky ntn(s)+ (1.110)
+ Ku ke "mIK (s),
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where

Ko, rp=14a,(a, er— 1) 42, (1 —0,5a,);
K-’“r' Py =08, —a, (1 —0,5a,);

= K_.
KM'I]’(""O'5“‘ _a")) T—Z-_-T'i KM,]“ =qn~ 1.

The structural diagram of the turbine moment is shown in Fig 1.19,
"1.7. Turbine Pump Assembly (TNA)
1.7.1. TNA [Turbine Pump Assembly] Impeller Equation

In order to investigate the dynamics of the turbine pump assembly, a study
is made of the movement of the impeller made up of a shaft, the turbine
rotor and the pump impeller. The derivative of the angular momentum of
the TNA impeller with respect to the stationary axis is equal to the moment
of the external forces applied to the impeller.,

The angular moment with respect to the impeller axis is

an ..
K.=J-§6- ) (1.11)

where J is the moment of inertia,

The moment of inertia with respect to the axis of rotation is defined in
general form

s={ t[f & (¥ +4)dxdydz+ Uj ox (47+17) dx dy dz.
| I x .

The first integral is the moment of inertia of the impeller material, and
the second integral, the moment of inertia of the liquid £illing the flow
section of the pumps. The Z-axis is directed along the axis of rotation,
The moment of inertia of the impeller material is found by the configura-
tion of the impeller by numerical integration, and it does not depend on

the time .
!p=5.” r’dm,
Y

vhefe r is the distance of the elements of mass dm from the axis of rota-
tion. It is possible to represent the complex configuration of the
rotor and the impeller by a solid disc of radius R and width b with
material density p. Then for the i~th impeller
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dm=2arobdr
and R boR
nbe R
lp=2nbgs r’dr=-——2—.

] (1.112)

The moment of inertia of the liquid depends on the time therefore the
derivative of the angular momentum has two terms

dK mdn o= o Al
=t <T@ (1.113)

Since dJliquid/dt differs from zero only during the period of filling of
the cavities with the fuel components (during the startup or shutdown

- process), for the steady-state operating conditions it is possible, with-
out making a large error, to set dJ/liquid/dt=0.

The moment of the external forces is the difference between the moments of
the turbine and the pumps

&
M=M,—3 My,
1

(1.114)
where k is the number of pumps.
The final equation of the TNA impeller is writtén in the form. -
* .

;oan®) g EM (=0, (1.115)
Key: 1. TNA Ty g~ MOT T
where

Jria=Jp+ I
Key: 1. TNA

Mp(t) and Myi(t) are defined by the equations (1.79) and (1.105).
1.7.2. Linear Equation and Characteristics of the Turbine-Pump Assembly

As a result of linearization of equation (1.115), the linear equation of-"the
TNA [turbine-pump assembly] is obtained

N —dn(f) _~ (oM, )\, My \ 7, :
Jrua Eo—n_a(:_ =Prr(5—pl;') aI’rr(t)'i‘(aK,T)K"’K’(t—T"P)'{'

k

+;7(‘%2£) b () — Z* ( %-) it () — Z ("—"‘:m-) b (f)

or in operator form

(Truas+1) 8n=K,, p,«ral’rr‘f‘K. B 5”‘11 +Kn.K'e—“"p3k, (1.116)
n,my

- r
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where TTNA = (m/30) (JTNA/aTNA) is the time constant, arya 1S the self-
regulation coefficient;

308x ox
“ &)
1My > K"."'lon 'PH.ox
1 Trua §+1
) Kn,p
aK” i RO
pe——— | Kﬂ,K“‘ T,,PJ
" wptno ¥
601 P ] o 8k Kp xn €75np
MPrr -) TTHA"." [ TTHA s+t
. 8 Kn m
Sm; . AN n, ms
e ot
‘fﬂdx.a K
Bu.2, Pl
Figure 1.20. Structural diagram Figure 1.21. Structural diagram
of the TNA of the turbine-pump assembly.
k -
Qrya = 1%_%; ., afe the voos’ factors.
™ d 01 On .

Ky =t (%’)

! napy, \dx

where x=p.., K', m,

Substituting the partial derivatives in a

TNA and Kn,x’ we obtain
- ;rrﬁ . _ -ﬁ,
A= E:azml'{'ﬁ' Kﬂ-ﬁrr"‘m'
R' (oM ART
g ) ()
K A\ oRT, | \ok”
: c — -2
- M..,—agm, :
K",;.=...—-——,
i nayyp -

In Figure 1.20 we have the structural diagram of the TNA for the case where
6n is taken as the output signal.
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For analysis of the dynamic characteristics of the engine it is expedient
to take the pressures after the pumps Gppump.ox and Gppum , fuel 2% the
output signals, and the parameters of the gas generator 6p_,, and 6K', the
intake lines 6Pin 4 and dﬁi as the input parameters. If wé exclude the
internal variable 6n in the pump and turbine equations, then two equations
are obtained which describe the dynamics of the turbine~pump assembly.

. 2 ' - 1rll ~ 1ot
(Trnas+1) 3Py 0c== Kppon pn»apgr 2f'KpE},Z. K€ K —
- Rp"-OK";"IK (1 +ST"-°") B;n' 3 + K"u.ox""’rarhf + (1.118)

+ Kpn.ox' P.(x:.;o?\' (1 -I_ 7‘THAS) Bp-x.ox:

- (4 —r,
(nm&+”M“=AAJWJﬁT+KHwWe"%K“F
+Kpu.r";'¢n6,;zm +l€pll.r";'r (l + Tn.rs)af;zr'{'
+K"n.r'pax.r ( l + TTHAS) Bpl‘x.rx

Key: 1. pump,ox2.gg = gas generator; 3. inp- ox; 4. pump, fuel;
5. INA = turbine-pump assembly

where . —_ "
Kﬁ-Mrr=KPu»"K"- orrt Koy ko =KpynKin e

KFH I";'i=Kng""1 +Kp"1'"Kn'ml,
TruaK_ .
Tk,

Ty=——m—""—
" K”nl"."l

Thus, the TNA is a set of aperiodic, forcing and delaying elements.
The structural diagram of the TNA is illustrated in Fig 1.21.

The dynamic properties of the TNA are defined by the structure and the
magnitude of the time constant and the boost factors.

According to the relation (1.116) the characteristic equation of the TNA,
TrNas+1=0 has a single root s=-1/T NA® The degree of structural stability
will depend on the magnitude and sji‘gn of the time constant. If TrNa>0,
then TNA is stable; if Tyya<O, then it is unstable.

The signs of the time constant are determined by the sign of the self-
regulation . coefficient (1,117), The larger the value of arNa, the
smaller Tpyp, the larger 'sl and the higher the degree of stability of the

TNA. For s=0, TNA will be found .t the stability boundary, and for s>0 it
will become an unstable region.
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The self-regulation coefficient arya 1s determined by the moment
characteristics of the turbine and the pumps, _V OMu;  OM,
Bya = - e

on on

The TNA is stable if arya>0 and, consequently, the stability condition
is the inequality

(2>

Fig 1.22 shows the torques of the pumps and the turbine as a function of
the rpm. From Fig 1.22 it follows that the self-regulation coefficient
is equal to the difference of the tangents of the slope angles of the
tangents to the curves M(n) at the investigated point

2 =igu,ttga,

In Fig 1.22 the point A corresponds to the stable operating conditions,
Thus, whereas at this point corresponding to the_rated operating conditions
n=n, as a result of the disturbances, the rpm n>n varies, then M'I‘>Mpump i
and the rpm decreases to n as a' result of the formation of excess_

moment of the turbine. The reverse phenomenon takes place for n<n.

Instead of the tangents of the slope of the tangents to the moment
characteristics it is possible to consider the value of ETNATC

pumptor’ s
which characterizes the self-regulation ' coefficient.

Thus, the time constant and the boost factors of the TNA depend on the
self-regulation coefficlent and the moment of inertia of the TNA
impeller.

Effect of the Rated rpm on the Dynamic Characteristics of the TNA

The rpm n is selected in the design phase from the condition of insuring
the required heads of the pumps and cavitation-free operation. The varia-
tion of n leads to variation of the overall dimensions of the pump and
turbine impellers and, consequently, to variation of the self-regulation
coefficient and moment of inertia,

Let us consider the effect of the rpm on the self-regulation coefficient,

the time constant and the boost coefficients of the TNA. Here the output
characteristics of the TNA remain constant:

- - [y
Pt =Pupy My=m;, m;=m,, Mr=2 My
: 1
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.
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Figure 1.22. Torque of the Figure 1.23. Time constant of the
TNA as a function of rpm TNA as a function of rpm
Key:
1. TNA
Transforming the equation (1.117), we have
1 9
_ NV (2 2y Foduny cos B3 \s (1.119)
aru.\—)‘ao(fz i) m,+ 50 (l‘*“}‘cospl)- -

Key: 1. TNA

For the given flow rates ﬁi and ﬁT, the radii of the pump impellers and
the turbine diameter are inversely proportional to the rpm, that is,
r2=cl/n2; dT=c2/n2, where c; are the similarity constants.

Then from the equation (1.119) it follows that aTNA=C3/n2. Since on
variation of the radial dimensions of the pumps, the variation in width of
the impellers takes place while maintaining the given output capacity,
b=c4/R, and therefore from the equation (1.112), it follows that

. Cs5
jTHA'— nd *

Substituting the relations obtained in the expression for Trnas> we have

[
Topgp =2 ,
THAS —

Thus, increasing the rpm leads to a decrease in the time constant of the
TNA (Fig 1.23) and an increase in the stability margin.

The boost factors kK, , =.__M_z__; K, . = Mui—aymy
L T, n, [

If we substitute the similarity expressions obtained above in these
expressions and consider that MT=c7/n, we obtain Kn, P which does not
g8

depend on the rpm, and K, ﬁ1=°8/n‘
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Effect of Operating Conditions on the Time Constant

For the specific TNA, the geometric dimensions are given, that is,
Jrya=const. On variation of the operating conditions, the rpm and the
flow rates of the fuel components change.

From the equation of similarity of the pumps it follows that ﬁi/n=consg.
If we propose that Nyi=Ny and on choking the motor Nehoke<Ms ﬁT choke<DT>
on forcing the engine ng>n, mT,¢>ﬁT, from equation (1.119§ it.

follows that

(aTHA)Ap < ‘Lm < (aTHA)(); |
(TTHA).W > Tina> (TTHA)Qr

Key: 1. choke; 2. force

Thus, when forcing the engine the stability margin of the TNA
increases, and on choking, it decreases.

1.8. Elements of the Engine Control System

The joint operation in the given sequence of all of the engine assemblies,
that is, execution of the given operating cyclo gram is insured by the
control system. The control system is made up of devices which provide for
startup and shutdown, warning and blocking, preventing an emergency situa-—
tion with the engine. The elements of the control system include the
automatic devices (valves and relays) which operate by the open cycle and
are called automation or automata. The automata receive the operating sig-
nal which is the control signal; as a result, the output signal changes
which acts on one engine unit or another; the given control program is
executed at the same time.

4 The basic elements of the control system are the start and cutoff valves.
The force required for opening or closing the valves can be created using
compressed gas, liquid, an electromagnet or pyrocharge.

Depending on the type of energy providing for response of the valve, they
are divided into the following groups:

Pneumatic valves;
Electromagnetic valves;
Pyrovalves,

All of the valves of the enumerated groups are being used at the present
time. Let us consider one type of each group.
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The response time of the valve is the basic characteristic for it determines
the duration and stability of starting, the shutdown time and the magnitude

of the aftereffect pulse, the possibility of the occurrence of hydraulic
hammer, and so on.

1.8.1. Pneumohydraulic Valves
As an example let us consider the pneumohydraulic valve shown in Fig 1.24,

The flow rate through the valve 1is determined by the characteristics of the
elastic system, the magnitude of the controi pressure which established

the plate position at each point in time. In order to determine the posi-
tion of the valve plate at different points in time it ig necessary to
write the equations of motion of the s1iding valve system,

Fy‘

s PWy
~t=

i ’

Figure 1.24. Diagram of the Figure 1.25., Diagram of flow
pneumohydraulic valve around the plate:

1 -- stagnant zone

%

Equation of Motion of the Plate

In general form the equation of motion of the valve is written in the

form
Ry=2Re (1.120)

where R-=md2x/dt:2 is the force of the inertia movement of the part;

m is the mass of the moving part; x is the plate displacement; R are the
forces acting on the moving parts of the valve.

The following forces act on the valve:

The force of the pressure of the component on the valve plate, Rliquid;
The force of the pressure of the controlling gas on the piston Ry;

The force of the spring R, ;

The frictional force Rg.
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The force of the liquid pressure on the
the static and dynamic effects of the f1

R1iquid=R4*Rgy. If we assume that the pressure between the plate and the

valve housing is equal to the pressure after the valve, the static
pressure is defined by the function

plate (Fig 1.25) is determined by
ow on the plate; on flow around it

Rcr=plFl"'p2F2- (1.121)

")
where F,=:14L ; Fp= % (d2—d).

For high liquid flow velocities, which occurs on closing the valve, a
hydrodynamic force acts on the valve plate.

1 Wy 2

! 2

' T VA

S

’L;a
|

w2

! 2

Figure 1.26. Forces acting on the plate;
1 -- stagnant zone; 2 -- pressure diagram

At the present time there are no
as a function of various factors,
dynamic force approximately with th

reliable data on the hydrodynamic force
It is possible to determine the hydro-
e following simplifications (Fig 1.26):

The pressure and velocity are distributed uniformly in specific cross
sections 1-1, 2-2, adjacent to the pipe;

The inertial forces and mass of the liquid are negligibly small;
The rarefaction zones between the nozzle and.the plate are not formed,

In this case the equation of the Euler pulse theorem is in the form

f pdF = S wdm,
F

(1.122)

>
where ! pdF is the principal vector of
considering the reaction of the plate t
Principal vector of the momentum,

the force (pressure*force) surface
o the liquids; J wdm is the
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Considering the assumptions made, the Euler pulse theorem (1.122) can be
written in the following form:

(Qw +Fp),~(eQu+Fp)=R. (1.123)

Projecting the force of the reaction on the x axis and assuming that p,=0,
we obtain

2
R, = —owiF,cosa— pF.cosa. (1.124)

Assuming that there is no warping of the plate (a=0), and considering that
the force reaction to the plate Ry has a direction opposite to the force
reaction from the plate on the liquid, from equation (1.124) we have

R =pF . +oF wh, (1.125)
where pg, wyp, F. are the 1iquid characteristics in the 1-1 cross section.

The pressure p, can be expressed in terms of the pressure P1, by the
Bernoulli equation

wio
Pc=Pl_",[" (1.126)

Replacing the velocity by the flow rate w=m/pF and considering (1.126),

from equation (1.125) we obtain

02 .
R1=pch+————2;" =2 (1.127)
c

In reference [21] from the theofy of jet flow of an incombustible liquid
around sharp edges, a relation is obtained for the hydrodynamic force
' w}
R.=C, L2‘ Ls, (1.128)

where L is the width of the working opening; & is the radial clearance;
cp is the coefficient of hydrodynamic force;

oy v )

€ is the experimental pressure loss coefficient; h, is the maximum length
of the opening.

The force of the pressure of the controlling gas on the piston

Ry= —(p,—p) Fy, (1.129)

56

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000200090053-2



APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000200090053-2

FOR OFFICIAL USE ONLY

where p,, py are the pressure of the controlling gas and the environment,
rcapect{vely; Fy ls the piston area.

The force of the spring

Ry= Ry, —cx, (1.130)
where ¢ is the spring tension
=Lt
8ilcp '

Key: medium

E is the modulus of shear; i is the number of turns; R;g is the force of
the initial compression of the spring.

The frictional force

RI=RI+R2+R31 (1'131)

where R; is the frictional force at rest which determines the delay in
opening and closing the valve; Ry is the force of dry friction determined
by the speed of movement of the contact pairs, and it depends on the
magnitude of the normal force and the friction coefficient £, which depends
on the sliding rate,

The friction coefficient is defined by the function

f=(fi-+Ldxre-tit £y,

where fq, f,, f3, f4 are constants which depend on the nature and
conditions of the %riction of the bodies.

The frictional coefficient is approximately represented by the function
f=csx. (1.132)
Thus, the force of dry friction can be determined by the function
1) (2)
R2=fy [Ry +Sy (py - pu)] +fm [(Rm +Sm (7— pu)]’
Key: 1, piston; 2. rod
where Ry, R.oq are the tension forces of the piston and rod sleeves;
S Sr 4 are the contact areas of the sleeves with the cylinder and the rod.

’
I¥ we gake the friction coefficients of the sleeves with the cylinder
and the rod to be identical, then

Ry=t;0(,Sy+ PsSu+ Ry R0, (1.133)
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where R0=Ry+Rm; Ra=pu(sy+sm).
R3 —— the viscous friction -- is defined by the function

Se ¢
Ry=n=Ex, (1.134)

where n 1s the coefficient of dynamic viscosity; Sy 1s the area of the
lateral surface; § is the clearance between the working surface.

Thus, the frictlonal force of the moving parts is determined by the equation
R==+ [f; (PySy+PSu+Ri—R)+1 §§-]"d—’: . (1.135)
Substituting the forces defined by the functions (1.128-1,135) in the

initial (1.120), we obtain the equation of motion of the moving valve
system

dx
™ [ Re=Ro—pS,—psS) 40522 ¢
_ +cx=plF1_'p2F2—(py_pn)Fy i Rno' (1'136)
Equation (1.136) includes the pressures Py (in front of the plate) and P2

(after the plate) which are related by the Bernoulli equation
2

w
p=nttxe, (1.137)
where § is the coefficient of hydraulic losses on the valve plate [10].
§(x) =055+ 212 4 g 54
de X

The magnitude of the controlling pressure is determined by the energy
balance of the gas in the position in front of the piston (Fig 1.27). The
equation of the first law of thermodynamics for such a system is written
in the form

dU-..—.dQ-}-l,dm,—(dL +idm), (1.138)

where igdmg is the quantity of energy entering into the cavity with the
incoming gas; idm is the quantity of energy removed with the outgoing gases;
dQ is the quantity of heat supplied to the gas; dU is the variation in
internal energy of the gas; dL is the work of expansion of the gas.

If we make the obvious substitution dm=mdt in the equation (1.138),
it assumes the form

dQ (i fn,—im) dt=dU +dL

[ {/) . P dQ dL (1 139)
or i — ————, .
dt bymy —im-- dat  dt
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)
is Jp,v,T,m Li.,'_.

- — —

b

Figure 1.27., Diagram of the valve cavity
Using the equations of thermodynamics

dau .;_c,tndT; V ﬁV:mRT;
NP
dL= pdV; Co=r7"

equation (1.139) is reduced to the form

dp _2—1f, ' pn % o4V, dQ
a4 v (l’m‘ m—=r37 dt+dt)' (1.140)

Thus, the valve dynamics are described by the equations (1.136), (1,137),
(1.140).

Process of Opening the Pneumatic Valve

The flow rate of the component through the valve is determined by the posi-
tion of the plate at each point in time, In order to determine the posi-
tion of the plate it 18 necessary to intégrate the equations (1.137) and
(1.140) which for the case of opening the valve have the form
| o oSS by SE]4
m G [0 (Ra—Ro—p,Sy—piSu) 41 | T4+
+cx=plpl‘—p2F2_(py—pu)Fyi Rno;

dpy  4—1 Sy av |, dQ
—_— e im— Py — -—)_
dt v ( 1P dt+d¢

(1.141)

In the general case these equations can be solved with respect to x(t)
using a digital computer. For an approximate solution let us make the
following assumptions:

The forces of inertia and friction are small by comparison with the other
forces;

The pressure after the plate p, is constant and equal to the ambient
pressure;

The heat exchange of the gas with the environment is absent,
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On the basis of the indicated assumptions the system (1.141) assumes the

form
py_‘ph'—blxl (l 142)
dﬂ = b Py o dV
dt Y TV P
where Fi (l Fa Ruo
==L {1==2)p, + 2=,
m=ppt(l-7)nt P
b,=;‘—; by=>V RT,ApF,,.
y
) The volume of the gas cavity under the valve piston
V=V,—Fyx, (1.143)
where Vg is the volume with the valve closed.
Since .
v _ v dx
dt  dx at’
then d_V_=__F dx,
dt Yat’ (1.144)

Let us differentiate the first equation (1.142) considering the functions
(1.143), (1.144); we obtain the equation of motion of the valve plate

b1 (Vo— Fyx) _
b ]d"“'b"”' (1.145)

Integrating the last equation within the limits of 0-x and 0-t, we obtain

o

Py Fy—Vob In(l—l‘;x). (1.146)

F
t=(x+1)b—;’x—|— i

¥

If we substitute x=h in the last equation (h is the stroke of the plate),
then we obtain the valve opening time

F F w (Fy—F o — V
tu,=(x-|—l)b—:/l+[ yP1+ Pa(Fy—F2) +R oclln(l——b'—-h)-.

AN Py, (1.147)

Process of Closing the Valve

Under the assumptions which are made for the process of opening the valve,
the equations of dynamics of the valve assume the form

py:p!l_b‘_x; (1.148)
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dpy _a—1f - % _ 4V
TR \isml g )' (1.149)
where
Fl F'.‘ Rno .
Py= 2= P~ - hk
Y F” 1 Fy 2 F’
V=V,~F,(h—x);
& _F dx (1.150)
dt Y at

Under the assumption of constancy of the gas parameters after the transforma-
tions analogous to the opening process, x(5) is obtained in the following

form
X (8)=by + Y/ 65— 2hby - k2L 26¢, (1.151)
where b =~L(F1P1—- Fap+ mFy + Ruo)— hVo'
) ’ (+ e i

b =(‘l—l)l,r;t,
e 1)

The time for closing the valve will be determined if we set x=0 in equation
(1.151)
__ h(2%3—h)

¢
3 26, (1.152)

The variation in time of the flow rate of the fuel components when starting
up and shutting down can be determined by using the functions (1.137),
(1.146) or (1.151),

The velocity is related to the mass flow rate by the continuity equation
‘ - _
Wy =22 e
1 FlQP' '

where y'is the flow rate coefficient of the gas for the enttance cross
section of the valve. -

Substituting the last function in equation (1.137), we obtain
' . i PL—P
m(x)=pF; 20 A .
0,55 +M€ +0,15 i;. .
<

Solving equations (1.153) and (1.146) or (1.151) jointly, it is possible
to obtain the flow rate as a function of the plate displacement m(x) or

time m(t) on opening or closing the valve.

(1.153)
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1.8.2. Electropneumatic Valve

The electropneumatic valves are used to control the operation of pneumo-
hydraulic valves and also for direct control of the fuel component feed to
the low-thrust engine.

As an example a study is made of the dynamics of the direct-action electro-
pneumatic valve (Fig 1.28),

The law of variation of the current strength in the circuit of the electro-
magnet is defined by the function

Ry

l=loe-T -{7%(1 -—e_%!),

(1.154)

where Iy is the current strength at the initial point in time; on closure
of the circuit of the electromagnet, Ip=0; E is the electromotive force;
L is the inductance of the electromagnet coil; R is the resistance,

The tractive force of the electromagnet

B2F’(2)

=—1__ 107

(13"" 8xsina

" (1.155)

Key: 1. em; 2. armature

where B is the magnetic inductance; Farmat:ure is the area of the armature;
o is half the apex angle of the electromagnet cone.

Since the magnetic induction is defined as [21]
g1t =D}
where i is the number of turns of the winding; e is the scattering ‘

coefficient of the magnetic force; h is the gap between the armature and
the yoke, then
4 Fa(l—e)2u2r2
R, =64.10—1 Ts_—e)¥U2
. h2sing (1.156)

The delay time of opening of the electropneumatic valve is determined from
the closure time of the electric circuit to the beginning of the movement
of the plate.

At the opening time, the following conditions must be observed

Ry o=(p1—p,)F.. (1.157)

Key: 1. em.o
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Figure 1.28. Diagram of the electropneumatic valve

Solving equations (1.156) and (1.157) with respect to I, we obtain the
current strength at the time of opening of the valve

' h (P1— pu) Fc sina (1.158)
/ 1—40 l/ .
© (1—e)i - Fa

Key: 1. open

Substituting equation (1.158) in equation (1.154), we obtain the delay time
in opening the electropneumatic valve

4 —-_L_]n _E__
= (E_.,MR)- (1.159)

In order to determine the delay time of the closure of the valve it is
necessary to use the conditions (the beginning of movement of the plate)

RJ=(pl —pZ)Fc
Key: 1. closure

and then considering equation (1.156) it is possible to obtain the magni-
_ tude of the current required to close the valve

J.—40 —_ 1 (Ar—p)Fcsina
2 (1—e)i Fy :

Key: closure

- Substituting the last function in equation (1.154), we obtain the delay
time for closure of the electropneumatic valve

L. 1
ty="1In=L, .
== ", (1.150)
1.9, Hydraulic Hammer

When shutting the engine down and sometimes when starting it up, with

short response time of the valve hydraulic hammers can occur which are
dangerous especially for long and three-dimensionally curved lines.
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Without considering the viscous friction and the movement of the liquid
in the direction perpendicular to the tube axis, the phenomenon of
hydraulic hammer can be described by the wave equation

Lo o _

2l o om0 (1.161)

where p is the excess pressure; ay is the effective speed of the liquid
which is determined by the Zhukovskiy formula

. 2 .
| Qa2 ’

Ed

at=

- The solution of the equation (1.161) can be obtained in the form of a
traveling wave [16]

plx, == py(x—ad)+po(xtag), (1.162)

where pjy and P, are defined by the boundary conditions at the ends of the
tube.

Depending on the time required to close the main telosures direct and
indirect hammer can occur,
£ € 10s re<22/ao, that is, the time of closure is less than the time of
doubTe’Ehe path of pressure wave through the line, there is a direct

impact, and the maximum pressure in the main is defined by the formula of
N. Ye. Zhukovskiy

Prnax=Q7 0, (1.163)

where vy is the velocity of the liquid before the beginning of covering
of the tube. If tojogure”tp=2%/ag, the wave reflected from the tank
insures that the end cross section will be reached before the pressure
increases to a value of (1.163), then indirect impact occurs.

In the case where the liquid is braked in accordance with a linear law,
the pressure on impact is defined by Mish's formula [16]°

t
Prax==0QUgl f . (1.164)

Substituting t0=2£/a0 and v0=Q/F, we obtain
Q «

=Q——-—-.

Prmax F

This case is close to the process which occurs on switching off the
engine.

In the general case for an arbitrary law of braking of the liquid on
closing the valves the pressure in the line is determined by the sum of
the direct and reflected waves [16]
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Im
pti=0ay ¥ (1Y {[vo—v(t—qld]—[vo—v(t— gl +T)]}, (1.165)
Qe

where q=0, 1,..., 9ms qp 1s the integral part of the number agt/22 for
q=0, v(t-tpq)=0.

In order to reduce the pressure of the hydraulic hammer it is necessary,
as follows from (1.164) to satisfy the condition telosure®tys to apply
inserts with reduced elasticity (the decrease in the effective velocity
ap) and accumulators.

In order to calculate the indirect hydraulic hammer when using a. reser-
voir,equation (1.161) is used. The schematic of the process is as follows,
At the time t=0 the liquid with constant volumetric flow rate Qp moves
from the valve (x=%) to the tank (x=0). When t>0 the flow rate in the
cross section x=0 begins to decrease according to the-law Q=Q(t). The
Treservoir  is connected in the vicinity of x=0.

In order to solve the equation (1.161) the initial conditions for t=0 are
Px, 0)=0; 250 g
For x=%
p(x, 1)=0.

The magnitude of the velocity at the end of the tube where the reservoir
is installed is defined by the equation

(0, t)=°—°:9%——)o‘°"“’, (1.165,a)

where Q,(t) is the liquid flow rate to the accumulator which can be
determined from the reservoir characteristics.

Let us propose that the reservoir is an elastic tank with the characteris-
tics:

F is the area of the piston (bellows); m is the mass of the moving part;

¢y is the rigidity of the elastic element reduced to a unit area; h is
the deviation of the elastic system from equilibrium.

The equation of motion of the piston of the reservoir is
m %’;-+Faah=F,p ©, £).

The initial conditions are: t=0; h=0, h=0. The solution of the equation
(1.165)
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t
h()=L1 \p@)sinat—r)ar,
mo | (1.166)

- .w=l/’i‘i.
m

The liquid flow rate to the reservoir is
dh
Qi(t)=F, i (1.167)

The solution of equation (1.161) is represented in the form of traveling
direct and reflected waves

p(x, t)=p (f —aio)+pz (t+—:°—): (1.168)

,0(0' t)=Pl(on")—P2(0: f)
Qay
Then from the conditions (1.165, a) using the functions (1.166) and (1.167)

we have . 2 ¢
O O—p0,) &= _ Fi 0. ¢
30 .FO Fom OSIPI( ’ )+
+pa(0, £)] cosw (¢ —1) dt. (1.169)

Here, from equation (1.168) we obtain
A
“p)=p (f ——) )
a9
Substituting the last function in (1.169), for p1(0,t) we have

¢ t ‘2
pn()+P1( _ ao) — Qo—Qo(t)

F
o . ’ (1.170)
0 - t_ﬂ)] 05w (f—1)dt.
Faa [P O=p(t =5 )| st =

The integral in the last equation is nonzero only for t=t, for cos w(t-1)~0.
Therefore it is possible approximately to represent this integral by the
ser ies t 1 )

Sf(t)cos(t—t)dt:f’ O—==f"O—+..

¢ ¢ @ (1.171)

Considering (1.171) the equation at the boundary x=0 assumes the form

2
n@ -+t —70) Q=00 _

Py Fo ,% [pi ) —pi (t -.Z_:)_l_ (1.172)
’ .
+F°ica- [pT(t)_p; (t ___‘il;)]
_ ” 2 (t)=§‘g p,(:_%q),
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1f we neglect the mass of the moving parts (m=0), then from (1,172) the
recurrent formulas are obtained

¢
P (.’):qzue—nl S ety QO'— Q(t) dt;
1} Fo

(1.173)

4
f=a—nt { anf [,

where Pul)=e 'ble [f.’u—l(f]“”l’q—x(f)]df.
n=F0"a .
Foay

In order to calculate the reservoir we assume that the liquid flow rate
varies according to a step law, with a step height at, that is,
Q(t)=Q0-atl; here tl“clﬁsure and ty<ty. Then from the equations (1.173)
for the direct wave we have

aty

Po(t)=ca, H(l —e)

and the reflected wave 2

; £, —n |-
Pox(l)=-L'ao£;‘(l-—e n( "o),

and

P(8)=py () + por (8).

Since the variation of the flow rate takes place in steps after tj;, then

the total pressure at the time E>t 1 osure

aty (1—e™)(1—e7™)

p(t)==0ay Fo e

If we let t) approach zero, then from the last equation we obtain
—— a . — o —
P)=0ay —— (I —e~m)(1 —e=). (1.174)
For the actual conditions nt0=(F0ca/Flpa0)t0<<I, and in this case

equation (1.174) is simplified significantly, and the calculation formula
will have the form

=fa Q.
Prax="" 7 2. (1.175)
The formula can be used for approximate calculation of the reservoir.

For the given characteristics of the main £, Fo, p, ag, vg and telogure?
Pmax 1s defined by the formula (1.164). If Pmax ©xceeds the admissible
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value, then Pmax.d is given, and the characteristics of the reservoir are
def ined ’

c =930 Pmix.x

¢ 2[90
and the volume is defined P F
Va= max.t’ 0 .

Ca

1,10. Frequency Characteristics of the Assemblies

As a result of the interconnection of the engine and the elastic rocket,
vibrational processes occur in the engine assemblies which are determined
by the dynamic properties of the assemblies such as the natural frequency
of the vibrations, the damping and so on.

In the vibrations which occur in the rocket, the role of the engine can be
different. If pressure fluctuations occur in the combustion chamber, then
the engine serves as a source of forced vibrations of the rocket. In turn,
the rocket vibrations can be intensified by the engine as a result of the
forced vibrations of the arrival of the fuel in the chamber which lead to
fluctuations of the pressure in the chamber and the thrust. There are many
causes for the occurrence of vibrations. The basic ones of them are the
following: startup and shutdown of the engine, operation of the regulation
system, separation of the stages, longitudinal vibrations of the rocket,
and so on.

The startup of the engine begins with sharp opening of the startup valve
which up to the time of startup separates the components in the tank amdthe
line from the engine cavity. With sharp opening of the valve the liquid
rushes from the tank downward; a rarefaction is formed in the upper layers.
The rarefaction wave is propagated with the speed of sound along the line
to the tank and, on being replaced from it, in the form of a wave of
increased pressure it returns to the flow line. The line and the liquid
have elasticity, and on variation of the pressure they form a vibrational
system.

On the occurrence of engine thrust, there is dynamic loading of the hull

of the rocket, and longitudinal vibrations of the hull and the fuel system
occur. The analogous process also occurs when the engine is shut down.

In the active part of the trajectory the engine is affected by different
disturbances which have a periodic nature. The frequencies of the forced
vibrations can coincide with the frequencies of the natural vibrations of
the assemblies. Here resonance phenomena occur. Thus, it is desirable to
know the frequency properties of the engine assemblies which are character-
ized by the frequency characteristics.

The frequency characteristics of the assembly are uniquely defined by the
complex transfer function,
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In order to determine the complex transfer function it is proposed that a
harmonic effect x=Xj cos wt is fed to the input of the unit, where xj is
the amplitude, and w is the angular frequency of the effect.

At the output of the linear system in the steady-state mode, a harmonic
function will also be obtained with the same frequency, but in the general
case shifted with respect to the phase ¢ and with a different amplitude

Y ==y, ¢os (vt - ¢),

The amplitude y; and the phase ¢ are determined by the properties of the
system and the frequency of forcedvibrations w.

If from the harmonic signal we proceed to the complex form by substitution
of cos wt=ej®t, then

x=x,e""', y=gle""”+"'.

The complex transfer function is the ratio of the complex form of the output
signal to the input signal

n.pl(w! +9)
e == A(w) ™,

W'(f“’)=%= el

where A(w)=y /x1 is the modulus of the complex transfer function,
A(w)=mod W (Jw); ¢(w) is the phase shift of the output signal with respect
to the input signal; ¢(w)=arg W (ju).

The complex transfer function is obtained from the operator function if
we replace the operator s in it by juw

W (ju) =W ()]s s

The transfer function of any order can be represented by the sum of the
real and imaginary parts

W (jo)=P (0)+ jQ (w).
In this case the modulus (amplitude) is defined as

A=V =)+ Qo)

¢ (w)=arctg % .

and the phase

The function A(w) is called the frequency-amplitude characteristic and it
defines the capacity of the element to amplify the input signal at different
frequencies; that is, it characterizes the pass band of the input signal.
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The function ¢(w) is called the frequency-phase characteristic; it defines
the phase shifts introduced by the element on different frequencies.

The hodograph of the vector W(jw) on variation of the frequency from

0 to ~ is called the phase-amplitude frequency characteristic. As follows
from the preceding items, the engine assemblies in linear dynamics are

the booster (pumps), inertial (the mains, the reservoirs, the turbine-
pump assembly), inertial with delay (the combustion chambers and the gas
generator) and passive integrating elements.

Let us consider the standard frequency characteristics of the enumerated
assemblies (see Fig 1.29).

i)gad~enue A?w(z) AP < (3) ml-(l.)
Hacoc(D) q [ A
jw) = r .
wijw) = Rp, , u &Kp"" Plw)= 0
w

(6 Mazucmpans,THA W =00 x P§A P

Wruwl = _/7;_'—1 .

wabr | I5g®

(‘l)ﬂdﬂtﬂﬂ caopanus, Q 2 -

*e3cecepamop w=0G K P ™ —2

S K -
Wjud =y el w=0) > ]
w 909

THA

[a T ” A
W) 2(1ejTyw) Tr K P "
L (Y3 P Wo
Tu/Tr
w

Figure 1.29. Characteristics of the Elements

€
g
]
-

<1]8

=

Key:

1. Equation
- 2. Phase-amplitude frequency characteristic

3. Phase-amplitude characteristic
4. Frequency-phase characteristic
5. Pump
6. Main, turbine-pump assembly
7. Combustion chamber, gas generator

a) Pumps

The pump equation .
8p,()=Kp, .ndn (5)“K,,n,,'.?'m ()4 Koy pyyPus (S):

The complex transfer function W(jo)=K, ,
He X
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Thus, the pump transmits the input vibrations, amplifies their amplitude

and does not change the phase.

b) Mains, Turbine-Pump Assembly

The transfer function of the main and the turbine~pump assembly have the

form
Ky.x

‘Vls):rs-*_l .
¥

The complex transfer function

W (jo)m bt o P (a)+ /Q (a)

JTyo +1
Ky.x KyxT yw .
(w)—'l+sz2 ’ Q((l)) 1+T:«)2 b
Ky,
A ()= —= Y.L :
14 T2e2

¢ (w)= —arctgul,.

In order to construct the frequency characteristic, A(w), o (w), W(iw)

are calculated for different frequencies from O to «,

In order to calculate the phase ¢(w) it is convenient to use the table

of ¢=¢(wt) (Table 1.2).

wl l 0 I0.05 0,1 0,2| 0,5 1 2 5 10 20 )

. rpan] 0 | 2°50°) 5°40°11°20’

1

26°50°| 45° 163°30°[78°40'(84°20'87°10° 90°

Key:
1. ¢, degrees

Table 1.2

As follows from analysis of the functions and the graphs (see Fig 1.29)

- the inertial element on low frequencies amplifies the input signal and
changes the phase littie, For high frequencies w>1l/T vibrations occur
with sharp attenuation, that is, they are poorly transmitted. The smaller

the time constant T, the wider the frequency pass band,

- c) Combustion Chamber and Gas Generator

The transfer function of the combustion chamber and the gas generator has

the form St
W (s)=Ke P
T.s41
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It is possible to represent the transfer function in the form of the
derivative of the transfer functions of the inertial and delay moments

PN K - Jut,
W("")—,T, T
K

T YTt

np;

A(w) i 9(0)= —arclgwT —or,,

The delay is an additional phase shift by the angle mt“p

d) Pump in the TNA System

The equation for the pressure at the pump included in the TNA, depending
on the flow rate of the component has the form

(Truas + 180, (8)= — R, m (1 +7,5) 3 ().
h The transfer function
. . (1 + ]'ru“)
W(jw)=kp"'m 1 4 jTTHA®W
The amplitude and phase characteristics
Rp..l‘!l V 1+ Tzuﬁ

A(m)::
V i+,

= Tu+ TrHa)
P (w)== —arct i"*___ .
( g 1 + @2y Tryp

The amplitude characteristic demonstrates that the element transmits low
frequencies with amplification coefficient close to KPH’n'l' The high
frequencies are suppressed. For the middle frequencies =1/ TyTona»

a negative phase shift occurs.
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CHAPTER 2. DYNAMIC ENGINE CHARACTERISTICS
2.1, Model and Structural Diagrams

The characteristics of an engine as a dynamic system and the object of
control are uniquely defined by a system of linearized equations, the
units describing the transient processes in the vicinity of the steady-
state regime. However, the system of equations does not permit establish-
ment of the qualitative relations between the individual units, which is
necessary in the preliminary design phase.

The qualitative dynamic analysis and synthesis of an engine are comven-
iently realized using structural diagrams.

The structural diagram of the engine is the system depicting the inter-
relation of the dynamic elements described by the operator equatioms.

The structural diagram depends on the pyro(pneumo) hydraulic system of the
engine, but it differs from it with respect to content, for it depicts
not the units, but the dynamic elements and the relations between them.

The schematic diagram is a unique diagram for the given engine. The
structural diagram for the same engine can be somewhat dependent on the
method of breakdown of the engine into elements and the system of variables,
Thus, the structural diagram depicts not only the schematic diagram of the
engine, but the specific peculiarities of the processes in the units which
are taken into account in the mathematical model of the engine,

The initial data for constructing the structural diagrams are the engine
diagram and its mathematical model presented in operator form.

The symbolic notation for the operations on the variables closing the
individual elements are taken for the construction of the structural dia-
grams (see Fig 2.1),
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Figure 2,1. Symbols of the structural diagrams:
a ~— element; b —- junction; ¢ —- adder

2.1.1. Structural Diagram of the Engine with Pressurized Feed System
The engine equations represented in operator form are presented below.

The thrust chamber equation

V(=W () €7 ()4 W, € i s),

oK

The equation of the lines from the tanks to the chamber

b"nu( (S) = W""m{-ﬂﬁ.on (S) Bpﬁ K (S) - W;"ul(‘ Py (S) 5p‘ (5) -

Wi ) 3 (5) (2.1)

U (S)=Win_,p, . (5)8Pss ()= Wi, 5,30 () = Win_¢ 85 (5).

The transfer functions are defined by the time comstants and the boost
Factors

Crvee PO wr PP,
W op.m ()= Tes+1 " ™rP Tas+1" (2.2)

w- (s)= K""I'Pel 4 (S) K’;'I'El
P T Taas 1 MY T Tas41°

In accordance with the system (2.1) the structural diagram of the engine
has the form shown in Fig 2,2.
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Figure 2.2. Structural diagram of the engine with pressurized feed
system
Key:
1. tank, oxidizing agent
2. tank, fuel

As follows from the structural diagram, the output signals of the engine
are the pressures in the tanks (ptank i) and the hydraulic drag coeffi-
cients of the lines of the thrust chamber (£4), which can be taken as the
control inputs (the regulating parameters).

Positive feedback exists between the lines and the chamber, that is, the
pressure in the chamber depends on the flow rate of the oxidizing agent
and the combustible fuel component, and there is negative feedback -~ the
flow rates of the components depend on the pressure in the thrust chamber.

The latter relations are realized by the transfer functions of the lines

wﬁ)ppk’

2,1.2, Structural Diagram of the Engine with Two-Component Gas Generator

The mathematical model

-t . .y .
W ()=W , s () € " tton (5) - W e, (f) e "om(s)

-—S‘!. .w ‘ or
prr(s)= an_,;,.; K(3)‘5 "Pbrmox (S) +Wprr,r;1; e "mls)+

FWope@e MK
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K" (5)="8tmox (5) — 3rm; (5);

tny = W e, 5y (5) W) =W, (5)8pe(s)— W ;0 s) 3.

my,
bmi=W,_ 50 (58P (8)— Was. e (8)8Pri(s)— W g ()8
Brfx,= K';”’ ,;.;Brh; (S)+K”'l“ ’;‘;3/?'1;(8);

8Pk (8)== W bor o1 P10 (8) + W ok (S) 8K (s) —
—~W_ . (s)dm, (s)L W oS g (s)+

- P.ok Mok

+Wo, o Pog.on(S) BPux.ox ()

6pn.l’ (S)—‘—“— W‘I’".r. Prrapl‘l" (S) —l- W”H.r";' (S) E”iox (3)—

(14

—W,. &) Bty (s)+ Wy, io(5)8K" ($)HW s, .5y (5 Pagals.)

(2.3)

The structural diagram of the engine is presented in Fig 2.3, As follows
from the diagram, the input signals are the pressures of the input to the
pumps and the hydraulic drag coefficients of the lines to the chamber

(£4') and the gas generator (£4"). When analyzing the structural diagram,
attention is given to the presence of two groups of circuits, inside which
basically all of the feedbacks are closed; these are the "GG-TNA-CG lines"

and "thrust chamber-thrust chamber lines" circuits,

Complex interaction takes place between the elements of the engine by
means of the cross positive and negative feedbacks. The flow rates of the
fuel components depend on the pressure after the pumps (the impeller rpm
of the TNA) and the pressure in the combustion chamber (the gas generator).
In turn, the magnitudes of the flow rates in each of the lines influence
the pressure created by the pump which depends on the pressure in the gas
generator, All of the feedbacks are closed on the turbine~-pump assembly
and act on the thrust chamber only by changing the TNA impeller rpm.

Therefore, the turbine-pump assembly has defining influence on the engine
dynamics. The turbine—pump assembly is an inertial element with relatively
large time constant by comparison with the other elements. Consequently,
for sufficiently large frequencies of the disturbances and the useful

signals coming from the gas generator, its rpm cannot vary, which means

that the operating conditions of the thrust chamber also camnot change.
At low oscillation frequencies of the input signals the turbine-pump unit
can change rpm and transmit signals to the thrust chamber, Thus, in the

engiie the turbine-pump assembly is the filtering element,
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Figure 2.3. Structural diagram of the engine with the pump
feed system

The structural diagram with afterburning of the generator gas differs
insignificantly from the structural diagram of the engine without after—
burning. Instead of feeding the liquid component to the combustion
chamber without afterburning,. a gasified component is fed through the gas
line with the afterburning system. This peculiarity is theoretical and
essentially has no effect on the engine dynamics. Whereas the flow rate
of the liquid component reaching the thrust chamber depends only on the
TNA impeller rpm and the pressure in the chamber, the gas parameters in
the gas line basically depend on the gas pressure and temperature in the
gas generator and depend only slightly on the TNA impeller rpm.

Consequently, in the system with afterburning there is a direct (positive)
relation between the gas generator and the combustion chamber through the
gas line not having filtering properties similar to the properties of the
TNA. Therefore in such engines the operating conditioms of the thrust
chamber are sensitive to the disturbances coming from the gas generator.

2.2. Engine Transfer Functions

For analysis of the stability and determination of the regulating inputs
(regulating parameters) it is necessary to know the engine transfer func~
tions.

The transfer function reflects the mathematical relation between the input

and output signals and is the ratio of the Laplace transforms of the output
signal to the input
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- _ b(s)
W}J(ﬂ_‘ja;y.

Knowing the transfer function, it is possible to write the equation for
the relation

y(S)=W,..(s)x(s).

(2.4)
Since the transfer Functions are ratios of polynomials
W ()= b,,,s:' + a,,._,.::‘ + ..+ b5+ b
@pS" + @S 4+ +ais+ay
the equation of this relation can be rewritten in the form
(@nS"Fapsm=14- ...+ a5+ ag)y (s)=
=(OnS™ - b sS™1 - .. - by5 -+ by) . (s). (2.5)
Using the Laplace expressions y(ﬂ==f e~y (t)d¢ or for the derivatives
sn{»fg%ép ' from equation (2.5) i;“is possible to proceed to the

differential equation

d®y (¢ ar-ly ¢ dy (¢ i
a, —d—i,,(—)'l'an-x -Tt;“_(,—)+.:.+a, J’;(t—)-}-aoy(t)=‘

m -1 dx
L L

The last equation permits determination of the reaction of the engine,
‘ that is, the change in the output parameter with time y(t) for the given
. disturbance x(t).

The transfer function permits a very important characteristic of the engine
to be obtained simply —- the boost factor

- =%
K‘—P-gl W(SJ_ ap ¢

The analytical expression for the transfer function can be determined by

transformation of the structural diagrams, by the method of determinants
and the matrix method,

2.2.1. Method of Transformation of Structural Diagrams

In automatic control theory [5] a structural analysis method has been
developed which permits as complex a structural diagram as one might like
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to be converted to one equivalent element with the transfer function
W (s)=F[W,(s)]

In order to determine the transfer function, the branched structural dia-
gram is rearranged into a single-loop dlagram by transformations of it
dccording to defined rules of combining elements into one equivalent ele-
ment and carrying the elements through the adders and angles [sic].

Hexodngs  cxema (1) JIxBuBanesmnas c”"ale

Xy Xz Yy xy | X X4 =ﬂ )
" we

Figure 2.4, Transformations of structural diagrams
Key:
1. Initial diagram
2. Equivalent diagram
The rules of transformation of structural diagrams are shown in Fig 2.4.
In the example of the structural diagram in Fig 2.2 let us demonstrate

how we obtained the transfer functiom of the pressure in the chamber with
respect to any disturbance SPrank is SE4.
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The transfer function is determined successively for each disturbance.
Others are assumed equal to zero in this case.

Figure 2.5. Intermediate structural Figure 2.6, Structural diagram
diagram of the engine

The structurul diagram in Fig 2.2 is converted to the diagram with one
adder before the delay element; as a result, we obtain the diagram in
Fig 2.5, where

—\¥. < 3
Woel$)=W, oW oo i (2.6)

W’r (8)= Wn'rr, pKWpK, m
X(S) is the generalized disturbance:
X (9= W”"ux' Pﬁ.oxwﬂn. I'no"apﬂ-m( (s)+ Wn.zm‘, onWpK, hoxaeok 9+
+ Wn'xr, Pb.,.Wp,‘. ;nrapﬁ.r (S) + W';'r‘ E,.Wﬂxn lhr&l‘ (S).

The structural diagram in Fig 2.5 is finally transformed into the diagram
with feedback, I'ig 2.6,

where Woe (S)=Wo (s)+W,(s) - ' (2.7)

W o 1s the transfer function of the open system without considering Teony
aRdwith consideration of Wie(s)=e""m" W, (s).

The transfer function of the closed system

-8t

-t P . (2.8)
()= 1+ W, (s)

The equation of the relation between any input signal and the output
signal has the form

3p,(5)=0 (s) X (s), (2.9)

where X(S) is the input signal.
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As an cxample, let us define the transfer functions for the pressure in
the combustion chamber with ect to §
fhe com respect t ptank, ox and 8¢, and the boost

The initial transfer functions will be expressed in terms of the time
constants and the boost factors .

. . (T 1 . . (T +1
Roxr P Py ’"ol(( urs +1) + Kmrt Fprm mr( ok ) . (2 . 10)

(TuokS + ) (Tues + 1) (Ts +1)

W (8)=

The boost factor of the open system is

Kope= MWy =Ky 0K og it Ky 5 K (2.11)

The transfer functions with respect to the input effects
—st W . .

e p Mok Po.x P Mo

L+e W, (s)

W o tox (8)= 0 (5) X (s).

an. Pg.ox (S): (] (S) ch.ox (S)=

The boost factor

K. K .
K — Mok Pe.ok Px Mo
Py

*Poox 14 Kp.c ’

K. K .
— Mo Eox P Mgy
Kpy gpo=——22 0 o

o T 1 Ky

In some cases, for example, when analyzing the transmission of the signal
in the engine system it is more convenient to use not the structural dia-
gram, but a graph.

The set of vertices and lines is called a graph. Each line corresponds to
two vertices -~ the beginning and end of the line. The transfer functions
can be compared to the vertex and line.

The basic properties of the graphs of the signal transmission are as
follows. The vertex noted on the graph by a point corresponds to some
variable (signal) of the investigated system. The line of the graph
depicted by the line with an arrow indicating the direction of transmission
of the signal, has a vertex — the beginning (the input variable) and a
vertex ~- the end (the output variable). The output variable of the line
is obtained as a result of conversion of the input variable by the
corresponding operator. If several lines approach one vertex, then the
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value corresponding to this vertex is obtained by algebraic summation of
the output values of these lines.

A direct comparison exists between the structural diagram and signal
transmission graph: a rectangle (element) of the structural diagram
corresponds to a line, and a signal transmission line corresponds to a
vertex on the graph.

In Fig 2.7, the diagram and the graph of the transmission of the signal of

. the pressure in the tank to the thrust chamber are depicted simultaneously
for comparison.

The graph conversion rules are similar to the structural diagram conversion
rule (see Fig 2.8).

X3
—/'&
Nians X Vo, | e TopS Vs
ps X2 K

Figure 2.7. Structural diagram and its graph

2.2.2. Method of Determinants

The method of determinants is based on the known rules for the solution of
a system of linear algebraic equations. The system of equations of the
engine is written so that in the lefthand side will be terms with unknown

parameters, and in the righthand side, terms only with the input signals
_ and disturbances

(ay,'yjayﬂ):(bv‘-. i3} (2.12)
Then the transfer function Wij. is defined as follows:
i
By
Wll/xl(s)=‘rl ’ (2.13)
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v

Graph conversion rule

where 4 is the principal determinant of the system made up of the
coefficients on 8y; Ay-x. is the auxiliary determinant A in which the
i

column of coefficients on yi is replaced by the column of coefficients
on x4 from the righthand side of the system of equations.

As an example let us determine W

written in the form

pk’Ptank, X

from the system 2.1 which is

() =W - o (5)Bmtg(5)— W, i (8)2m, (s)=0;
W’;'ok' Py (S) ¢ (S) + &My (S) = W'"'ox' pb.oxapd.ux (S) - W,,',OK' eoKaEOK (S):

w.

The principal determinant of the system

Mogr Py

w.

The auxiliary determinant

M Py

. -\
P Moy ’

1
0
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0 —'pr. o —WP.(- a
By 2606 W g pox 1 0
0 0 |

The transfer function of the engine

A
P P

WFK' po.ou(s)= A

2.2.3. Matrix Method

The engine is a multiloop (multidimensional) system containing an arbitrary
number n of output variables P, py, K... and % input effects (Pgapk> &1
and so on). The relation between the output variables and the input effect
can be described by n% transfer functions

{
y,‘=2m“(s)x;. (2.14)
i=1 B

where y are the output variables; xj are the input effects; &4 1s the
transfer function of thec closed system determining the dependence of the
k-th output variable yy on the x; effect. It is convenient to represent
the system of equations (2.14) in vector form:

Yy=0(X, (2.15)
where
p [}
o
Y=={| pll is the column matrix (n-dimensional vector) of the output
t : variables;
Ya
Ps:
Xe=ff & lis the column matrix (f-dimensional vector) of
" . i the effects
X; “
Dyis)  Dp(s) . Oy(s) is a matrix of the type of nX&
D (s)= Dy(s) Pnls) -+ Qul |l transfer functions ¢y of the
"""" L closed system,
‘Dnl (S) (Dn‘l(s) mnl s
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The matrix transfer function of the closed system ¢(s) is defined by
formulas analogous to the formulas presented above or with respect to
structural diagram except for the difference that instead of the transfer
funct fons the matrices are used in the given case.

In particular, analogously to formula (2.8) for the one-dimensional
system

@ (S) = |Em 'l" w (s)]‘l “Iy.x (S),

(2.16)
W) Wils) ... W (s)
where W (s)= Woi(s) Wy(s) ... Wy(s)
wnl (S) ‘Vn2 (S) e wnn (S)

The matrix is of the type of nXn transfer function Wiki- Wy x(s) is the
matrix transfer function of the open system. ’

wynln(s) w&hlc(‘s) e Wlll"‘(s)

W, . (5)= Wy (8) Wia(s) ... wh‘[ (s)

wH,,In(s) wu,,r- (s) ... wﬂ..t‘ (s)

W (s) is the matrix of the type of nX? transfer functions of the unit;
YaX X . . .

E"1s a unit matrix of the type of nXn (the elements of its principal
diagonal are equal to one, and the rest are equal to zero); [E+w(s)]"'l is
the Inverse matrix.

2.3. Frequency Characteristics of the Engine

For analysis of the stability and the reaction of the engine to the input
disturbances, complex transfer functions or phase-amplitude frequency
" characteristics are used.

The phase-amplitude characteristics are obtained from the operator transfer
functions by substitution in place of s=jw, where j=Y-1, and w is the
angular frequency

W (jo)=W ($)smjo== P (6) -+ JQ (w)= W (ju)] eiFts), -

where P(w) is the real part of the phase-amplitude characteristic;
Q(w) is the imaginary part ’w(f“’)l=1/752—(“T‘FW,

— Q) _ .
¢ (w)=arctg P phase,
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Thus, for example, for the engine with a pressurized f[eed system

eI oUW, o (o)

Mo Pe Px Mok

L+ Wy (jo)e e

Wp, P6.ox (Jo)=

Let us substitute the expressions for the transfer functions in the last
equation, setting rnp=0 (the consideration of Trp is presented in subse-
quent jterig)

Jbyw - by
a3 (JoP + ax(Jo) + a1 (Jo) + a5 ' (2.18)

w,px' Pg.0x (jw)::

where
bl == TurK”'.
bo:K""ox' Fé.ox Py ;"ox:
@y=TT T s
aQ:TKTuox'*‘TuTur'%'T ur
=T+ Tan (1 +K, K, 5 )t Tus (1 K gt e 5
ay=14+K,
P (o)== e ) —a0),
(29— @30?)? + (a,w3 — au)?

Q(w)= (b1 (@9 — @20?)! + by (2,03 — ay0)
(ag — apw?)? + (awd — ayu)?

okt P6.ox Pt Mo’

T

MLK

Varying the frequency w from 0 to =, let us construct W(jw) in the plane
of the compiex variables.

Fig 2.9 shows the phase-amplitude characteristic W in the engine

PkPtank
with a pressurized feed system.

Figures 2.10 and 2.1l show the amplitude characteristics of the engine with
a pump feed system without afterburning of the generator gas.

The phase-amplitude characteristics make it possible to establish the
relation between the units and their role in the dynamic processes.

The interrelation of the phase-amplitude characteristic of the units in the
engine is determined urder other equal conditions by the location of the
upit with respect to the turbine-pump assembly.

On variation of the hydraulic drag of the gas generator lines, the ampli-
tude of the pressure oscillations in the gas generator (the gas generator
is located before the TNA) varies insignificantly, in practice in the
entire frequency range, that is, there is a wide frequency transmission
band. The amplitude of the oscillations of the parameters of the units
located after the TNA depends only on the frequency. With an increase in
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frequency, the amplitude of the oscillation decreases. This is explained
by the fact that the turbine-pump assembly has filtering properties and
does not transmit disturbances with high frequencies.

U(w)
w=220[
.".
Q(w)
| "
-l62 J0 0c 04 w=006
1N ' P(w)
208 ‘"4" /
52 XX
wa\ cw =20
l”l‘ w=40
Figure 2.9. Phase-amplitude Figure 2,10. Phase-amplitude
characteristic of the engine with characteristic of an engine without
pressurized feed system afterburning of the generator gas:
1—-w o II=-W o Il —W 0
K on P Er re on
A

.
Pop by

On variation of the hydraulic drag of the thrust chamber lines (see Fig 2.11)
the turbine-pump assembly has no significant effect on the frequency
characteristics of the parameters although a natural decrease in amplitude
of the pressure fluctuations in the gas chamber with an increase in fre-
quency is observed.

The phase-amplitude characteristics indicate that the variation of the
hydraulic drag coefficient of the fuel line for the combustible component
has the strongest effect on the engine parameters. In this case, the
largest static boost factors are obtained W(0)=K. Therefore it is
cxpedicnt to install the regulating element for adjusting the operating
conditions in the fuel line for the combustible component.

In Fig 2.12 we see the phase-amplitude characteristics of the engine with
afterburning of the generator gas which differ significantly from the
phase-amplitude characteristics of the engine without afterburning. 1In
engines with afterburning of the generator gas, the gas generator and
the turbine are connected to the chamber by the gas line. This explains
the absence of a clearly expressed filtering property of the turbine-
pump assembly. Between the chamber and the gas generator there is no
difference in frequency characteristics. The pass bands of the frequen-
cies are approximately the same, The disturbances occurring in the gas
generator are in practice transmitted to the thrust chamber without
change.
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Figure 2.11, Phase-amplitude Figure 2.12, Phase-amplitude
characteristic of the engine with- characteristic of the engine with
out afterburning of the generator afterburning of the generator gas:
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2.4, Stability

2.4.1. General Stability Characteristic

Various disturbances of an external and internal nature influence the
engine. In the case of unfavorable combinations of dynamic properties of
the Lnits these disturbances can lead to unstable operating conditions
of the engine, The process of the development and the operation and
maintenance of the engines indicates that the causes of loss of stability
are varied, but all of them are connected with various types of oscilla-
tory processes in the engine systems.

The unstable operating conditions are characterized by fluctuations of the
parameters of the operating process with different amplitude and frequency
and they are the basic causes of the occurrence of engine emergencies.

The oscillations of the parameters of the operating process cause vibra-
tions of the structural elements, which leads to breakage of the parts
and units, separation of the lines, rupture of the shells and other
faflures. The resonance vibrations are especially dangercus, which occur
on coincidence of the natural frequencies of the mechanical vibrations of
the structural elements with the oscillation frequency of the parameters
of the operating process.
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The oscillations of the engine parameters are classified by various
attributes. The classification of the oscillations by frequency has
become widespread.

With respect to frequency range, the vibrations are provisionally broken
down into three groups {10]:

The low-frequency, all-engine vibrations with a frequency of w=1-50 hertz;

The low-frequency vibrations in the individual units with a frequency
w=50-300 hertz;

The high-frequency vibrations in the chamber or the gas generator of the
engine with a frequency above 300 hertz.

The high-frequency vibrations are the acoustic vibrations of longitudinal
and transverse type. For investigation of them the nonlinear dynamics
must be used considering the acoustic effects in the gas reservoirs and
channels, the complex physical~chemical processes of combustion and other
factors.

In view of the fact that in the given book the linear dynamic model is
used which in general is not acceptable for high-frequency vibrations,
hereafter the problems of stability will be investigated as applied to the
low-frequency vibrations.

The low-frequency vibrations of the first type (the all-engine type) are
caused by various things, the main ones of which are cavitation in the
pumps, vibrations in the regulation and control system circuits and vibra-~
tions in the system made up of the rocket hull and engine,

In modern engines, volute centrifugal pumps are used to feed the fuel
components from the tanks to the chamber and the gas generator. In the
voluterentrifugal pump, the minimum pressure region is the flow section

of the screw; therefore, as experience has shown, cavitatio. always exists
in practice in the screws, which causes vibration in the system,

The vibrations occur because the cavitation cavity enlarges the space
between the blades of the screw and, in turn, causes a decrease in pressure
in the entrance section of the screw, On the other hand, the magnitude

of the cavitation cavity is determined by the speed of the liquid which
depends on the pressure,

Thus, positive feedback is created which leads to the occurrence of wibra-
tions.

The results of the theoretical and experimental studies have demonstrated
that the frequency and amplitude cavitation vibrations depend on the
pump impeller rpm and the pressure at the entrance to the pump, Fig 2.13.
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The rocket hull is an elastic system in which under defined conditions
vibrations can occur [17, 31]. The vibrations of the rocket hull cause
vibrations of the liquid in the tank, the lines and the entrance to the
pumps, and the latter, pressure fluctuations in the chamber (thrust).

The thrust fluctuations in turn cause vibrations of the elastic hull.

Thus, feedback exists between the hull vibrations and the engine thrust.
Both the rocket hull and the liquid in the line have a natural vibration
Lrequency < The natural [requency of vibration of the rocket hull varies
with time.

v (1) ] Fr
-

. / pd) 4n 1%
/ 10 ""’/

10 //
/

0, t
TR Ty ””'r'%”)" 0 0,3 )6
Figure 2.13. Frequency of the Figure 2.14. Frequency of the
cavitation vibrations as a func- natural vibrations of the hull as
tion of the pump impeller rpm and a function of time
the pressure at the entrance to
the pump:
1 -- n=13000 rpm; 2 -— n=1800 rpm
Key:

1. f, hertz
2. Pinps MPa

Fig 2.14 shows the relative natural frequency of the vibrations of the
rocket hull as a function of the relative time. In the case of coinci-
dence of the natural frequency of the rocket hull vibrations with natural
frequency of the liquid vibration in the line, resonance occurs which
causes an increase in the amplitude of the pressure fluctuations in front
of the pumps, the thrust and the longitudinal vibrations of the hull.

The vibrations can occur in the engine even in the absence of an external
effect (cavitation, vibrations of the elastic hull). Such vibrations are
formed in the chamber and the gas generator of the engine as a result of
the interaction of the processes of mixture formation and combustion with
the pressure fluctuations in the gas reservoir.

In any autooscillatory system the following elements exist: the oscilla-
tory element, the energy source and feedback.
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In order for vibrations to occur, energy is required which is fed by the
feedback to the oscillatory element in the required phase; this compensates
for the loss of energy of the vibrations by dissipation.

Depending on the type of feedback, two mechanisms of the occurrence of
vibrations can exist.

The first mechanism consists in the fact that the energy required for the
vibrations is released in the fuel combustion process. The feedback pro-
ducing the energy makeup is realized as a result of the dependence on the
amount of incoming fuel to the chamber on the gas pressure in the chamber

[20]. i
Apx
t
_ A
N t
Am,
t
Tnp
Am
_—
|~ t

&

Figure 2.15. Variation of the thrust chamber parameters in
the presence of low-frequency vibrations

The fuel combustion process in the combustion chamber is characterized by
a burn-up curve which is determined by the complex burn-up processes
including a series of physical-chemical transformations: atomizing, feed-
ing and evaporation, diffusion and mixing of the vapors, thermochemical
reactions, and so on. It is quite difficult to describe all of these pro-—
cesses analytically.

Accordingly, for analysis of the low-frequency vibrations we replace the
actual burn-up curve with a step function (see Fig 1.1), that is, it is
considered that every portion of liquid fuel coming into the chamber does
not burn for the time Toopy but then is instantaneously converted to the
combustion products.

Using this approximation of the combustion process the problem is simpli-
fied inasmuch as the only value characterizing the combustion process in
time is TeqwWhich is called the conversion time or the delay time.
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For low-frequency vibrations the pressure in the entire volume of the
chamber at each point in time is in practice identical, for the length
of the chamber and the acoustic wave length.

The model of the occurrence of the low-frequency vibrations is represented
schematically as follows.

In the steady-state mode the mass flow rates of the working medium in all
cross sections of the combustion chamber are identical. Let at any point
in time t]1 a random increase in pressure occur in the chamber by the
amount Ap, (Fig 2.15), which corresponds to the creation of excess gas

in the chamber by comparison with the gas in the steady-state regime.

This causes an increase in the gas flow rate through the nozzle ﬁk and

a reduction in the inflow of fuel into the chamber ﬁT as a result of a
decrease in the pressure gradient in the injectors.

In view of the fact that the liquid fuel combustion takes place with a
delay tconys the decrease in the arrival of fuel causes the corresponding
decrease in gas formation f not immediately, but after the time T
At the given time combustion of the fuel coming into the chamber
earlier by Tconv takes place until the pressure has risen. At the same
time the gas flow rate increases by the amount Aty , which with invariant
gas formation (Am=0) leads to a pressure drop in the chamber which
assumes the steady-state value.

onv

At this time the inflow and the consumption of the fuel becomes equal,
and burn-up of the portion of the fuel which come into the chamber with
increased pressure in it takes place., Therefore the mass inflow of gas
decreases (by comparison with the steady-state value), which causes .

a further decvease in the pressure. In turn, the decrease in Pk below
the steady-state value leads to the corresponding reduction in the gas
flow rate ﬁk and an increase in the flow of fuel through the jets my.
Accordingly, py, reaching some minimum value, again begins to increase.
The further sequence of the process will be repeated.

Consequently, in the presence of a delay in the gas formation Teonv
leads to the appearance of positive feedback between the variation of p
and the gas formation on combustion of the fuel. The indicated feedback
causes maintenance of the oscillatory process in the chamber with random
pressure variation.

The second mechanism of low-frequency vibrations is explained by the
presence of the feedback between the pressure in the chamber and the
conversion time.

L. Krokko proposed the relation

1,'=_.A_
(T3 .p;" (2.19)
Key: 1. conv
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where v is the interaction coefficient; A is a constant defined by the
properties of the fuel and equality of the mix formation. For the existence
of a given relatior the vibrations in the chamber can also occur in the
absence of feedback between the pressure and the inflow of fuel, that is,
with constant flow rate of the fuel component as a result of the effect of
fluctuations of the physical parameters (pk and T) on the combustion rate.

Usually v>0; therefore an increase in px leads to a decrease in Teonvs
that is, stabilization of the system,

2.4,2. Methods of Stability Analysis

Stability is the property of an engine to return to the initial steady-
state regime or a regime close to it after any departure from it as a
result of any disturbance.

Fig 2.16 shows the standard curves for the transient processes in an
unstable system (Fig 2.16, a) and a stable system (Fig 2.16, b).

If the system is unstable, then a disturbance as small as one might like in
it is sufficient for the diverging process of departure from the initial
state to begin.

In a stable system, the transient process caused by any disturbance damps
with time, and the system again returns to the steady-state condition.
Under actual conditions an engine operates under continuously changing
effect, for example, as a result of the effect of the speed controls and
emptying of the tanks when the steady-state conditions are in general
absent.

Considering the indicated operating conditions it is possible to present

the following, more general definition of engine stability. An engine.is
stable if the output variable remains limited under the conditions of the
effect on it of disturbances of limited magnitude.

For analysis of the stability, the transfer functions of the engine are
used.

The output parameter of the engine is related to any input parameter by the
function

y==a(s)-x.

(2.20)
The transfer function ¢(s) is reduced to a fraction of the type
_ D)
Q(S)—l”(s), (2.21)

where M(s) is an n-degree polynomial. Substituting (2.21) in (2.20), we

obtain M($)y=D(s)x. (2.22)
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The solution of this linear nonuniform equation in the general case has the
form

Y=y, () Fy. ),
1) )-{-y((z; (2.23)

Key: 1. partial; 2. transient

where yi,:1i21(t) is the partial solution of the nonuniform equation with
righthand side cescribing the forced engine regime; ytransient(t) is the
general solution of the uniform equation M(s)y=0 describing the transient
process caused by the disturbance x.

b) L

Figure 2.15, Transient process curves:
a -- stable system; b -- unstable system

From the definition of stability it follows that a system is stable if the
transient process yirapsient(t) is damping, that is, for t+* yiransient (t)-0.

As is known, the solution to the uniform differential equation is

n . 2.24
b= Cet, (2243

iml
where C, is the integration constant determined by the initial conditions
and the disturbances; sj are the roots of the characteristic equation
M(s)=0.

Thus, the transient process y ra ient(t) is the sum of the components,
the number of which is equal E5*PRE Rimber of roots sj of the characteris-
tic equation M(s). In the general case the roots of the characteristic
equation s are complex and conjugate

Sl|1+1=al i jpl‘

where j=/—~1.

9

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000200090053-2



APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000200090053-2

FOR OFFICIAL USE ONLY

Each pair of such roots gives a component of the transient process in
equation (2.24)

Y (()=Ce" (sin 3¢ +g,).

This time is a sine curve with amplitude that varies in time exponentially,

If 0©;<0, then the component of the transient process will damp, and for
@3>0 there are diverging oscillations.

If «j=0, then nondamping oscillations will occur. In the special case
where Bi=0 (the real root) the component will damp when o;<0 or it
increases for a;>0.

Thus, in the general case the tranmsient process in the system is made up of
oscillatory and aperiodic components. The general condition of the damping
of all of the components, that is, the condition of stability of the sys-—
tem is negativeness of the real parts of all the roots of the characteris-—
tic equation, that is, all of the omes (and the zeros in the denominator)
of the transfer function of the closed system,

If at least one root has a positive real part, it gives the diverging
component of the transient process, and the system will be unstable. The
presence of a pair of purely imaginary roots $i, {41=%iB; will give a
harmonic nondamping component of the transient process —~ the system will
be at the stability limit.

The determination of the roots of the characteristic equation, especially
for high-order systems is a complex process. Therefore in control theory
indirect attributes have been developed (stability criteria), which permit
determination of the stability without determining the roots of the
characteristic equation. There are algebraic and frequency stability cri-
teria.

The algebraic criteria which determine the stability conditions from the
ratios of the coefficients of the characteristic equation, for high-order
systems containing transcendental terms with factors of the type eSt
(characteristic for engines) are not used.

The frequency criteria of Mikhaylov and Nyquist have become widespread.
Omitting the proofs of these criteria which can be found in the literature
on automatic control, let us only describe their practical use.

Mikhaylov Criterion

The stability of a system according to the Mikhaylov ecriterion is

determined by the behavior of the hodograph of the polynomial M(s) -- the
denominator of the transfer function of the closed system.
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The imaginary variable jw is substituted in place of s in the polynomial
M(s).

As a result, we obtain the complex function |
M(jo)=P 5 (0)+jQu (),

where Py(w) is the real part obtained from the terms of M(jw) containing

even powers of s; Qu(jw) is the imaginary part obtained from the terms of
M(jw) with odd powers of s.

Varying the frequency w from 0 to =, the hodograph of M(w) in the plane

of the complex variables is constructed, and the crosshatching is done

on the right side of the hodograph with encirclement of it on variation

of the frequency from 0 to » (Fig 2.17). If the origin of the coordinates
falls in the crosshatched region, the system is unstable. If M(w)=0,

that is, for any frequency it passes through the origin of the
coordinates, the system is at the stability limit. If the hodograph M(w)
does not encompass the origin of the coordinates, then the system is
stabie.

I N{w)

I Ké’g
arw L ‘ w=0

kk<~léé))))'Fn» ;
! ~— . |
{: Q(w) . i
[y 2 b / Aw) we) { '
tai =0 ' . .
o e
S w w=0
w” 7 1 1
w=0
Figure 2,17. Illustration of the Figure 2.18, Illustration of the
Mikhaylov criterion: Nyquist criterion:
1 —- stable system; 2 -- stability 1 -- stable system; 2 ~— stability
limit; 3 -- unstable system boundary; 3 -- unstable system

Nyquist Criterion

The Nyquist stability criterion makes it possible to determine the stability

of the closed system by the phase-amplitude frequency characteristic W(iw)
of the open system,

The hodograph W(jw)=Pw(w)+jQw(w) is constructed in the plane of the complex
variables (Fig 2.18). If the phase-amplitude characteristic of the open
system W(jw) on variation of the frequency from 0 to « does not encompass
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the point (-1, 0) (this point does not fall into the crosshatched region),
then the system is stable. If the phase-amplitude characteristic passes
(-1, 0), then the system is at the stability limit.

The dynamic model of the engine even considering the delay is correct only
for a natural frequency band. The stability of the engine containing any
delays for limited frequency range can be characterized by the criterion
proposed in reference [8].

In the complex plane a region is isolated which is bounded by the frequen-
cies w=0 and w=0 (Fig 2.19)., The system is stable if all of the roots of
the characteristic equation are located in the crosshatched region.

In order to determine the stability, the hodograph M(s) is constructed;
instead of the operator s the complex number s=ct+jw is substituted. The
parameter s varies as follows: a) c=0, w varies from 0 to 2, that is,
along the imaginary axis; b) for w=Q c varies from 0 to o, that is,
along the straight line parallel to the c axis.

i o =
lm "P(~r ) -
A
720 -
NN /]
N ’ 540
f- P VZETAN
/N N
\ 180 ~—
AN -— AN/
{ ¢ 0 "8y g8 - 2NJ ¢ ¢©
Figure 2.19. Illustration of the Figure 2.20. Tllustration of the
stability criterion application of the stability cri-
‘ terion

The stability conditions are as follows:
Aarg M(jo)locwce=—arg M(c F /2)oce<w

M(e)#£0 (2.25)
M(c4j2) £0 } for 0 e oo
M(jo) #0 for 0o,

Thus, for a stable system it is necessary that the total angle of rotation
of the vector M(ct+jw) with variation of s along the straight line

Oswgf for c=0 and O<c<» for w=Q is equal to zero, and the hodograph curve
does not pass through the origin of the coordinates.

In Fig 2.20 we have an iilustration of the application of the criterion for
the system with several delays. The angle of rotation of the vector M(s)
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is plotted on the y-axis; the real and imaginary parts of the complex
variable s represented in dimensionless form are plotted on the x-axis:

s=c-} jo,

- ¢
where =L o=l
Q Q

Curve A corresponds to a stable system, and B, an unstable system,

The investigated stability curves determine the fact of stability of a

- specific system for which all of the parameters are given. The most
interesting problem is analysis of the effect of the system parameters on
its stability or determination of the required variations of the
characteristics of the individual elements in order to make the system
stable,

The indicated problem is solved by constructing the regions of stability,
that is, determining the combinations of parameters for which the system
is at the stability limit. The construction of the regions of stability
using the Mikhaylov criterion is called the D-breakdown method.

By the Mikhaylov criterion, the system is at the stability limit if the
hodograph M(w)=Py(w)+jQy(w) on variation of w from 0 to = passes through
the origin of the coordinates. Let two parameters A, B enter into M(w)
linearly, in the plane of which the stability limit is constructed. Then
according to the Mikhaylov criterion the equations of the stability limit
in the space of the parameters A and B have the form

PM ((I), A, B)=0| (2.26)
Qu (v, A, B)=0.

8
Figure 2.21. Stability limits
Varying w from 0 to ~, from equations (2.26), the values of A and B at
the stability limit are determined (see Fig 2.21). Each point of the
curve A=F(B) (D-breakdown) corresponds to a define frequency w. Conse-
quently, by the D-breakdown curves it is possible to establish not only

the fact of loss of stability, but also to determine the frequency of the
vibrations that occur.
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The determination of the kegion of stability is realized as follows.

The determinant

0Py O0Pp
A a8
a=| (2.27)
0Qa  9Qn
oa 0B

is compiled. If the determinant A>0, then fhe curve for movement along
it from w=0 to w*» crosshatched on the leit; 1f A<0, to the right. The
region of stability is the region free of crosshatching.

In the case of applying the Nyquist criterion, the equation of the break-
down curve has the form .
Py (0, A, B)=—1;

(2.28)
Qw (, A, B)=0.

Equation (2.28) is equivalent to the condition 2.26 of the Mikhaylov
criterion,

2.4.3. Region of Stability of the Combustion Chamber

The linear dynamics of the thrust chamber with a constant ratio of the
fuel components is described by the equation

43 :
T, T“PL_HpK_am,, (¢ —7,p)=0. (2.29)

The arrival of fuel in the chamber is determined by the pressure gradient
on the jets

'ﬁrﬁa V’pap—px-

where a is the coefficient defined by the hydraulic characteristics of the
head and the density of the components. Since the oscillations with
respect to the steady-state regime are being considered, the function can
be represented in the form of the series

m,=a[1+0,5(py—p)}

After linearization of the last equation ‘considering the delay effect we

obtain )
. 3Pk (¢ ~— Tny)-
3, (f—Typ)= — pK(A_ t"v)_ ' (2.30)

Po

where - 2 (py— p.
AFy= (pq,_ 7 )
Pr
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Let us substitute expression 2.30 in equation 2.29 and let us proceed to
the operator form; finally we obtain

(st 14+ e g, ().
hY P
The characteristic equation

M =T+ et 1=, (2.31)

This equation is transcendental with respect to the operator s and has a
finite number of roots. The defining stability parameters are Tks Op

and Toopy, the values of which determine the location of the roots of the
characteristic equation, that is, the stability of the thrust chamber.,

If in place of the operator s we substitute the complex frequency jw in
2,31, we obtain the equation of the stability limit

1 — Jur _
T\ oo —— e L 1 =0, 2.
Tt (2.32)
Let us represent the exponential function in the form of the Euler function
e~J®Tconv=cos WTeony™J Sin WTeopy and, finally, we obtain

Apy+-c0s oty -/ (T, Apye — sinwt,,)=0
or P(0)=A4py+cos ut,, =0;

Q (@)=T,Apy0— sin oty =0, (2.33)

By the equations of 2.33, it is possible to construct the stability limit
in the prlane of any two parameters: AP¢‘Tconv5 Ap,-T, 3 Tx~Tconve
liowever, the time constant of the chamber Tj numer cakly equal to the
time the gases stay in the chamber in practice does not depend on the
operating conditions, but is determined by the volume of the chamber and
the fitness of the field RTy. Therefore the time constant is taken to

be constant, Ty=const, and we construct the stability limit in the plane
of the parameters Ap¢'Tconv‘

In order to facilitate the calculations in equations 2.33 let us separate
the parameters of interest to us and represent them in the form

1 .
Vigrie '

Ty == % (hm —arctg oT,),

Apy= (2.34)

where k=0, 1, 2, 3, 4,

Each value of k corresponds to its own stability limit., Let us limit our-
selves to the investigation of case k=1, k=0 is excluded, for when k=0
negative valuses of Teony 2re obtained, which contradicts reality.
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Figure 2.22, Stability limit of the thrust chamber

Thus, in the plane Ap, -t » being given w from 0 to ®, the stability

. (SpmY>. ,
limit is constructed whic splits the plane into two parts. In one part
the combinations of Ap¢ and 1, insure a stable process, and in the
other part, an unstahle process,

In Fig 2.22 we have the stability limits qu)-rconv for different values
of Tk.

In order to determine the location of the stability and instability regions
it is possible to use the crosshatching method which is discussed in the
preceding item )

i:]; _dﬂ_—__wsinqn;np;
ap¢ d'ﬁnp :

ﬂ-:rxm; .dQ = —w COSwT,,.’

dAapy Otng

Let us solve the determinant

A=|! —wsinoer,

= =wCosuT,, [T wtgwr, —1].
wa ""(DCOS(DT:HP np[ X g np ]

4>0 on variation of the frequency from zero to infinity. Consequently,
by the crosshatching rule the region of stability is located to the right
of the stability limit curves.

This is easy to see without using the crosshatching rule. Since the stabil-
ity condition is negativeness of the real parts of the roots of the
characteristic equation, let us take a point on the axis Ap%* under the

stability limit curve for which Teonv=0, and from equation (2.31) we
determine the root 14 4pg
- TKAp¢
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Since dpy>0 and T>0, the root s is negative and Ap¢* belongs to the
region of stable operation,

A defined role in the development of the low-frequency oscillations is
played by the pressure gradient on the jets, the conversion time and the
time constant of the chamber. The pressure gradient on the jets Apg
determines the relation between the pressure fluctuations in the chamber
and the fluctuations of the flow rate. Increasing Apy stabilizes the
combustion process, for the indicated relation decreases.

With an increase in Ap¢ the process of mixture formation improves, and
the conversion time T,,,, decreases, which in turn promotes stabilization
of the combustion process.

From Fig 2.22 it follows that for Apy>1 the engine is absolutely stable
for any values of T v’ The condition of absolute stability is written
as follows: Ap¢>pk73.

A decrease in the conversion time promotes an increase in stability. Con-
sequently, it is desirable to use all of the factors leading to a

decrease in conversion time. In particular, this can be achieved by finer
atomizing of the fuel component, uniform distribution of the component
ratio with respect to chamber cross section, the application of more
active fuel components in physical~chemical respects., The latter confirms
the known fact from the practice of engine building. The self-igniting
fuels have shorter conversion time, and the thrust chambers operating on
such fuels are less inclined toward che occurrence of low-frequency vibra-—
- tions.

The time constant of the chamber numerically determined by the time the
gas stays in the chamber also influences the stability. Increasing Tk

(an increase in the chamber volume) stabilizes the combustion process,
which is explained by the fact that in large volumes the time required for
the response reaction of the pressure to a change in flow rate turns out
to be too large to observe the phase relations required for development of
vibrations. 1In addition, for the same fluctuations of the flow rate of
the fuel components as the volume increases (the time constant increases)
the pressure oscillation amplitude decreases which, in turn, stabilizes
the combustion process.

As was pointed out above, when considering the Krokko interaction
(tconv=f(pk)) the chamber can lose stability even with constant component
flow rate, Let us consider the effect of the interaction index v on the
stability limit of the chamber,

Considering the interaction index, the equation of the chamber is
presented in the form

A

Tx ;:K— ([—V)apx+(v +"“1,;;) apu(t_rﬂp)=o' (2.35)
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Proceeding to the operator notation, we obtain the characteristic equation

O N A

Making the substitution s=juw as usual and equating the real and imaginary
parts to zero, we obtain two equations for the comstruction of the

stability limit (=")dpy 1 .
vapy+1 ] 1+ (_ﬂ“’_)2 '
J—v (2.36)
. T,.w
tg wy,,= 1_:\1

The equations 2.36 coincide with equations 2.34 for v=0,

103
'E’nFID [4
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figure 2.23. Stability limit of the thrust chamber considering
the interaction index:
I == v=0; 2 -- v=0.2; 3 == v=0,5; 4 —— v=10

Fig 2.23 shows the stability limits constructed by equations 2.36 for
different v and constant Tk=5°10'3 sec, For v<0,5 the nature of the
- stability limits is similar to the curves for the stability limits without
considering the interaction coefficient. For small values of v the curves
. ) have the asymptote Ap¢=1; with an increase in v the region of stability
decreases.

For v>0,5 there is no region of absolute stability. This means that
v>0,5 for any values of Ap,, including for Ap¢>l, the occurrence of
oscillatory conditions is possible.

2,24, Limits of Stability of the Engine Systems

Let us consider the system made up of the "chamber and fuel lines" or

"chamber and tanks" for an engine with pressurized feed system, For this
system the structural diagram (Fig 2.6), the transfer function of the
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open system (2.8) and the closed system (2.12) are constructed. The
transfer function of the open system without considering delay Tqopy=0
has the form . K. K.
W ()= Pt Mok Mok P 4 P My Mpy Py .

P TS D Taas + 1) 05 + D Tors +1) (2.37)

The boost factor of the open system

KP=W;_C (S)I,_0= pr .

mOl\'

K""ou' Pk + K"K”"rK""

In order to consider the effect of the time constants of the lines let
us introduce the reduced time constant of the fuel lines

o B (2.38)

T= ?l,,‘ (K g i S "*TZi;r Kpn K, "KTE“’z“?' (2.39)
Key: 1. line, combustible compénent of the fuel; 2., line, oxidant
The following relations are obvious

Tk LT <Ts Tyye <T LT ygs T=T =Ty
After substitution of (2.38) and (2.39) in (2.37), we obtain.

Kp(Ts +1) (2.40)

W (s)=(7‘xs + 1) (Tuxs + DTues + 1)

The openisystem is stable, for its characteristic equation (the denominator
of the transfer function) has negative real roots.

a(w)
, .
-1/ /\ w=0
]
! & , P
PJ \.\{?\ r‘/fu) /
) \\ N N L //
73 \ . ,//
N wZnp
S — -

Figure 2.24, Hodograph of the engine W(juw)
The stability of the system can be defined by the Nyquist criterion. For

this purpose in equations 2,40 it is necessary to make the substitution
s=jw, and as a result we obtain the equation of the phase~amplitude

characteristic Wp.e (Jo)= Py (@) + jQw: (w).
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In Fig 2.24 we have the hodograph w'p_c(jw) for variation of the frequency
from 0 to «. The hodograph W'(jw) does not encompass the point (-1, 0);
therefore the system is stable. This derivation is confirmed by the
frequency characteristic shown in Fig 2.9-2,12,

The phase instability margin is defined from Fig 2.24 and is

P=1—|gp (0, )}, (2.41)
where w, 1s the frequency for which |W.(ju)=1;
qx'p(w*) is the phase W,',,L.(jw):

. Qw. (v)
=1arctg ———.

?p (w4 )=arclg P (@)

Considering the conversion time T

#0 the transfer function of the open
system has the form

conv

_ ' Wy (jo) =Wy, (Juw) e/,
or

W, (fw)==|vff§.c (Jo)] efota), (2.42)

where ¢ () =pp (0) — w7,

From equation (2.42) we have the effect of 1

on the phase-amplitude
characteristic,

conv

The presence of Tgony deforms the phase-amplitude characteristic W'p_c.
For each fixed frequency w the vector W'p.c(jw) is rotated by the

angle WTaopye AS a result of the deformation the hodograph of the vector
Wp(Gw) (Fig 2.24) turns .out to be closer to the point (-1, 0) defined by

the stability limit than the vector W'p.c(jw), that is, the phase stability
reserve decreases :

P = :P; — @, Ty

(2.43)
For t;p=r,,p_'r'y=l,’ the engine is at the stability limit.
a o«
Key: 1. stability limit -
1 .
Since ¢4 closure and 4 are defined by the engine characteristics
(Kp. Tv. Twoww Tur) , by the equation Top= 2 corresponding to the

Oy
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stability limit ($c10gyre=0) it is possible to determine the state of
the engine parameters, the defined regions of stable and unstable operations,

The equation of the stability limit
T. 73 ("))

np == ——

o (2.44)

For construction of the stability limits by equation 2.44 it is necessary
to determine the presence of the analytical function of the type
¢'closure=fl(Tis KP) and w*=f2('l‘i, KP)'

For simplification of the indicated functions let us set T=T1ine. ox °F
T=T1ine, combustible component of the fuelw The described equalities

are not always satisfied, but they have no effect on the correctness of
the qualitative conclusions.

Then
. - Kp
WP.C(S)—(TKS-F])(T‘(S'FI).'
where

- Tu=Tifor T=T\
TM =T ufor . T =Ty

In this case the phase-amplitude characteristic of the open system has the
form

Wi (jo)=|Wp (ju)| &'t = P (w) + jQ (v},

where
Kp(l _TKTM"’,) N
T (=TT me? ~ (Ty + T2 *
—Kp (T + Tw)o
Q(w)= , .
(1 — TxTmw?)? + (Tx + Ty )2 w?

.o K2
'W”‘(’"’)':‘/(l—mmwﬂ)z+(rx+mﬂwﬂ ' (2.45)

¢’ (w)=—knt-arctg (Tt Tule

y

TkTmw?2 —1 (2.46)

P (w)

where k=0.1, k=0 for wgw', k=1 for w>w'; w'=l/VTkTm.

The frequency characterizing the stability limit wy is determined from the
expression .
W (Jo)l=1.
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Equating equation (2.45) to one, we obtain

o= e VT Ta T (K- D= (T3 T3). (2.47)
TTumV2

From equation 2.47 it follows that for

o, =o' = ! . = TxtTu

R — K,= .
VTKTM b VTKTM

On the basis of equation (2.47) and ¢'(w)<0 we obtain

’ (] — (Tx +Twm)o, 2.48
¢’ (w)==(I @n+amg?};E:T. ( )

Thus, the equation of the stability limit 2.44 based on the relation 2.47
and 2.48 assumes the form

. 1-

Tp=— [(l—k)n-i—arctg (2.49)

(T +Tm)u, ] .
*

ToT pe? — 1

Let us construct the graph of the stability limit in the plane of the

parameters T, .~k  for fixed values of Ty and Ty (Fig 2.25). For
establishment o¥ tge region of stability it is necessary to check the
satisfaction of the condition Teonv<T conv for K,=const, Consequently,

the region of stability is located to the left and below the curves.
All of the stability limits are bounded by the value of Kp=l. For
Kp<l the engine is stable for any values of Teonv®

Substituting the expressions for K; in equation for Kp, we obtain

! K 41 . (2.50)
Kp 2(1 + K)( Pu.ol(z_zl ' Pu.r(i)])
Px ) Px
Key: 1. Chamber2. pump, ox; 3. pum , fuel

If set Ppump,‘ox=Ppump, fuel Ppump? then from (2.49) for Kp=1 we have the
condition of absolute stability ppump_pchamberJo'5pchamber’ which is
obtained when analyzing the intrachamber stability.

The location of the stability limit Teonv—Kp depends on the values of the
time constants of the thrust chamber and the lines. With an increase in
Tk and Ty the region of stability expands. This is explained by the fact

that the inertia of the lines in the chamber have a stabilizing influence
on the engine with respect to the low~frequency vibrations.
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Figure 2.25. Stability limits of the engine:
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2.4.5. Stability of the "Engine-Regulator" System

The introduction of a parameter regulation system for the operating process
into the engine deforms the limits of stability, and for unfavorable
combination of frequency characteristics of the regulator and the engine,
vibrations and unstable operating conditions can occur in the engine.

The stability limits of the engine together with the regulator can be
constructed using the above-enumerated methods, by the transfer functions
of the closed or open system, '

For engineering analysis the most convenient is the construction of the
stability limits using the frequency characteristics of the engine.

The equation of the relation of the adjusted parameter and the adjusting
effect has the form )

by =W,.d%, (2.51)
where 8y is the variation of the adjusted parameter, for example, 6py, 6K;
dxj is the variation of the adjusting effect, for example, the coefficient
of hydraulic drag of the line 3. ‘

The frequency transfer function is represented in the form
Wyox (Jo) =P, (@) +jQy (), (2.52)
by which the phase~amplitude characteristics are constructed for different

combinations of y and x presented in Figures 2.9-2.12. Controllable. chokes
with elastic elements are used as the engine regulators, the equation of

which has the form
€ : (TZs’-!—T_,s +1)88=K 3y,
(2.53)
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where T2 is the time constant which is determined by the mass and rigidity
of the moving parts; T1 is the time constant which characterizes the

damping properties of the regulator; is the boost factor of the regulator.
The phase-amplitude characteristic of the regulator is obtained on making
the substitution s=jw

(1 =T34 joT) 85, =K by, (2.54)
or 85, =W, (ju) by.

From equations 2.52 and 2.54 we obtain the structural diagram of the
engine-regulator system (Fig 2.26).

The transfer function of the closed system

W(je) Wy,x (Jo) (1 — w23 + juTy)
L+ W)Wy (fa) 1 =TG4+ juTy + Py (0) Ky + jQy(w) Ky

© (jo)=
(2.55)
The characteristic equation of the closed system

M(jo)=1 =T+ K, P, (w) + j (T 4 K,Q, (0))-

_ The stability boundary conditions according to the Mikhaylov criterimhas
the form )

P(w)=1—uT}+K\Py(2)=0;
Q(o)=0T1+KQy(0)=0.

(2.56)

It is possible to construct the stability limit in the plane of the
parameters: KP_T y or K. =T,, or T,=T,. The stability boundary in the
plane KP—T is of the greatest interest, for these parameters basically
determine %he accuracy of the operation of the regulation system,

From equations 2.56 the values of Kp and T; corresponding to the stability
limit are determined

1— T2
Py ()

_ (x—r.f,mz)
I=Fwe U

Ky=

(2.57)

Being given the frequency, from the graphs in Figures 2.9-2.12 we
determine the values of Py(m) and_Qy(w); the stability limit constructed
for the given Ty,
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Fig 2.27 shows the stability limit when installing the regulator Py in
the main for the combustible component or the oxidizing agent of the
engine gas generator without afterburning of the generator gas.

The region of stability is determined by the sign of the determinant
Py(w) O
Q@) w

A= =S Py () w,

For w-) and Py(w)»0, A>0 the line corresponding to the stability limit is
hatclured on the right, and for Py(m)<0, A<Q, it is hatchured on the left.

The relations for the stability limit 2.57 permit qualitative analysis of
the effect of the regulator parameters on the engine stability.

For a regulator with small mass of the moving parts (T2=0) the stability
limit is in the region K.p>0, T,>0 for Py(w)>0 and Qy(w)>0.

This is explained by the fact that for the excitation of the oscillation
it is necessary to amplify the signal on transmission of it through the
closed loop of the system and realize a 180° phase shift. For T5=0 the
regulator is described by the aperiodic element which creates a-phase
shift of no more than 90°.

Ser——1 3
w4
:

Figure 2.26. Diagram of the regula- Figure 2,27, Stability limits of
tion system the engine with regulator:
A -- regulator installed in the
oxidant line; B -- regulator
installed in the line for the
combustible component from the
gas generator

The mass of the regulator (the increase in T,y) greatly deforms the
stability limits if w2T22>1. For this frequency range the stability
region corresponds to Py(w)>0 and Qy(w)<0, for the regulator provides a
phase shift of more than 90°,
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Increasing the mass of the moving parts of the regulator (T2>0) has a
significant influence on the region of stability only for small values of

the regulator time constant.

From Fig 2,27 it follows that the region of stability is limited by the

boost factor of the regulator,

The admissible boost factor of the regulator installed in the gas generator
fuel line is appreciably less than in the regulator installed in the

oxidant line,

Consequently, in dynamic respects it is more efficient to

Install the regulator pp in the oxidant line of the gas generator.

The regulation system changes the structure of the engine and its dynamic

characteristics. This is explained by the fact that some of the couplings
between the units are broken in order to install the regulating elements,

and new couplings introduced vy the regulator arise,

The analysis of the effect of the regulators on the dynamic characteristics
of the engine can be made by the frequency characteristics considering the
disturbances introduced by operation of the regulating system., Such an
analysis is also performed and presented in reference {10].

LA VY

R

025

0 108 200 w,i/t

(69)]

Figure 2.28. Frequency-amplitude
characteristics of the engine
without afterburning of the
generator gas:
1 -- frequency-amplitude character-
istic of the engine without the
regulator; 2 —- frequency-amplitude
characteristic of the engine with
regulator K"; 3 -- frequency-ampli~
tude characteristic of the engine
with regulator m" 3 4 -- frequency
-amplitude characteristic of the
engine with regulator Py
Key:

1, w,l/sec
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Figure 2,29, Frequency-amplitude
characteristic of the engine with
afterburning of the generator gas:
1 -~ frequency-amplitude character-
istic of the engine without the
regulator; 2 -- frequency-amplitude

- characteristic of the engine with
- regulator K"; 3 -- frequency-ampli-

tude characteristic with regulator
Py 4 —- frequency-amplitude
characteristic with regulator ﬁ"fuel
Key:

1. w, 1/sec
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Figure 2.30. Freguency—amplitude characteristic
L

W
PP

tank, ox
1 —- engine without afterburning of the generator
gas; 2 -~ engine with afterburning of the generator
gas
Key:
1. w, 1l/sec

Let us only present the basic results. Fig 2.28 shows the frequency-
amplitude characteristic with different regulation systems for the engine
without afterburning of the generator gas.

The analysis of the frequency-amplitude characteristic indicates that the
pressure regulator has a significant influence on the dynamic characteris-
tics of the engine.

The analysis of the frequency-amplitude characteristics shows that the
pressure regulator has a significant effect on the dynamic characteristics
of the engine. Resonance can appear on defined frequencies which indicates
that the combination of parameters is close to the stability limit.

Fig 2.29 shows the characteristics for the engine with afterburning of the
generator gas and different regulation systems.

The longitudinal stability is significantly influenced by the transfer

function W » that is the effect connected with the pressure
P> Pinp, ox
variation at the entrance to the pump.

Fig 2.30 shows W

for two types of engines.
Pk> Pinp, ox P 8

For the engine with afterburning of the generator gas under the correspond-
ing conditions, resonance can occur which must be considered when analyz-
ing the longitudinal stability.
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CHAPTER 3. WAVE PROCESSES IN THE LIQUID-FUEL ROCKET ENGINE LINES

3.1. Differential Equations for Uniform Movements and Their Integrals

The transient processes in the hydraulic lines of the liquid~fuel rocket
engines are mathematically described by the partial differential equationms.
For a uniform nonsteady flow of compressible ideal liquid (gas) in the

absence of external mass forces the following equations are basic:

Continuity (conservation of mass)

I)Q .._q_. ==y,
- 155 @)=0 (3.1)
Momentum
e 4 oc e 0o (3.2)
0o T g =0
State
p=A-+Be" (3.‘:3)

where p, p, ¢ are the liquid (gas) density, pressure and velocity
respectively,

Expressions (3.1), (3.2) are written in the Euler coordinate system.

In the equation of state (3.3) depicting the relation between the pressure
and density, the parameters A, B and n are constants. This is valid in

the case where the dynamic processes in the liquid (gas) are not accompanied
by significant variation of the entropy, which occurs in the pressure

range to several hundreds of bars [2]. Here the constants A and B are
expressed in terms of the speed of sound and density, respectively:

a2

ea; (3.4)

B=

A=p,—

——
noj~!

where ag 1s the speed of sound in the liquid (gas) with density and
Pressure pg, pg.
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For the ideal gas A=0, and for a liquid with constant speed of sound n=1.
In particular, for water in the pressure range to 30000 bars n=7.15 [2]
and A=-3045 bars, B=3045 bars-cm’/gn, where the density po=1 g/cm3. For
wiater in the pressure range appreciably less than 3045 bars when the
density deformation is small so that |Ap|<<p, from the expression (3.4)
after transformations, a linear relation is obtained between the density
and the pressure p= p0+3045 no/po, which simultaneously indicates constancy
of the speed of sound with liquid deformation.

The expressions for the constants (3.4) are obtained from (3.3) in
accordance with the determination of the speed of sound so that the equation
of state (3.3) in implicit form contains the relation between the pressure,
the density and the speed of sound.

The initial equations(3.1) and (3.2) are valid for the liquid flow in a
nondeformable tube of constant cross section. The consideration of the
deformation of the tube walls will be made below.

If we consider the liquid as incompressible, then from the continuity
equation we have constancy of the flow velocity along the length of the tube
(3p/3t=0,3p/3x=0, 3c/9x=0), and the integral of the equation of momentum
(3.2) determines the relation between the pressure and the acceleration of
the liquid column. This integral along the trajectory of displacement of
the liquid particles is known in the literature as the Cauchy-Bernoulli
integral. In cases where the time integral of the transient process in the
line is appreciably greater than the travel time of the acoustic wave in

the investigated length of line, for analysis of the transient processes

it is possible to use this integral

For a compressible liquid (gas) in the general case a parameter distribution
along the tube length occurs; therefore along the trajectory of motion of the
particles of liquid, it is impossible to obtain the integrals of the
equations (3.1), (3.2). However, there are families of such curves in the
plane of the coordinates x, t along which the integrals of the equations
(3.1), (3.2) are found. For this purpose let us convert equations (3.1),
(3.2) to the following form:

9P 4o, 9P 40 02,9 o
ot Te ax toe ox ! (3.5)

d,
e “K T )'*'“ o= (3.6)

where under the conditions of constancy of entropy the following expressions
are valid: s de ap_ 1 0p o _d op_1 Op

ot op ot a2 ot ' ox op 0dx @ 0x
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The equations (3.5) and (3.6) will be reduced by term by term addition
and subtraction to the following form respectively

ap dap 9 [
et tao L +e+a)- o= =0 G.7)

%:;+(c_a).%’j—a-o~[j—f+(c—a)~£] 0. (3.8)

ox

In the relations obtained (3.7) and (3.8), the velocity and pressure are
expressed by the full differentials on the curves dx/dt=cj-_a and, conse-
quently, on these curves such integral relations are valid:

d _—
S_;z_ +c=.’l|g—c0ﬂst. (3.9)
Considering the equation of state (3.3) after integration (3.9) we find
. 2a
ior o= (3.10)

The integrals (3.10) are called the Riemamninvariants, and the curves on
which they are valid are called the characteristics. Inasmuch as the
form of the characteristics depends on the flow velocity and the speed of
sound, the values of which vary from point to point, through the Riemann
invariants the values of the liquid (gas) parameters in the general case
at the investigated point in time and at the investigated point are found
numerically. For essentially subsonic flows the characteristics can be
considered as straight lines dx/dt=ta, where the speed of sound is
constant, For this case the density is related to the pressure linearly,
and the integrals (3.10) have the following form

plag+c=Jy, (3.11)

The presented solutions have an entirely defined physical meaning: namely,
the traveling wave in the positive direction with respect to the stationary
observer with absolute velocity ct+a carries the linear combination of the
speed of sound and the flow velocity J1 from point to point without change;
here, both the flow velocity and the speed of sound in the general case
are variable on the path of the wave. In the opposite direction the travel-
ing wave is propagated with absolute velocity c-a with respect to the same
observer and carries over the other linear combination of velocities J9
without change. This means if the corresponding velocities are known on
the inside boundaries of the tube, inside the tubes the flow velocity and
the speed of sound (and other parameters) are defined in terms of the
Riemann invariants in the following way:

=Lt Ty), e=T12 (3.12)

d=4 2
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where

2ay 209
= c Jo= [
Jl n 1 I 1r 2 ne—1 2

aj, ¢; are the parameters of the liquid (gas) on the left boundary of the
tube; aj, c, are the parameters of the liquid (gas) on the right boundary
of the tube,

For essentially subsonic flows from (3.11) we have

p=-;—-a'Q(Jl+Jg), c=—2’;—(/1—-’2)- (3.13)

where Ji=pla-Q4-¢1, Ja=pla-Q—ca.

Inasmuch as in this case the flow velocity is appreciably less than the
speed of sound, the characteristics of the direct and inverse directions
have the following form, respectively:

x=x1+a(t_tl); . (3.14)
X=Xy—a (t—tZ)a

where xy, X, are the coordinates of the left and right boundaries of the
tube, correspondingly; t1s tp are the times on the corresponding boundaries
for which the liquid parameters and, consequently, the corresponding
Riemann invariants are known.

In particular, x1=0 can be taken as the coordinate of the lefthand boundary,
and x2=%, the righthand boundary, where % is the tube length, and the
liquid flow takes place in the direction from the left boundary to the
right boundary.

The characteristics (3.14) under the given boundary conditions intersect
at the time t at an internal point of the tube with the coordinate x
which are determined from:

1 5 —
’=3‘(f1 +t4 iﬁ) , =—;—-(x, + xy+-aty—at)).
Beginning with the above-presented physical interpretation of the values

obtained for essentially subsoni; flows, the Riemann invariants can be
represented in the following form:

p(xlv.t— x~x‘)

Jy=LED Lo )= é +c(x,,t————x_x’);
ae aQ: a
X3—X

p(XQ, t— . .
Jp= P ) —_— - ( —xy
2 p” c(x,¢t) pn ¢ (Xxq,t " )
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Let us set x1=0, x2=9,, and in the Riemann invariants the expressions for
the corresponding parameters will be represented by expansions in the
series limited to the linear approximation:

! de ‘

¢ (0. t—-f—) =¢ (0, t)_%b-t-;-u'

¢ (1. t—l%') =c(l,f)—

)
p(O. t—%) = p(0, t)-%—o—tp-

p(tt—F )= pr-E 2

'
X w0

a ot
i=x &
a ot

’
xml

X -] )

Substituting these expansions in (3.13), after transformations we obtain
such expressions for the velocity and pressure:

= PO O—p,t) (I—x 0p x_ o) _
. clxf) = 20 T %ot 0t et 2088 B Jrmo
c(O,t)+c(l,t)__x___<£:_ == e |
- 2 .2 0 lsm0 2 O |r-t’
plx,t)y=2L: 0 +p0Y) ‘);‘P(’-" ._'_22__ ZTP, _i=x op) |
r=0 a Of |emi
—ox %

+ 5O H—c@ 42052 2

2 Ot |ra=t 2 ot L-O.

Then, considering the linear expansion for the velocity c(2,t)="

~ , Oc and 9¢ 1 adp .
=c(0, £)4-¢ Ex_oan‘d‘;"’m'ér as follows from (3,5), at the

limit for an incompressible liquid (a+») we find the Cauchy-Bernoulli
integral

) =L+ pht)  1—2x dc
p(x, 1) 5 +5—er .

. Along with the Riemann invariants, among the characteristics there are
invariants of another dimensionality. After transformations the equations
(3.7), (3.8) are reduced to such differential expressions:
¢*-a*de*+dp® + 2a-q-d (p-c)=0,
£-=c +a.
dt -

- ‘ For a liqixid with constant speed of sound when the flow rate is essentially
subsonic, the integrals of these expressions are invariants

___Pi» .Qiz. =N,
4(2“,1' ) ):‘:Pc 1.2
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These {nvariants with the dimensionality of power reduced to a unit area
of cross section of the tube are related to the Riemann invariants by the
following formula:

aniz: 2Nl.2'

The invar iants Ny ,2 have the following physical meaning: the power of the
surface Forces of’ pressure p-c is equal to the variation of the_flow, of
kinetic pc2/2 and elastic energy of deformation of the liquid p /2pa2
transport ed by the wave in the corresponding direction.

The above-presented solutions are common for the initial differential
equations : they represent the fact that waves of opposite directions are
propagated in the tube, and the liquid (gas) parameters under the effect

of the vaves are defined in terms of the linear combinations of the
corregponding invariants. These solutions describe the developed nonsteady-
state nature,

Let us consider another case of the nonsteady flow of a liquid (gas), when
a wave {s propagated in the tube in one direction, so that the wave front
borders with the region of the steady-state flow. This process is also
described by the system of equations (3.1)-(3.3).  In a simple wave the
liquid velocity and the speed of sound (pressure) are related uniquely to
each other so that the following representations of the derivatives are
valid:

S _9¢ op . e __ % Op

ot op of ' ox  op ox

Taking this into account, after transformations the equations (3.1), (3.2)
reduce to the following form

_‘7_{’_+[C+Qaz _‘2{_]%=0' (3.15)
ac op _
@ 5p Tt +(I+Q ) x—O'

(3.16)

If the system of equations (3.15), (3.16) 1is solved with respect to the
derivatives of the pressure with respect to time and the spatial coordi-
nate in order to obtain the nontrival solution (when the parameters are
constant) it is necessary to require that the main determinant of the
system vanish, that is, the following must occur:

l c—i—ga?-oif-
det P =0

oc dc
Ly 1+Q¢7p"
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After uncovering the determinant and transformations, we find that the
differential expressions for the simple wave:

apde F dp==0.

Let us find the characteristic line, along which transport of the liquid
(gas) parameters occurs, that is, dp/dt=0; dc/dt=0; da/dt=0, and so on.

In this case equation (3.15) must be the expression of the total derivative
with respect to time along the characteristic, and the equation of this
characteristic is defined by the term of the expression (3.15):

dax o de
—_— Qs — .
dt +e ap

Substituting the expressions padc=+3p, we obtain the equations for the
characteristics in the already known form dx/dt=cta, However, in contrast
to the general solutions, on the characteristic of the forward direction
the invariant Jy is valid, and on the characteristic of the return direc-
tion, the invariant Jj, that is

22
n—1

For a liquid with constant speed of sound the following exists, respectively:

F =y, for -%’{—:c +a.

d
P/Qa T— c="2.l fO‘l.' d—:=c '_I_' a.

Inasmuch as along the characteristics in the simple wave the liquid (gas)

parameters remain constant, the characteristics themselves are straight
lines:

X (¢, b)=x(4;)+(c+a), (t—4),
X (¢t ta)=Xy(to)+(c—a), (t—1,),

where the speed of the liquid is expressed in terms of the speed of sound
at the corresponding boundary:

c(t)=c,+

where cgs aq are the undisturbed parameters.

orlat)—ad, eh)=c,——2-

[a(22) —aq), (3.17)

For a liquid with constant speed of sound the corresponding expressions
have the form

— PU)—py . —p _ P —p0
c(tl) co+ - G_Q—-_ ’ c(t2)—co a0 . (3.18)
Thus, if the pressure perturbation on one of the inside ends of the tube

is known, then the disturbed values of all other parameters of the liquid
(gas) become known.
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The simple waves in the tubes occur during the initial period of the open-
Ing or closing of the valve, variations in the pressure take place on one
of the ends of the displacement of the regulator piston, and so on. On
disturbance of the uniformity of the propagation conditions of the simple
wave, for example, on varying the cross section of the tube, the physical
characteristics of the liquid (gas) reflection of the wave takes place, and
in this case the region of interaction of the reflected incident waves is
described by general solutions, in contrast to the solutions for simple
waves, called special [29].

3.2, Rarefaction Waves on Variation of the External Pressure and Cross
- Section at the End of the Tube

The rarefaction waves occur in the tube on opening the force main with a
decrease in the external pressure; the region which the waves reflected
from the other end do not succeed in reaching is the region of propagation
of the simple wave, the characteristics of which are straight lines. Each
of them has its own slope in the plane X, t. If the tube is opened
instantaneously or the external pressure drops instantaneously, aligned
rarefaction waves are propagated in the tube inasmuch as all of the

characteristics converge at one point lying on the axis of the tube at its
open end (see Fig 3.1).

Let us consider the problem of calculating the basic parameters separately
for a drop liquid with constant speed of sound and for an ideal gas.

0

i f Po
Cp=0
4&_.__‘_(.‘,_-_174_ o
7 1
C},% - WJW/

Figure 3.1, Penetration of an aligned rarefaction wave into
the tube on instantaneous opening of it

For a liquid if the tube is opened completely, the external pressure enters
the tube and the escape of the liquid takes place in the direction opposite
to the wave propagation. On propagation of an aligned wave the following

regions exist ir the tube: the region with the pressure py where the
liquid is quiet and where the main wave front has not arrived yet; this
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region lies below the boundary characteristic x=at; the region of non-
stationary parameters in which the pressure varies within the limits of
PhsPSPgy and the speed of the liquid is correspondingly within the limits
of OsTc]s|c ; for a fixed point in time this region "0-1"; the region of
stationary Histurbed parameters for p=pp, c=cy; this region is above the
other boundary characteristic x=(atcp)t.

In accordance with (3.18) the stationary value of the velocity is defined

c, = Fh—Po
A aQ (3.19)

The velocity and pressure distribution in the region of nonstationary
parameters is defined by the equation of the characteristics, and in the
investigated case it is necessary to set t1=0, xl(t1)=0 and

N i X
c==¢§-—-a, p::;h—-qa’—kga‘7—-

If the tube is incompletely opened and the cross section of the open end of
the tube instantaneously acquires a value of Sh, in order to obtain the
disturbed stationary values of the parameters it is necessary also to use
the Bernoulli and flow equations in the vicinity of the open end of the
tube:

prt (1) o ech=pi+ ock, (3.20)

S, =0C,S,
KA (3.21)

where s is the tube cross section; ¢ is the coefficient of local losses
reduced to the escape velocity e

To the system of equations (3.20), (3.21) let us add the equation relating
the velocity and pressure in a simple wave (3.19), where the subscript
"h" is replaced by 1.

After transformations we find the expressions for the velocity and pressure
in the tube and the escape velocity of the liquid from the tube if the
external pressure pp, is kept constant
= Lﬂ_eﬁl/l 2,
P=po+ " " +Qa2 (Po—P5),

Ca=—‘i~7" }/1+ 2“,(pe—m)- P=(l+‘-)[(—')2-l}-

s
® Qa Sh

In this case where simultaneously with variation of the area of the output
Cross section of the tube, the external pressure decreases instantaneously
from a value of Pp to a valug of pp, the calculated system of equations
has the form:
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-~ -~ ] ~ -~ ~ ~ o~
P1=Pn+'2—9902i C18==CySp; (.22)

i 2
Pi=py+ > BRCL C1S=C)S$p,

where the parameters with a wavy line at the top indicate their undisturbed
steady-state values.

To the system of equations (3.22) let us add the equation for the simple
wave considering the fact that the undisturbed value of the velocity in
the tube is nonzero: - p—
=C 4 ",
e=c+ o

After a number of transformations from (3.22) we find the values of the
disturbed stationary parameters:

o=t _ 8 ‘/l 42— py) e
n .

" 0a? a '’ (3.23)
- ~ | oa? a ~\2 (E ~ 1 2(Ph—pn)
—_ _— +._..___ —_—— + —— ¢ -|.-_.___..__'
Pi=n—aw ® an/(P ) [ d ) Qo

In the case where only the external pressure varies in the formulas it is
necessary to set {i=p, and if only the output cross section changes, then
it is necessary to consider fih==ph.

In the table the results are presented from the numerical calculations
for the case where the external pressure is equal to zero, and the tube
opens instantaneously to values of the area of the output_cross section
indicated in the tables. For a liquid, a=103 m/sec, p=103 kg/m’ are used:

Table 3.1
Po=10 bars

s/sh 1 5 10 30 50 100

ei/e | 10—3| 0,99.10-3 | 0,93.10-3 | 0,745-10—3 ] 0,575.10~—3 | 0,358.10-3

plpe | O 0,001 0,050 0,253 0,422 0,643

From the results of the numerical calculations it follows that the flow
velocity of the liquid and the pressure in the region of disturbed
stationarity in practice do not depend on the ratio of the cross sectional
areas s/sy under the condition: 2u(p0—ph)<<pa2. In cases where the tube
opens gradually or the external pressure decreases gradually, all of the
presented calculation ratios remain valid except that the variable
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parameters entering into them are a time function. On propagation of the
wave, the region of nonsteady-state disturbed values of the parameters
widens with an increase in the distance (Fig 3.2).

Table 3.2
" Po=100 parg

s/sk ! 5 10 30 50 100

¢i/a 10-2/ 0,897.10~2| 0,727.10-2 0,372.10—2 0,245-10~2{ 0,135-10~2

PPy ] 0,100 0,270 0,628 0,754 0,869

The widening calculations are presented below with gradual opening of the
tube, Two approaches are possible here.

1. The parameter distribution is found with respect to the x coordinate

for a fixed time t, The time tk2t0 may~to* 1s selected where tg* is the
time of completion of the opening of tﬁe tube, and for the given point in
time Ogtgetp*, the values of the parameters u(tg), c (to) are found, and

the characteristics given by the equation x(tk, t0)= a+cl(t0)](tk-t0)

are constructed, where tg is the parameter. These characteristics are
intersected by the straight line t=const., Then the graphs cl(tk,x),
P1(ty,x) are constructed, The analogous thing is repeated for another point
in time tp4]< (2

2. For the fixed point x, the values of the parameters are found as a
function of time. For the given value of Xk, depending on the time tg,
the velocity and pressure are found, and then the point in time is
determined which corresponds to the coordinate xi by the formula for the
characteristic

t=to “'Xh .
a + 61 (fg)

For tp>tg maxs t>t), we have the riigon ?{)undisturbed parameters. Then
we are given the point in time o " <tg'"’; for it we find the values of
the velocity, the pressure and ty (Fig 3.3). From the constructed graphs
it is possible to trace the deformation of the profile of the correspond-
ing parameter in space with respect to the initial profile on the open end
of the tube, The calculation relations have the form:

' cl(fo)= 1 l—l/l ?F(fn)Po];
[y 142
enlty) _ alte) s | Px(‘o)=l+9£ﬂt_ol’
a & sp(to)’ Po P @
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where the external pressure Ph is equal to zero.

'
]
!
Xx X

Figure 3.2. Penetration of the rare-
fdction wave into the tube on gradual
opening of it, The field of the
characteristics of the simple wave
for determining the distribution of

Figure 3.3. Field of the cunaracter-
istics of the simple wave for
determining the liquid parameters

~in the fixed cross section of the

tube

the liquid parameters inside the tube
for a fixed point in time.

For the points in time t we have the expression

t 4 Xp
fomax  fomax [ + €1 (Y0)] fomax ’
xy=la+t¢ (foman)] [t — Yomas)-

From what has been presented above it follows that the speed of the liquid
at the opening (x=0) cy(tg, 0) coincides with the speed of the liquid at
the point x at the point in time t=to+x/(a+c1(t0, 0)), that is,

cl(to, 0)+cy(t,x).

For the graphical comstructions it is convenient to introduce the real time
for each point, the beginning of which (zero) coincides with the time when
the leading (forward) edge of the wave approaches this :point. The natural
time t, is related to the coordinate x and the time y of the open end of
the tube tgy by the expression:

P . ey S I S le1 (%)l .

i a ot a+ci(fy) " a
The natural point in time when the trailing edge of the wave approaches the
point x, that is, the boundary between the region of the disturbed non-
steady state and the disturbed steady state, will be denoted by tc*.
It is calculated by the formula

L % ()
f [s+a(k)] 4

The relative broadening of the time interval of the nonsteady-state
process at the point x is defined as follows:
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M t—b x_a(t)
ty aty  a+e ()

In Table 3.3 the results are presented from n the numerical calculations for
the law of opening of the tube (t)=s T —10-2 Se€C» p=103 kg/m3,
Sulbo)= O]

2

=103 m/sec, €=0, pg=100 bars, x=10 meters, t(:”f=1.01-10"2 sec,

Table 3.3

tolty 0 0,2 0,4 0,6 0,8 1,0
eilto)/a 0 | 0,807-10-2|0,9-10-2 0,98.10-2| 10-2 | 102
tlty 1,0 1,191 1,391 1,6 ‘ 1,8 2
at) | oo 4 1,5 0,67 0,2 0
Pilto, 0)/ pg 1 0,103 0,1 0,02 0 0
1)ty 0 0,191 0,391 0,60 ° 08 | 1,0
x=100 u, to/t; | O 0,20 | 0,490 07 - | 000 | 1,1

From the numerical calculations it is obvious that on going away from the
open end of the tube the time iaterval of the nonsteady-state process

increases. The same thing cccurs also with an increase in the undisturbed
pressure in the tube po.

In order to obtain the picture of the distribution of the liquid parameters
on transmission of a rarefaction wave in it along the coordinate x it is
convenient to introduce the dimensionless coordinates:

(- e,

Xmax | af

where X .=at is the coordinate of the leading edge.of the wave.

The coordinate of the trailing edge of the wave is defined as follows:

Xmin= [a'+cl (to, 0)] (t 10)
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The investigated values of the coordinate x are found within the limits

Xon <X < Ko

The relative broadening of the wave is

. L] *
Ax x,,.,,,-—xmln___fg__(l _i) e1 (£5,0)
- - t] - a

Hence, it follows that the maximum broadening occurs for t=tg*=1, and
minimum for t=tg* and it is equal to -cy(tg*, 0)/a. For calculation of
the parameters in the simple wave propagated in an ideal gas, at the

boundary of the open end of the tube with external medium we have the

system of equations: n 1 s n 1
=0 , 20
TTT Pt eh=—— Pt 5-cii

CatnSp==C101S}

2
Gr=r—=(8:1—ay).

(3.24)

It is necessary to add the equation of state (3.3) to this system, where
A=0.

Expressing the density of the gas in terms of the pressure and also the
speed of sound in terms of the pressure, we have the relation between the
gas velocity and the pressure in front of the open end of the tube:

n—1
N .|

n

Taking this into account, the system of equations (3.24) is converted to one
equation where the external pressure pp and the gas pressure in fromt of
the opening p; are related as follows:

n—1 n—

1 L I < 2
(Pn/ﬂo)T—(Pnlpo)T-’-nf_l (Ppo) ™ — l] [l —?}(ﬁ)”]’ (3.26)

In Table 3.4 we have the results of the numerical calculations of the
pressure as a function of the ratio of the cross section for different
indexes n, and under the condition that the escape of the gas is sub-
sonic, and the external pressure is kept constant ph=0.6p0.

In order to determine the conditions where the escape from the tube
becomes critical, it 1s necessary to set Ch==ap> for the escape takes
place in the direction opposite to the propagation of the wave fromt.

In addition, the Bernoulli equation is conveniently represented in the form

2
243 2a} 2
h +C[23= +Cl.
n—1 n—1
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Table 3.4
P1/Po
slsn 0,6 0,7 0,8 0,9 1.
a=1,1 1 6.8. 9,2 14,2 oo
n=1,5 1 2,54 4,4 9.4 oo
n=3 1 2,85 5,8 13,85 oo
In this case instead of (3.26) after transformations we have
2 2 sp\2fay 4 (3.27)
2_ 2 1 t\a—1 2
—ai= a;—a,?| 1 —-(— (— ], .
ay—aj n-—l( i o)[ s;.) )

where ay is the speed of sound of the gas in the exit from the tube.

From the equations (3.24), (3.27) under the condition chcr=-ah‘:r we find

2(ap— alxp)( B1xp )Eg—l— s (3. 28)

Qpn== —
hep n—1 S,,,

Qhxp

where 8 cr? 31 cr are the values of the speed of sound at the exit from
the tube and before the exit from the tube, respectively when the critical
escape regime occurs.

From the joint investigation of (3.28) and (3.27) after transformation we
find the relation between the speed of sound in the gas in front of the
opening and at the cross section of the opening:

2(n-1) 2(n—~1) 4 2(n—1)
(L n+l (_s_) e (ﬁ“‘_l’)m(l _aﬁ?.) S
n—1 Sy ap , : ay

2 (Gmp\, 4 (Gup 2
—n+l(ao)+n2—-l(ao l)'

In particular, for n=3 we have the following functions:
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1 s—sn) "'”‘P_ 1 ‘/ s_. Q‘.":[ s P2
S + 5 2 stsn P LAs+sn)
Pup 1 l/s—Sh c""’=_1_[l/-s'—s"—ll;
Po T8 s +sp a 2 S+ Sk
l/s—s,, 1
Cwp ¥V Sstsa
B1xp S—Sp
—=+1
(W) _l/s+sn
In Tables 3,5, 3.6 the results are presented from numerical calculations

of the critical parameters of the gas for various n when an aligned
rarefaction wave enters into the tube.

Key: 1. cr

Table 3.5
n=11
s/sh 1 1,1 1,5 2,9 o
axpiag 0,9525 6,96 0,88 0,99 1,6
@
aneplay 0,9525 0,94 0,945 0,96 0,975
Paxp/ Py 0,354 0,251 0,275 0,4 0,588
Table 3.6
n=15
s/sa l 1 1,23 1,85 13,1 oo
Gixplag 0,8 0,9 0,95 0,99 1,0
()
Bpplap 0,8 0,801 0,79 0,89 0,895
anp/Po , 0141 0)41 ' 0,4 , 0)505 ' 0,51
Key:
1. cr
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In the limiting case when the ratio of the tube cross section to the hole
cross section is significant, that is, s/sh-'@, we have a; cr+a0' Here we
obtain the following asymptotic expressions:

- n-—1 2 \afaety. - ‘/ 2_.
S/ 2(1 —ayp/ag) (n+1) B a1’
n o
Prup/ Po— ( )"_‘ (al:p/ [ 2

n+41

Hence, in particular, it is necessary that for s/sh->°° the critical pressure
gradient for the nonsteady-state escape approaches the value of the
critical gradient for the steady-state escape. In addition, the critical
speed of sound in the case of the nonsteady-state escape is less than the
critical speed of sound for the steady state escape, for 2/(ntl)< and,
consequently

2 2
Brep,ecran = @< a, ]/-———- =0 crane
ORNERY T

Key: 1. cr. nonsteady; 2. cr. steady

For complete and instantaneous opening of the tube in a vacuum, the critical
escape regime is set up on the open end of the tube, and the corresponding
characteristic in this cross section is directed along the t axis, that is,

F(ccr+acr)t=0. The solution of this problem is presented in references
[2, 15].

3.3. Compression Waves on Variation of the External Pressure and
Cross Section of the End of the Tube

The compression waves occur in a tube on closure of it and on increasing
the external pressure. The characteristics of such simple compression
waves are straight lines that intersect at some distance or the other.

In the region where the intersection of the characteristics does not occur,
all of the expressions are valid which have already been obtained earlier
for the rarefaction waves,

It is of interest to investigate the problem of the condition of the inter—
section of all the characteristics of a simple wave at one point (Fig 3.4)
At this point the parameters of the liquid (gas) undergo variations from
their undisturbed values to maximum disturbed values, that is, this point

is the coordinate of the compression shock (shock wave) that occurs. If
x(t, tg) is the equation of the characteristic, then the condition of
intersection of the characteristics is independent of the coordinate of

the point of intersection with respect to the point in time t, corresponding
to variation of the external pressure, or the cross section 09 the open’

end of the tube, that is dx (£, £0)

oty l-t'_ !

where t* is the time of intersection of the characteristics.
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For a drop liquid with constant speed of sound this condition is equivalent

to the following des (2
P=tyt[a e, (f)): L)
dho (3.29)

Figure 3.4. Field of the characteristics converging at one
point on propagation of the compression wave in a tube

Then, since the point in time t* is identical for all characteristics,
after integration of (3.29) we obtain the speed of the liquid at the open
end of the tube which corresponds to the conditions of the stated problem:

aty +?:'t*__ cx*+ atqla +~c)

Cy{ty)= =
1fo) ™t x*—ty(s +¢)

where € is the undisturbed speed of the liquid in the tube; x* is the
toordinate of the pcint of intersection of the characteristics determined
from the general equation of the characteristics by substituting the
expression for the disturbed speed of the liquid there

~ ~y i—t
2 ()=(ate)e*, x(t, t)=t"(a42) ;=
The pressure of the liquid in front of the opening can vary according to
the law
Pi(to)= ptagle; (to)—E|=p+ 202+ - | aoty(a+3 (3.30)

o1, x*—to(ate)
The external pressure of the medium where escape takes place must vary in
this case according to the following law:

2% (e +c)?

- ex*+atyla+3) P
—ty(a+7%)

to)=p+-=
Pa(to) p+x. x*—ty(a+7c)

1
- e
Obviously, a point in time to* exists where the liquid flow is completely
braked, that is, cj(tg*)=0. This occurs for the time to*=~t*.¢/a, and
from (3.30) for this case we have the formula of the total hydraulic
hammer at the investigated distance from the open end of the tube., For
example, for t*=102 sec, &=-10 m/sec, a=103 m/sec, t:o*=10_4 sec and the
discontinuity occurs at the distance x*=10 m. '

Bl
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In Table 3.7 the results are presented from the numerical calculations by
the above-presented formylas for the case p, =0, $=100 bars, ¢=-14.1 m/sec,
u=100, p=103 kg/m3, a=10> m/sec, x*=10 m, t*=1.0141:10-2 sec,
t0*=1.41'10"" sec,

Table 3.7
1ty 0 0,292 0,646 0,857 1,0
Palto p 0 0,91 1,785 2,19 2,41
Pilto)/ P 1 1,41 1,91 2,21 2,41
erlto)/c 1 0,71 . 0,355 0,142 0

In the case where the braking of the liquid is realized by closing the
tube, that is, decreasing the area of the exit opening, all of the pre-
sénted expressions remain valid, and for the cross sections the law of
its closure will be defined as follows:

v 2151 to)— 2] -5
M=t =T

For essentially subsonic flows of the liquid where ié'|<<a, for the
parameter u(tg) we have the expression:

plfo) p o P
b(-g)a-am
]

where {I is the steady-state value of this parameter.

In Table 3.8 the results:.are presented from the numerical calculations
for the law of closure of the tube for pPp=9, E=-14.1 m/sec, p=100 bars,

p=103 kg/m3, a=103 m/sec, {=100.

Table 3.8
oty .0 o1 0,2 . 0,3
wto)ii 1 14l 2,0 2,91
salbo)ls 0,1 .8,5.10—2 7,06.10~2 [ ¥ 5,88.10~
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Table 3, continued

1ty 0,5 0,7 0,8 0,9 . 1,0
Mbo)p 6,8 2,2 52,75 227 o
salto)/s 3,83-10-2 | 2,13.10-2| 1,38.10~2| 6,63.10-3|. 0

In the case where the tube iength is less than (a+&)t#, .the discontinuity
does not occur inside it., This corresponds to the point in time of
completion of the closure of the tube LS S, ~  a

> —cla l/a+c-—-:2-

% 1is the tube lenmgth, For example, for 2=10 meters, a=103 n/sec,
€=-10 m/sec, t0*=10'.'4 sec the discontinuity does not occur if the tube is
closed for the time greater than 104 sec. For the compression waves, a
decrease in the time of nonsteady-state nature is characteristic on going
away from the open end of the tube, and for a faster increase in the
‘ external pressure or faster closure of the tube the point of formation of
= the discontinuity shifts in the direction of the open end. An increase
in the parameter u, that is, a decrease in the hole cross section, for the
given magnitude of the steady-state pressure § leads to a decrease in the
g modulus of the velocity of the undisturbed flow & and the required external
: pressure for the formation of the discontinuity and vice versa. For the
given magritude of the parameter p an increase in the pressure § leads to
an analogous consequence, The speed of the liquid and the pressure in the
tube in front of the open cross section expressed in terms of the dimen-
sionless time tg/tp* does not depend on the coordinates of the formation of
the discontinuity x*, and for ‘subsonic flows the nature of the dependence
; of the indicated parameters on time to/tg* 1s linear, and for external
{ pressure, quadratic. This follows from the fact that the speed of the
liquid in the compression wave is expressed by the following

-~ — ‘t. -~
ety _so—orr_ 1=lh kgl
! ¢ c(t*—1tg) c ty

‘ t

a fg

- We have the analogous expression for the pressures:

-~ . ~ 2
pilfo) __6ec fo . Phyo)=.[_£9£._‘2__.(1_-’-‘;’-\ .
: P Pt P ? & t)
,13 For a gas on propagation of a simple compression:wave in it when the

characteristics converge at one .point the following equations are valid:
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y
€ (to)=?‘+n-i“l [“1 (to)“Z]- a, (}0)+Cl(t)=z—% ;‘f'%"x(ta).

X(t, tp)= V=1~ n41

s fo)=[a (¢o) e (to)] (¢ — ty)= [a—- ¢t (fo)] E=h)  (3.31)
From the condition of intersection of the characteristics after transforma-
tions (3.31) we obtain the law for variation of the velocity at the opening
in the tube:

oy ()=l el () —ty(n —1)
Bk (n + 1) — o)

Expressing the pressure in terms of the speed of sound, acccrding to the
equation of state, and the speed of sound in terms of the flow velocity, we
find that the pressure inside the tube at the opening is related to the
velocity by the formula

20
pl)=p[1+25> (e ) ~3)|" . o Ga

The corresponding external pressure is found from equation (3.26) by sub-
stitution of the expression (3,32) in it instead of the pressure py. I
the braking of the gas is realized by closing the opening and the external
pressure remains unchanged, then from (3.26) the law is found for variation
of the exit cross section of the tube; here pp=const, .

The total braking of the gas at the opening takes place at the time tg*
defined as follows:

2B—e(n—1)"

The pressure corresponding to this case is determined from (3.32) where
it is necessary to set c1(tg*)=0.

In particular, for n— | pl(t;)—.pepx(_;‘:)‘for n=3p'1(to*)=13(l-c"5/5)3, 80
.\ a
that on braking of the sonic flow, when é=-3, p]_(to*)=_8i5.

Let us consider how valid it is to use the Riemann invariants for simple
waves on formation of the discontinuity, In the dense media to pressures
of several hundreds of bars the entropy variation is small and the propaga-
tion of the discontinuity can be considered in the acoustic approximation
(1.4). 1In this case the variation of the entropy S in the medium is
related to the variation of the basic parameters of the liquid (gas) by
the formula (1):

‘ 5, —S={n—p" (?.’1) _la— (f”_ﬂ)
- ! 127 \op2)g 127e}0 \ov2 /gy 3
where V is the specific volume; T is the temperature.
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The disturbed parameters are indicated by the index "1," and the undis-
turbed parameters, by the wavy line at the top.

Let us carry out the required transformations for solution of the stated
problem. Considering the following expressions:

2p  o50p 4 9 ~ _p—p
— el - a . 00, —p= H
svr =20 % + ¢ el nd _alg _Ql Q — e have

92p 2‘"a~2[ Q da ]
—_—= a’(l —_= — H
ov? ¢ + a 00 Jo=%

S~S=e=P 14 & oa |
! 60%a’T a 00 g%’

The derivative of the speed of sound with respect to density is found.
within the limits '

doa.
9

ay ad da

Jde

=

max Ql—‘.é Pr—p ’

min
so that the entropy variation is within such limits:

(o =7V _s| =2
sear SIS Sy

Considering the variation of the entropy the expressions based on the
characteristics have the form [4]

- % adS  dx
d[c+ =4 - X
n—1 in(n--l)r:,,' a xS

where ¢, is the specific heat capacity for constant volume.

- Let us denote by Jy the integral based on the characteristic considering

the variation of the entropy JM=J'+S_—_‘"‘5 . where J is the
n(n—1)ey

Riemann invariant under the assumption of constancy of entropy. For the
compression aj3d, so that the relative difference between Jp and J i3
defined: o

Im—13] __1AJ} aAS

T < n(n—1)e,l

Substituting in this relation the expressions for the Riemann invariant
and 45=5)-S after transformations we obtain

(oy =78

144) (o =21
12Q3¢,T < J <

1202 — g2, *
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In particular, for p;-p=100 bars, p=103 kg/m3, a=103 m/sec, T=100 K,
c:‘,=4'103 joules/kg-gK,|AJ|/J<2.105, For a gas we have the analogous
relation N )

n—1 1aJ| n—-1

12n2 < J < 12n

In particular, for n=1.4, |AJ|/J<0.02.

csqpis

Al

A
3g
$

X

Figure 3.5. Direction of the characteristic and velocity of
the shock wave front with instantaneous braking of the flow:
Xghock 18 the position of the shock wave front according to
shock wave theory; Xp is the position of the front determined
by the Riemann expression
Key:
1. shock

The presented results offer the possibility of confirming that if the
shock waves approach the compression front, then new values of the
parameters go with the compression shock defined in terms of the Riemann
invariants. This is valid for the near-sonic flows of gas and liquid.
With significantly supersonic flows this statement is invariant. Accord-
ingly, the problem of instantaneous complete braking of the stationary

. gas and liquid flow is of interest under the assumption that a shock ~
wave occurs, the front of which is propagated opposite to the flow with
a velocity D (Fig 3.5), and in the region between the initially open end
of the tube and the shock wave front the gas (liquid) is quiet. For com~
parison, the basic calculation relations and numerical data are presented
for the braking parameters based on the use of the Riemann invariants.

The basic initial expressions for shock wave are the equation of:
Continuity elc -D)-—-E (;__ D), '
Moment 2 D) a2 (>

mentum Qa?--rp(c De)-—w’-l—no(c—D)z;

Energy 9424 (p— 1)(c—DpR=2a%+(n—1)(c— D)%
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For a completely braked flow c=0 and after transformations we find the
expression for the basic parameters of the braked gas expressed in.terms
of the parameters in the stationary undisturbed flow:

_
—_n ~ ~\2
D=3=n c-{-aol/ 1+(3—‘"v _0_) ,
4 N 4 )

- (3.33)
a= Vao—(ll—l)ED, 9=6(l ...Di) ;

—sea ~ ¢\ —(n—1)iD

where a; is the speed of sound from the entropic adiabatic braked flow
defined in terms of the parameters of the undisturbed stationary flow
as ‘

2__ =~ —1 =
d=iry 2zl

If the braking parameters are calculated by the Riemann invariant, then
in the investigated problem the invariant based on the characteristic
of the opposite direction dx/dt=g&-3 is constant, from which it follows
that the speed of sound of the braked flow is defined as

~ p—1 ~

a=q— c= ag—-

A=l za_"__;‘ c. (3.34)
The pressure of the braked flow in this case is defined according to (3.32),

where cl(t0)=0.

In Table 3.9 we have the results of the numerical calculations for the
parameters of the braked flow calculated by the formulas for the shock
wave (3.33) and by the formulas based on the Riemann invariants (3.34),
(3.32). 1In the table the index "p" at the bottom indicates that the
calculation is performed by these formulas, and the index "shock" at the
bottom means that the calculation is performed by formulas (3.33). The
calculations were performed for different values of the velocity of the
stationary undisturbed flow and n=1.5. From the table data and also by the
results of the calculations for n=1.1 and n=3 which are not presented here
we have the conclusion that for subsonic flows of a steady-state flow up
to the Mach number equal to one (M=-&/3), the relative error according to
Riemann and by the shock wave formulas will be 2.7% for the speed of sound
of the braked flow for n=1.5 and 8.7% for n=3, and for n=1.1 the results
in practice coincide.

For supersonic flows of a steady-state flow to Mach numbers M=5 the relative
error in determining the speed of sound of the braked flow will be 20%

for n=1.1, 34% for n=1.5 and 31% for n-3 respectively. In this region the
Riemann calculations give low values for the speed of sound, and for the
density high values with respect to the results obtained by the shock wave
formulas.
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For the subsonic flows of a steady-state flow up to ﬁ=1 the relative

error in determining the pressurz of the braked flow according to Riemann
will be 4% for n=1.1; 2.4% for n=1.5 and 1.85% for n=3.

For the supersonic flows the Riemann error is significant, and for M=5 it
is 340% for n=1.1; 125% for n=1.5 and 100% for n=3. The values of the
pressure according to Riemann are larger than the corresponding value

- obtained by the formulas (3.33). Thus, the braking parameters of the gas
for subsonic and nearsonic flows can be calculated with high accuracy by
the formulas used in the Riemann invariants.

3.4. Propagation of Waves Through the Boundary of Nonuniform Media

The disturbances propagated in the tube with the liquid gas in the general

case experience reflections caused either by variation of the configura-

tion of the tube or by disturbance of the uniformity of the liquid. Thus,

on filling of the hydraulic line with liquid fuel between the liquid front B
and the open end of the tube a gas cavity is formed. At the liquid-gas

interface the waves are reflected with one amplitude or another. When

the wave reaches the free surface of the tank, reflection of it also occurs.

+ ugl X
I "
Figure 3.6. The field of characteristics at the boundary of
two nonuniform media on propagation of the simple wave from

medium 1 to medium 2; Xtoundary 1S the position of the
medium interface

The interface of nonuniform media on transmission of disturbance waves
through it changes the speed of movement and generates the characteristics
of disturbed motion of both media (Fig 3.6).

If the disturbance passes from médium 1 to medium 2, then characteristics
of the positive direction pass through medium 2, and reflected character-

istics of the opposite direction into medium 1. The corresponding Riemann

invariants, the values of which must be determined, are valid on these
characteristics.,
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For solution of this problem we assume that the disturbance occurs in
medium 1 in the form of a simple wave, and the parameters for this wave
have already been given and denoted by the "+" sign at the top.

At the point of intersection of the positive characteristic of medium 1,
along which the incident wave is propagated, with the interface, the
Riemann invariant remains valid, but the parameters of the liquid (gas)
vary on this characteristic. Thus, for the incident wave the Riemann
invariant is:

where c] is the interface velocity at the time of arrival of the disturb-—
ance with the parameters ey a1+, a; is the speed of sound in the medium 1
at the interface which is established at the time of transmission of the
wave.

Table 3.9

alag | 1| 0,97 | 0,99 | 097 | 0,952 | 0,88 | 0,707 |0,37

@@y | 1 1,025 | 1,05 1,125 | 1,17 1,25 1,5 2,25

(8/a)y, | 1 1,02 1,049 | 1,125 | 1,19 1,285 | 1,68 |3,27

D/a 1 0,9625 | 0,933 0,862 0,828 0,8 0,852 | 1,41

@ | 1| 11 L2 | 1,6 1,85 | 2,44 | 5,06 [25,6
efoyx | 1| 1,004 | 1,24 | 1,58 1,845 | 2,25 | 3,35 | 4,54
iy | 1| 1,05 | 1,83 | 202 ] 253 |38 |u,4 |18
Gl 1 L5 | 1,38 [ 2,00 | 261 | 3,71 | 945 |48,5

For a simple wave from the condition of constancy of the Riemann invariant

on the inverse characteristic the speed of the. liquid is expressed as

follows: 2(a+—-2)
cf':cl_f_._L__l__

nl—] !
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where &; is the undisturbed speed of the flow and the boundary
correspondingly.

From these expressions we find the values of the invariant J1+ in the
form
JE=22oct G,
n—1

Comparing both expressions for J1+, we find the expression for the desired
speed of sound:

“1=01+(ﬂx—1)01+-‘"1—;—]51—- h=l,

2 (3.35)

For medium 2 from the condition Jy"=const we find the expression for the
speed of sound at the interface:

a,=?z,+5'3;—’ (e _zl); C1=0. (3.36)

At the interface the pressure from the direction of medium 1 and medium 2
is identical P1=p2. Expressing the pressure according to (3.3) in terms

2ll|_2
pra=Ar2+(pr,2— Av2) (ar.2/a1,0)"27 Y, ' -
expressions (3.35),(3.36), after a number of transformations, lead to the

equation where the velocity of the interface is related to the velocity ‘
in the incident wave: -

of the speed of sound

21y f—1
d_ lK_ m (14 e n [
Z, _—nl—l Ky ng 2 22 Ky ng -
—l-l-'—"—':—-‘- _::_1}‘ (3.37)
2 o

where -
K, =Q;a¥, Ky=q.a2.
Knowing the value of the disturbed velocity of the interface, from (3.35)

and (3.36) we find the disturbed values of the speeds of sound and other
parameters,

If both media are an ideal gas, then it is necessary to set -
Ky m=K;-ny.

The disturbed pressure at the interface is defined as follows:

Lo e . L m (3.38)
pl=l’1“ﬂ+ﬂ 1— ("1"1).;{__n1—l e+ [t
ny ny 2 a; 2 ay
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If the disturbance is propagated from a drop liquid to a gas, then
K1>>K,, and formula (3.37) is transformed to the form

2,
i-_—_’ Ly K [(1 +Mi)r““ 1 (3.39)
a1 2 a; ' 2mkK; 2 @ R

If the disturbance is propagated from the gas to the drop liquid, then
Ky>>K;y, and formula (3.31) is correspondingly transformed:

il

In the case where the speed of the interface is essentially subsonic, from
(3.37) and (3.38) for this case we find the expressions:

n,~1
mKy ﬁ)’“

Ky a

oz 0SB0 —BE)
Qia; + Q182
10210 (e —?1)
Exa'l +.52;a ’

r=p+ (3.40)
In Table 3.10 the results are presented from numerical calculations by the
formulas (3.39), (3.38) and (3.40), from which it follows that the linear
approximation in a number of cases does not justify itself. The calcula-
tions are performed for the compression wave propagated from a drop liquid
in a gas with ny=1l.5. The undisturbed pressure in both media is

p=100 bars, &;=¢,=0, 6l=103 kg/m3, 51=103 m/sec,

Table 3.10
/8y 0,1 02 03] 04050607 08 0,9
et 1ay 0,05168 o,xoas0,15650,20990,2533:0,3191 0,3750,4325| 0,4916
(c;/a)n(un 0,0515 0,103 {0,1545/0,206 10,257 (0,309 | 0,36 | 0,412 0,4625
1)
alh 1,8 [1,%6] 23| 3 | 38|48 6,2] 7.6| 9,4
(1] py)am L3 |16 | 1,91 2,2] 25| 2,8( 3,1| 3,4/, 3,7
(1)
Key: 1. 1lin

In the table we have the results of the calc “ations by formula (3.40)

marked by the subscript (lin).

The results must be interpreted as follows:

what value the initial disturbance must have (velocity in the liquid) so
that the interface of the two media will begin to move at the velocity

indicated in the upper row of the table.
tions it is obvious that in the velocity range of the interface
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c /él=0.1 to 0.9 the required value of the velocity with respect to linear
theory is 99.5-94%, respectively, of the velocity by formulas (3.39),

and the pressures are 97.7-39.3%, that is, the error in the linear approx-
imation is large.

In Table 3.11 the results are presented from the numerical calculations
for propagation of the rarefaction wave from the drop liquid to the gas
under the 'same conditions. The relative error with respect to linear
theory for the velocity c1+/51 will be 0.5 to 1,65% for -c1/4;=0.1 to 0.9,
and the pressures according to linear theory will be 94.5-75.5% of the
pressures calculated by (3.48) in the velocity range of -c3/4;=0.1 to 0.3
respectively, For large rarefdctions by the formulas of the linear approx—
imation when -cl/a1<0.3 the calculated values of the pPressure are negative,
and the error is large.

Table 3.11

—e1/a, o1 | 02 [(0,3]| 0.4 0,5 0,7 0,8] 0,9

—ct/a; |0,05125 | 0,1023 (0,153 0,2037 | 0,254 | 0,355 [0,4077]0,455

aln 0,74 | 0,53 [0,374| 0,26 | 0,178 | 0,076 0,047 o,0278

? 01| —0,5 - - | - =
(Pllpl)(ﬁu 0,7 0,4 '

Key:
1. 1lin

Figure 3,7. Field of the characteristics on reflection of the
aligned rarefaction wave from a moving piston

Let us consider the problem of the reflection of an aligned rarefaction
wave from a moving piston moving with constant velocity &. The solution
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of this problem for the stationary piston is presented in rﬁferencg [17].
Let us propose that the piston parameters are such that pzaz >>p151 R
and the medium 1 is an ideal gas.

On reflection of the aligned wave (Fig 3.7) the following regions are
formed in the medium 1: ABC -- the region of general solutions of the
equations of the nonsteady flow in which the incident and reflected waves
interact; ACO -- the region of nonstationarity for a simple wave; OAA' --
the region of disturbed stationmarity.

Let us find the boundary of the region of general solutioms, that is, the
coordinate of the point A, calculating that in the time of incidence of
the aligned wave the piston will not move a significant distance, which
occurs for significantly subsonic rate of its displacement, that is,
¢y<<a,.

Let us first find the equation of the boundary characteristic AC. The
parameters of the simple wave on the characteristic OA will be noted by
- the superscript "+"

~ 2 ~ -~ -~ .

ct=ct+——(a* —a)=gi=l__2 g4 2= .
n—1i R+l a4l (n+1)¢
at= 2 a n—1 x n—1~

n+1 R+l ¢ p4d €
Inasmuch as the speed of the piston & is given, the parameters in the

incident wave are known, the speed of sound for the reflected wave at the
wall of the piston is known and equal to a,=2-{--%—('n~—l)(20+—-2’)-

Considering these expressions, we obtain the equation for the characteris-

tic OA:
dx— sn— | 4 =~  3—n x—
——C—a=2C —_——— —
dt n+1 n41l +n+l t
) After integration we obtain
. 3en
- -~ ~ +l ~ t n+l l
X" =(C— -alt 'l——-at(— ty=—=
n—1 ) +n—l 0 to) * oo a+ec’

where £ is the distance from the center of the aligned wave to the piston.

The equation for the characteristic 0A is:
SR R e o SO Ll B
X (a—l— 7 ¢ 7 )t
where c* is the speed of the gas at the point A.
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Equating the coordinates of the characteristics OA and AC to each other,
after transformations we find

_ _n+1
2(1—T)

h:to[l + '% (_M"‘—/‘Z)]

X =ato—2\2

where

In particular, x*=0 for M*=n-1/n+l H -2/n+1. If the aligned rarefaction
wave passes through the liquid with constant speed of sound, then the
position of the point A will be defined as follows:

M . J

x*==(a+c)t—2atIntity, t*=+t exp— =

In particular, for significant subsonic flow conditions of the liquid in
front of the piston and M=0 we find x*Zat® (14M*)=at((1+0.5M*%), so.that
the width of the region of interaction of the waves will be defined as
Ax=0-x*%=0,5 Mk,

The solution in the region ABC will be constructed as follows. The speed
of sound is defined in the incident wave from the condition of: constancy

of the invariant on the characteristic of the undisturbed medium, that is,
a+=5+(c++é)(n—1)/_2. Then we construct the invariant J1+ for the disturbed

2a =c4

-— the parameters of medium 1
n—1 n

4 +, 2af ~ 2%

region /{ —¢f +__1__=20+ —c+ :
n— —

on the line BC. Hence we determine the speed of sound on the line BC

n—1"
2

a=ua- (2c*—c—¢) and we construct the invariant Jm=p—28

n—1

=24;—9+__2B_ *
n—1

Let us denote by Ji+ the invariant on the forward characteristic
dxi/dt=ci+ai, Js~, the invariant on the return characteristic
dxgldt=cj-aj. i-lor determination of the gas parameters at the point of

intersection of the characteristics of a different family we have the
equation )
+__ 2 ~ ~ + 2“1/ .
Ji —'-:Ta—c+2c, =c;+ parit
~ ~ Ja - 2aj;
Jy=2¢;4¢c—2%}— =, — .
d b2 ——r=cy -1

142

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000200090053-2



APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000200090053-2

B L LT VR VIVIVER VI PP

Hence, we find the disturbed parameters

=!;"+J;‘

ey=T et e,
n—1 (,+ J7)=a ntl v+ = )
ay="= (JH—=J7) =a+ > (ef +¢f —c—c)),,

where c.=&; cit is the value of the velocity on the characteristic in the
forward”direction in a simple wave which has a common point with the
characteristic in the return direction on the line BC.

In conclusion, let us consider the problem of the decay of the discontinuity,
by the terminology of [37], in the liquid-gas medium when at the initial
point in time the liquid is separated in the tube from the gas by a
diaphragm. The initial pressure in the liquid is Py, and in the gas §,.
The diaphragm is removed instantaneously; at the po}nt: of contact of the
media, the pressure is established as identical. In the acoustic approx-
imation where the speed of the interface of the media remains essentially
subsonic on propagation_of the wave to the liquid, the invariant on the
forward characteristic Jl‘—‘ﬁl/plal remains constant, and in the gas the
invariant on the return characteristic Jo=—py/ pga, remains constant. In
this case, for determination of the interface parameters we have the
equations

c#_L=_;2; PORN. Y
Q202 Qa2 Qa; Qa

Hence, the speed of the interface c*and the pressure on both sides of it
are:

PLI- Pi—p2 D pt= 81072 +02027’1.
@81 + Qa2 Q) + Qza2

Knowing how the parameters are expressed at the interface for each of the
media, let us conmstruct the invariant Ji- for the liquid on the characteris—
tic of the return direction and the invariant J2+ for the gas on the
characteristic of the forward direction:

Ji=c*—p*aa, JT=c*+ p*iess

Let us consider another important case of developed nonstationarity where
the characteristics arrive at the interface of two nonuniform media on
which the invariants of the general solutions are valid, for the speed of
the interface of the media varies at all times, the invariants on the
corresponding characteristics also vary, and their variation is determined
by the boundary conditions on both ends of the tube: In this case, on
the boundary we have the following:
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+ 2y | - 2a,
= -_— J =0 — )
W=ert =0 i =o— —% . (3.41)
where J1+, J~ are the invariants on the characteristics running
correspondingly from the left end of the tube and the right end.

These invariants are known. In addition to them we have the condition of
equality of the pressures on both sides of the interface in the form

2, 21y

A=) (2= A (= ) (2

The desired parameters of the system (3.41) are the speed of the interface
c] and the speed of sound al, ag. For essentially subsonic velocities of
the boundary where it is possible to present
~ ‘28 ,
asza(l—3), B <!, we have (a/;)"—lz_"l’_‘__i_.’li‘_ so that the
= [}

n—1a n—1

condition of equality of the pressures after the transformations assumes
the form:

- A ~=~2 -~
2a; — 2ay - 229 4} 2ay Q123
ng—1 nm—1 n—1 ‘62;‘2' ni—1 ‘tay

In this case from (3.41), we find the expressions for the speed of sound

at the interface: -
: % ng—1 7?1“12
A o s

! ng—1 np—1 iz;g
a;== ~ ~ d
1 2 (H__Ql_gt_\
m~—1 0o/

The pressure on the interface is defined correspondingly

~ =
- 2 ~=~p, Q& 2y
P=p=p— a1+ 1 5

When both media are drop liquids, in the linear approximation the speed of
the boundary and the pressure on it are defined

el +omly _ o _amae(Jf—17)
= oo+ ) 2 Q181 + Qa4

When the medium 1 is a drop 1liquid, and medium 2 is a gas, we have,
respectively:
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~ ~p
~ o~ n I Qa
a2Q/g +0101/T+L+— —2
o= ng~1 ny

Q81 + Qa2

01320132 ji"_j; & w)
p= nz ng—1
Qay - 0y

3.5. Propagation of Waves Through Discontinuities of the Tube Cross Section

A study is made of the transmission of a simple wave in a liquid with
constant speed of sound when the tube cross section changes abruptly. In
the case where the motion of the waves passes along the positive direction
of the x-axis, after the cross section discontinuity a simple wave will be
propagated, and before the discontinuity, a reflected wave occurs which
interacts with the incident wave, Thus, for known values of the parameters
of the incident wave it is necessary to determine the parameters of the
liquid on both sides of the discontinuity of the tube cross section at the
time of transmission of the wave,

_ Let us consider that on the left end of the tube the disturbed value of the
pressure is given as p1+, and that it and the corresponding disturbed value
of the velocity C) are related to each other by the condition of constancy
of the Riemann invariant for a steady-state flow ’

aect ?—'axﬂzx +of —;1-

Hence, the invariant for a simple wave on the characteristic in the positive
direction ig

+ +..%
Py~ T —p
J=cf $p 42170
. a1Q . aQ

Then, since on reflection of the wave from the cross section discontinuity
J17 remains constant (the region of general solutions), before the cross
section discontinuity the pressure Py and the velocity cj of the liquid
are related to each other as follows:

P=2pf *-_.51 +aie (E_‘—__,(:‘,)”': A +2‘1}C{"T._r. 31061 — 21001
The pressure and the velocity of the liquid after discontinuity are related
by the condition of constancy of the invariant on the return characteris-
tic of the undisturbed flow: ST LT
- P2‘=,le+a29(."24 — ). .
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In the vicinity of the cross section discontinuity the liquid parameters
are related to each other by the Bernoulli equation:

- .dcf . ‘;...-;...1_..”.... R
Pt =rmte(l4ed,

where ¢ is the coefficient of local losses.

From the joint investigation of the above-presented equations after

transformations we find the velocity cj from the continuity equations
¢2, then the pressures p1 and py

__ 8 +ags1/s52
mn

6= X

o (P —72)

+4arct — 2 (8, — ays4/59) |
X(l— 1 4p—2 '

(@1 +a351/57)? : )

| %

uhere b=(lt+e)—1; B=2b =R
. s o )

21

In the linear approximation where the expression under the sign of the
radical is close to one, we obtain

27~ 1—k "~ 20k ~
e ==—L -0 ——; p=p+ 2 (Cr—cl)’

1+4: 144 . 142 , (3.42) e
=2 5, 20k (c; —3 L:_k)

a 5 » /2 2 1+¢ 1 9

When a simple wave is propagated in a stationary liquid €1=¢9=0, from
these expressions it follows that the excess pressures on both sides of
the tube cross section discontinuity on transmission of the wave are
identical, that is, Ap1=pl—ﬁl=Ap2=p2—f52. This result coincides with the
formulas of linear acoustics [6],

Knowledge of the parameters on the cross section discontinuity of the tube
offers the possibility of constructing the invariants for the tube with
the cross section s; on the return (teflected) characteristics, and for
the tube s) on the forward characteristics:
T = Y j+=c —&.
Ji ; cy me' 2‘.-‘2+420,
When on the left end of the tube the pressure disturbance reaches a value
of p1+=0.5(f>1+13’2)—0.5(1+k)a161p, on passing through the tube cross
section discontinuity the liquid stops, that is, ¢1=c2=0 and py=p, of -
which we are convinced by substitution of the expression p1+ in (&.42).

- From analysis of the formulas of the linear approximation (3.42) obtained
by representation of the radical in terms of the Newton binomial by the
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first two terms it follows that in the first approximation the hydraulic
drag in the wave process has an insignificant effect on the numerical
values of the desired parameters.

If waves approach the discontinuity of the tube cross section simultaneously
from opposite ends of the tube, on the characteristics of which the
' 2 I
invariants /i =L"l++;—‘;, JTe=cd —T’E,are valid, for determination of the
1 2

liquid parameters in the vicinity of the discontinuity instead of (3.42)
we have:

) -p,——_-,‘(JT._——C;)alQG P:=.(Cz—.~/'z_) an.

The Bernoulli equation and the continuity equation are added to these equa-
tions. After transformations we find the desired values of the parameters:

; HIEY
cl=_al(1|:_k)+l/ al(p; » —I—%(.l{ag-{—.li’a,). (3.43)

Then we determine the velocity ¢y and the pressure P1s P,3 then we
construct the invariants for the tube of cross section Sy on the forward
characteristics J2+=c2+p2/a2p, for a tube with cross section s1 on the
return characteristic Jl"'=cl-p1/alp. The invariants obtained on the
reflected characteristics are related to the invariants of the incident

waves by the expressions: X -
s by Xpre on, J;"+JT=2¢'1’ Jz++-’2 =20,.

In the linear approximation where 2u (12—42+er1) & a';'(].l.k)z, is valid,
from (3.43) we find

oo 2 tadt  acte+aeto+ pf — pf
8y +aysy/sy a,0(l +4) ’
It s1/se—J5 .
144 .

Pi=py=

The expressions obtained above are applicable to the problem of nonstation-
ary escape of a liquid from a tank on opening the valve in the bottom of
the tank, It is proposed that the flow in the tank is uniform so that the
tank~tube system is considered as a string of pipe with a cross section
discontinuity. Let us consider the case of instantaneous opening of the
hole in the botton of the tank (Fig 3.8) where the external pressure
penetrates in the tank like an alignec rarefaction wave reflected on the
free surface of the tank, In the region of intersection of the character-
istics of a different family ajbjcy the characteristics are distorted, and
the liquid parameters in this-region are calculated by the formulas from
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the general solutions. The relative width of this region where the wave
front is included is on the order of Ax/%~c/a, where & is the height of the
column of liquid in the tank. This eroded front approaches the bottom of
the tank, it is reflected, creating a region of interaction of incident
reflected waves ajbycy, and so on. If the total number of reflections of
the waves from the free surface of the tank and from the bottom of the
tank is "n," then the total relative width of the wave front will be
Axn/%-cn/a, and for a value appreciably less than one the erosion of the
front will be neglected.
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Figure 3.8. The field of characteristics for nonsteady-state
escape of a liquid from a tank aj, by, a3, by ~- position
of the free surface of the liquid in the tan

At the initial point in time of opening of the tank for the selected posi-
tive direction of the x-axis the rate of escape, according to (3.23) is
defined as follows: -

(1) 8 | 2(ps—ps) @
C' = — e ettt L0 e e
K2 + [ e’

where Ptank 1s the blowing pressure of the tank.

At the bottom of the tank in this case the following pressure is established:
P 1)=ptank-apc . These expressions are valid for the time interval
22/azt20, that is, up to the time of approach to the bottom of the wave
reflected from the free surface.

On the free sdrface of the tank, a velocity of c(2) and a pressure according
to (3.40) are established in .the linear approximation:
: G5 s

aQ

(1 ~~ (9) o
cm=wk-ﬁ”=m—%w('v—
1 4-kg w

Key: 1. tank

8 ank> Prank are ine speed of sound and gas density above.the free surface
og thé tank.
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In practice for the investigated type of problems ap>>ag P eantcs therefore
it 1s possible to consider that when the wave reaches the %ree surface the
speed of the liquid doubles, and the pressure does not change.

The wave reflected from the free surface of the tank approaches the bottom,
is reflected from it and the velocity c(3) and the pressure p(3) are
established in front of the hole:

o8 (1 +lz)x
td

- [ 2(p"— py) (2) () J
x[l l/l+a?(l+k)2[ 2 +4ac™ 422k — 1|},
P = p"4-200c® — age® — et — 2p, — P4 ag (e — @),

PR
as,

*
8, sg are the cross sections of the tank and the hole, respectively.

On the next reflection of the wave from the free surface of the tank, the
velocity of the liquid on it is defined as follows:
\ .
W 2O+ k=D B g (@ _g(®_ M)
1-+kg

For subsequent reflection of the wave from the bottom the velocity and
pressure in front of the opening are defined as follows:

ORI O LRV
B

‘ 2(p®) — pa) '4) Y ]
x[l—l/l—}—az(l:_k)zl po A+ 4ac® 4 2ac® (k l)].

P9 =2ps— p® 4 ag(c® —c®) u 1. 1.

In Table 3.12 the results are presented from numerical calculations for
pp=1 bar, P nk=lo bars, p=103 kg/m3, a=10 m/sec, s=100 sg, k=20, u=2-104,
e=1, The caiculations were performed until the steady-state conditions
vere established.

Let us consider the problem of the nonsteady flow of a liquid in a tube
vhen the tube is partially filled with liquid. On instantaneous response
of a diaphragm the liquid begins to fill the line (Fig 3.9). The length
of the segment of tubes between the forward edge of the liquid in the
bottom of the tank is small so that in this section the wave can be
reflected a multiple number of times from the leading edge of the liquid
and from the hole out of the tank, before the reflected wave :arrives

from the free surface of the tank. Under this condition the invariant on
the positive characteristic of the tank remains unchanged.
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Table 3,12
1| @), £« (2), o) | (),
SR W | v ERE e | v R G | o
&% ° T 5% L&
1| 0,14 8,6 9 | 0,221 8,87 21 0,274 9,26
2| 0,28 10 | 0,334 23 0,28 10,68
3| 0,178 | 11,07 11 | 0,242 | 10,025 25 0,2788 | 9,332
4 | 0,066 12 | 0,149 29 0,283 9,384
5 0,189 8,77 13 0,247 9,02 33 0,286 9,43¢
6 0,312 15 0,2625 | 10,825 37 0,287 9,484
7] 0,21 11,02 17 | 0,263 9,17 41 0,289 9,504
8 | 0,108 19 | 0,273 | 10,73 43 0,289 | 10,49

1., No of the reflection
2. (1), m/sec

On the leading front of the liquid in contact with the gas in the tube,

the expressionsfor decay of the discontinuity are valid; let us denote

by p; ¢, the values of the pressure and the velocity in the tank before
the hdle, P2, Cp, the values of the pressure and the velocity of the

liquid in the tube. Here, at the tank-tube interface these parameters have
an even superscript, and at the liquid-gas interface (the leading edge),
an odd superscript (the interface of medium 2, 3).

Thus, for the tank-tube interface on the i-th reflection of the-wave
from it running from the leading edge of the liquid along the return
characteristic, we have the system of equations:

41 _ "y N A
p; =a [05 + )_J;l)]‘ jy):d“—.‘h—ﬂ ' (3'44)

(i+1)

pi =;l —-a,qci“‘",

Considering the equations of the flow rate and the Bernoulli equation
- from joint investigation of (3.44) after transformation we obtain:

oY — _ @t k) +l/ a2 (14 k)2 +l;_1+2a213“ (3.45)
‘ B w2 o et

where k2=sla2/szal, 81, 89 are the tank and tube cross sections,
respectively; i=1, 3, 5, 7,....
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Figure 3.9. Field of the characteristic of the
tube when it is filled with liquid in the tank
Key:
1. Interface of media 2, 3

Knowing the value of the velocity c (i+1) we find the velocity of the
liquid at the entrance to the tube c2(1+15=c1(i+1)sl/s2, the pressures
on both sides of the cross section discontinuity, that is, at the opening
on the side of the tank pli+ and the tube p2(1+1) according to (3.44)

Then let us construct the invariant on the forward characteristic of the

tube, along which the wave is propagated from the tank to. the leading
edge of the liquid:

- 1+1) (42
1+1) w1y, PY 4 P
== == .
J g 4 . ST

The pressure on the interface of media 2, 3 is defined from the condition
of constancy of the invariant of the return characteristic in the gas

(14+2) __ ~

s )=Pa+aa€'a¢'§[+2).

From the obvious coadition p3(i+2)=p2(i+2), c3(i+2)=c2(i+2) after trans-
formations from these expressions the velocity pressure and the interface
of the media 2, 3 will be defined

¢ - ~ 14+1)
u+2)=’¥+” 73 , g 73 +as0s/§
1+ks a0(l+k) ' '° Yy

’

where k3=azpq/ajpy, P3> a3 are the density and speed of sound in medium 3.

Then let us construct the invariant J2~ for the reflections from the

interface 2, 3 of the wave and so on so that we have the recurrent formulas
- for the invariants :

() (1+1)
P3 1+1 1+1 12)

JP = =, V=2,
a1Q a0
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_ For numerical calculations where multiple reflections of the waves from the
cross section discontinuity takes place (the medium 1, 2), in order to
obtain the steady-state value of the pressure gradient at the discontinuity
(plpz-uclz) it is impossible to use the linear approximation. With a
sufficiently high degree of accuracy it .is possible instead of (3.45) to
use the formula taking into account the nonlinearity by the third term of
the expansion of the binomial in a series

(41 Ptalf? (b +alf") B,
YT ae(l+ k) 2je2(1+h8

so that the pressure gradient at the cross section discontinuity

iy (P + e 0P
t \prrarie )

] 141y _
- A e e

*

where the expression of the first term is the value of the velocity cli+1
in the linear approximation.

In Table 3.13 the results are presented from numerical calculations for
the case where s1=100sy, p3=1 bar, p,=p,=10 bars, aj=a =103 m/sec,
p1=103 kg/m3, p3=1 kg/m3, a3=300 m/sec,ky=3-10"4, ky=100, e=1, p=2-104.
The calculation was performed until the time when the invariants on the
positive characteristic coincided, which means the occurrence of the
steady-state conditions of filling the line.

3.6. Propagation of Disturbances Through an Intermediate Reservoir in
the Tube

The relations obtained for calculating the parameters of the drop liquid

at the tube discontinuity on propagation of the wave will be used for the
case where the wave passes through the segment of the tube which is a
reservoir of constant cross section., In the general case the tubes
connected to this reservoir have different cross sections, and the speed

of sound of the liquid in the tubes and the reservoir is different (Fig 3.10).
Let us introduce the notation aj, a,, a3 -~ the speed of sound in the tube
to the left of the reservoir (region 1), in the intermediate reservoir and
in the tube to the right of the reservoir (region 3), respectively. Let

us introduce the dimensionless time t=ta,/%, % is the lemgth of the reser-
voir, the dimensionless coordinate x=x/%. In the plane x, t the equation
of the characteristics for essentially subsonic flows have the form

dx=tdt. For convenience of calculations, the time interval At=2 is broken
down into n small intervals so that the elementary time step is Aty=2/n,
where n 1s assumed to be even. In this case in the time interval 0gtg2,
Tpmay=ntl characteristics of one family are, found, where r is the character-
istic number. Then let us denote by k=1 the cross section discontinuity

at the interface of the regions 1, 2 and k=2, the discontinuity of the
cross sections at the interface of the regions 2, 3, respectively.
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Table 3.13
&, = + —
B oL & | & & | & | W
O 2y (3 ) (5 ' (6) o))
i 0 0,9 10 1 - 0,8
2 | o0,0178 1,78 9,82 9,79 2,76 -
3| o,0178 2,66 9,82 1,008 - 2,56
4 | 0,0352 3,52 9,64 9,522 4,47 -
, 5 | 0,032 4,367 | 9,64 1,01 - 4,266
i 6 | o0,0522 5,22 9,478 | 9,208 6,14 -
‘ 25 - 18,2002 | — 1,0546 - 18,1037
2% | 0,1865 18,65 8,135 | 4,645 19,1145 -
41 - 22,6132 — | 10617 - 22,5064
42 | 0,228 22,8 7,72 2,52 23,052 -
51 - 23,9628 | — 1,017 - 23,8556
52 | 0,21 2,1 7,59 1,79 24,279 -
61 - 24,6416 | — 1,0739 - 24,5342
62 | 0,247 24,7 7,53 1,41 24,846 -
7 - 25,0373 | — 1,0747 - 24,9298
72 | 0,2508 25,08 7,402 | 1,202 25,2 —
83 - 25,3783 | — 1,0762 - 25,27
84 | 0,254 25,4 7,46 1,01 25,5 -
8 - 25,303 - 1,0762 - 25,2857
86 0,25393 25,393 7,46 1,07 25,5 -
Key:
1., Reflection No 5. pyy bar
2. cj, m/sec 6. Jo , m/sec
3. ¢y, m/sec , 7. Jy~, m/sec
4, py, bar .

At the interface k=1 or 4=1 (first series of characteristics of the
positive direction in the reservoir) we have such initial expressions:

2;1 + (:'f=2;2 +Eg» 71= El+ ;:/‘wn

- = 3.46
Jy=Cy— Py €1=038, ¢ )

where the bar at the top means that the investigated parameter is dimen-
sionless: mamely, 3 _ ., - - :
1= l/a2v Jg=.,2/a2; J3=.I3/a3; pl=pl/a§Q: .

-y - -
Pr=Poas py=pyaig; Ci=cyjay; Cy=cylay;
S=S,/s;; W,=a,/a,.
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After the transformations from (3.46) we find the values of the velocity
in the reservoir for the cross section k=1 for an arbitrary series of
characteristics r.

s ]
w1 rms ) 20=9) e ay _ } (3.47)
Cr 1= 1_53 [l/ l+ (1+"1;2) (Jr—l,2+wljl.0) ]'1

where the superscript in the braces denotes the number of the region to
which the value of the corresponding parameter belongs, the lower first
index indicates the number of the series of characteristics, the lower
second index denotes the number of the tube cross section in it, In par-
ticular, the index "0" pertains to the cross sectidiof the tube 1 at its
input on the left.

Knowing the speed in the reservolr, from (3.46) we find the speed in the
tube 1 and the corresponding pressures:

5$’%=E$.’%§z.
Pid=mw, (TR —c);
P=eR—T2,,,

where the invariants are known

(2) =2 -
il =c}_’1,2 - F;E—)l,ﬁ

Tib=ell+ P,

Here it is proposed that the disturbance is propagated from left to right
that is, from tube 1 to reservoir 2 and then to tube 3; therefore the
speed and the pressure in tube 1 are related to each other according to the

formulas for the simple waves 2$,l&= _4’_"'1—_1’0, _%=;+, where p* is the

disturbed value of the pressure on the left end of tube 1, ;0 is the
undisturbed pressure in the tube.

After determination of the parameters in the circles of cross section k=1
let us construct the invariant J (2)1. 1 carried along the forward character-
istic in the reservoir from the crosd section k=1 to the cross section k=2:

2 =(2) 1 (2
T =c 402

In the vicinities of the cross section k=2 we have the following initial
relations: 9

2p+ oy =2p, 4% Ty=cy 4oy
Js=t—pjwy; =1y,
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where Wy =a,/a,; §3=s3/sz.

Figure 3.10. Propagation of the simple waves through an
intermediate reservoir in the tube. The field of the
characteristics inside the reservoir.

After the transformations we find the speed in the tube 3 for an arbitrary
seriesof characteristics r:

~3)  Wa+5; 2(1—52 - _ (3.48)
Cr,;~—- l_;g {l/ ]+ﬁ5—3(1ﬂa—j’(‘21'3+l‘(?{)“‘l )
where the invariant 31__(:2[) _:_L_? known (in particular, for the initial condi-
tions), and the invariant J 3_1 3 has the form:
’

-@ =3 -3
T =2 — 2, afws

Knowing the - . Bpeed in the tube 3, we find the values of the other
parameters in the vicinities of the cross section k=2:
=5y
=2)__ ) = - - -
PA=T =2 Py (30T, ),

Then let us construct the invariant for the reservoir on the characteristic

of the return direction: 70 8 — 0,
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In the linear approximation from (3.47), (3.48) we obtain the following
expressions:

(2 (1
"(2)~j$—)l.2+“'lj£.8 Bt
C,.] == Cr2

I + w59

T (), T2 -(3
ol =pit p=ph.

(3 . TF(2
WaliD, 5+ 70

i

w3 + 53

The above-presented expressions are valid for the case where on the
characteristic of one family on both sides of it (bottom and top) the
Riemann invariants are different, which corresponds to the propagation of
the shock through the intermediate reservoir. For disturbance of arbitrary
shape when there are n small intervals in the time interval At=2, in
relations (3.47), (3.48) and others, it B necessary to write the following
invariants in this form: instead of Jr-(-l (3.47), (3.48) we have

/fli)ll 2=-C.1(2—)n,'.‘—;£2_)n'2, and also w17£'3=2;ﬁ"&_;0; 7$§-)n.2= ‘—-P-o—

Under these conditions the formulas of the linear approximations are
converted to the form:

o 20 =F) =y =~ . 2(F—T
(2)__ .0 0 2 Py, Po
Cr lﬁ—#ﬂﬂ;z , pﬁf}:p{{:po-’-—(.'—)_-

1+ w5y

Correspondingly, for the cross section k=2 we have the formulas of the
1linear approximation:

e = AFU=7) o - —
;?{ =po +——(ﬁ'0;—-szo—)' J$91,3= — Polw;,
- 4(p—7>
= (Pid— 7o)

O+ wise) (wa +50)

oy =y~ | 4w (P —T0)
@z = 4w (Plo—T)
Pr.2'—Pr.%-Po+ (1+W1_82)(W3+§3) .

expressions are valid for r2ntl, and for r<ntl it is

2)=— = t.
—n po cons

The above-present_e_tz
necessary to set Jr
Let us consider the case where the wave reflected from the boundary k=2
approaches the boundary k=1, Here the corresponding invariants and
velocy&?s will be expressed in terms of the pressure at the interface
k=1, P.Tor For this we shall exclude the corresponding invariants from

- the invéstigation, and the desired parameters will be defined in terms cf
the limiting pressure. Let us introduce the notation:

V=1 4wsy, Uy=ws-+5;, Vs=5—u;
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4WAL VidaLLaL UOL UNLIL

Then we shall denote by z the number of the reflection at the boundary k=1.
For example, 2z=1 means that the wave from tube 1 has approached the cross
section discontinuity k=1,

Let us denote by R the number of the series for the time interval ?5[0,2]
or Re=[1, nj.

In order to obtain the recurrent expressions let us use the recursion
method.

For the boundary k=1 from (3.55) considering the expressions for the in-
variants J(Z;Zn , We have:
s

72 (1 -~

&) Rl igypa+ 21’5?1(:—1);;_0- Po

CRy(z—1)n,1= v .
1

(@ —_—p N7
-IS?-"-’_ Po PRO=Po -- if there is no pressure discontinuities
z=1, 2, 3,... Then we find the pressure

- - 27, -7 -

2 1 PRy (z—1)n,g— PO 1 2
Pu(x—l)n.r=P5e+)(x—l)n.l'— sz - 'J-'(‘F =1 ) J&'z—(:—mﬂ'
. 1 1

By using these formulas we construct the invariant on the forward
characteristic running from the cross section k=1 to the cross section k=2:

- 2 — - 2 =2 .
J§i<z_1)n,x ~ (2P5?2(:—1) 1 —-Po)’f-(Fl - 1) Ju(z—z)nﬂ-
) s

At the interface k=2 in the linear approximation we have the expressions
for the velocity and pressure:

-2 -

P — J(R-)O-(z—-l)n,l"" Po |

+(z—- 1), 2=
LF]

~(2) (3 - w: W3 7
P&+(:—l)n.2= PS?}-(:—I)A.Z'-——‘I?O (l - ‘If_s) + ‘lf_a ng-(z-l)n, I
3 i

Then we construct the invariant for the characteristic of the return direc-
tion running from the cross section k=2 to the cross section k=1:

L3 v
J(2 3 (2 3
TR a-tym2= 7, Jﬁl(z-x)u,t—.(l-i-j‘g) Po.and so on,

After transformations for the ctoss section k=1 we have the recurrent
expressions for the basic parameters of the liquid:

- - 2P z—tymo— 70
PR s~y =Py + (Phie \;.): )+

4w 1 O e (1) r
J+—2 (—f— - l) v W pled (me2yn,0— Po); (3.49)
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- 2 () — ) | 4T & - -
2) . R+(z2--1)n,0 0 3 —- 1 .
Rl (zmtyn, 1= wl" + Vi, EJ e (Pu (m=2)n,0— P); .
17 -

wl )

Correspondingly, for the interface k=2 wa have:

- -2 .
05?+(:—l)n.1=6‘H(z-1)n.xsz, V=

z
—(2 - dw; N \p2-m (1 -\,
Pu(z—lm.z———l’o"r"—-wl.{,‘a L\P’ ™ (PR (m—1yn0— Do)

mel

(3.50)

z
;:gl(z—l)n, 2= ‘1’1.:1"3 E wen G’gi)-(m—‘)"vo - ;0);

mel

(2 (3) o
Cfelu—un,z == CRt(z—1)n,253

The transition from the notation z, R tor and time is performed by the
formula '

r=R+z—ln, i=2E=liai )

In the above-presented formula the terms in the lower indexes (z=1)n or
- (m-1)n, (m~2)n are multiples for the time interval t=2 with the factor
(z=1), (m-1), (m~2), and so on.

In the special case where the pressure discontinuity enters into the inter-
mediate reservoir in the form of a step so that p(ﬁi( _2)n’0=p+,

(1) art =+ .

pR+(m-l)n,0 P, where p’ is the disturbed pressure on the left end of the

tube 1, the expressions (3.49) and (3.50) are transformed to the form:

—2 ~ =2_(F+—?o)_,_4‘l’§(;“—?o)(1 _])\I!“’—l_

1 —
d #o ¥ ! W0, vy v '
—2) — -1
0yt (5 5y ¥ETI
P —p, l1,’%()0‘ ) G—
552>=2(?—7:o)+4‘V§(17+—'ﬁo) S
L4} q’?“’a W=t '

a4 (5t =20 ¥
WY, v—1 '

When establishing the steady-state flow in the intermediate reservoir where
_ ~ the pressure "goes down" as a result of numerous reflections from the

cross sections k=1,2, the values of the parameters are calculated by the

above-presented formulas in which it is necessary to set z=», In this

case we obtain
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4NVAY VL AL VUL UL

“W_=@ = = =@ = 2wy (5 — )
APE= P = By AP Y — e 28 =)
P P Po==4p P Po s + w328

From analysis of this formula it follows that the magnitude of the excess
pressure in the intermediate reservoir does not depend on the elastic
properties of the reservoir, but is determined by the characteristics of
the tubes 1, 3. On going from the dimensionless parameters to the dimen-
sional parameters, we obtain:

2(p* —
st =apit= A=),

assy

= For limiting values of the velocities, corresponding, we obtain (for z=w«):

. % (p* —po) | P 28553(p " —Tpo) .

- =
W, -+ w5253 w3 + w5253

-(3) 2(p* —p0) . ~)_ 25(pT — )

Clo= == y Clo= —r— .
w3 + w5253 : w3 + wyS953

From the investigation of these formulas it follows that in the limiting
case, just as should be expected, in the intermediate reservoir and on
both boundaries of it an identical liquid flow rate is established.

In Table 3.14 the results are presented from numerical calculations of the
transmission of the rarefaction shock from the tube 1 to the intermediate
reservoir of_the same cross section and then to the tube 3 under the
condition: p+=0,

;0= 10—2v §2=53‘= 1, wl=w3=3! 7£f%w1 +;O= 0'
7}91,aw3+;0=0. 78?%+Po=0, 76?%w3+;0=0'

The results presented in the table must be multiplifed by 10~2,

In Table 3.15 the results are presented from the numerical calculations for
the passage of the compression shock p+=10‘2, po=0 through the intermediate
reservoir and for the remaining conditions as for Table 14, Here

In the intermediate reservoir the cross section of which is identical
with the cross sections of tubes 1, 3, the speed of the liquid at z=«
approaches the value which voccurs in the simple wave of the initial dis-
turbance propagated in tube 1 and detem}ned in accordance with the

- ot —
formulas for the simple wave =2 = P 0,333. 102,
1

159

-FOR' OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000200090053-2



APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000200090053-2

FOR OFFICIAL USE ONLY

Table 3.14
ar=at | A= =iy | ara | 1 | e
1| —0,5 0,5 -0,25 0,25 0 —0,5
2| —0,375 0,125 —0,3125 | 10,0625 —0,25 —0,375
3] —0,34 0,031 —0,328 0,015 —0,313 | —0,343
4| —0,336 0,007 —0,332 0,003 —0,329 | —0,335
5( —0,3335 | 0,0015 | —0,333 0,001 —0,332 | —0,33¢
B 6| —0,3335 | 0,005 | —0,3335 | 0,0005 —0,333 | ~0,334
Table 3.15
P| =t | AR | = | B=pm | T | gy
1 0,5 0.5 0,25 0,75 1 S —0,5
2 0,375 0,875 0,3125 0,9375 1,2%. —0,625
3| o033 | 0,8 0,327 0,984 1,311 —0,657
4| 0,336 0,903 0,332 0,997 1,329 —0,665

In the conclusion of this item, a study is made of the problems of the
propagation at the leading edge of the pressure (velocity) discontinuity
in the liquid filling the intermediate reservoir of complex configuration
and made up of a number of successive reservoirs, each of which have
constant cross section (see Fig 3.11), and the other properties of the
reservoirs are identical, that is, a1=a7=a3= .., 4.9, where n is the
total number of intermediate cross sections (reservoirs) between the tube 1
(s1) and the tube n+2 (Sn+2)' If the number n=1, then the total number
of regions is equal to 3 as occurs in the above~presented cases. In

Fig 3.11 the total number of intermediate cross sections (reservoirs) is
equal to 2,

Let us denote by Ap+=p+-p0’the pressure gradient at the shock front in the
tube 1, Apn+2=pn —Pg» the pressure gradient at the shock front., At the
output from the ¥£nite intermediate reservoir, and according to (3.49)

we have the relation between them

T n n _ ) LI
Apnea=20"10p*[] s, =[l'll (1 ﬁ-sx)(l’('l-l“1 s,)] ' (3.51)
=1 ‘- \ -
where s =3l j= Sm2 o ipo ioral gradient of the cross sections

,
$i 51

between the right and left tubes.
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Figure 3.11. Propagation of simple waves through a series of
series~connected reservoirs, The field of the characteristics
for the cross section k are converging at the point Ar,k

The maximum value of the pressure gradient at the exit occurs when the ratio

of the cross sections of the corresponding intermediate reservoirs is
defined as follows: §;="+}1/I?

In this case from (3.51) we find:

(APrs2)may=2"+1Ap" 1 (1 _|_"+1’/R)f'“. (3.52)
At the limit when the number of intermediate reservoirs is very large and

nK
n+1

and

n>>1, so that "+-,1/T<=1+a and |§|<<, we have ""V[?é[-{-

e e e I

After transformations for n=» we find:

(APnt2)max, nsn=0pt/ VR.

The ratio of the pressure gradient for the case of n intermediate cross
sections to the pressure gradient for the case of n=0 for different K is
presented in Table 3.16.

The presence of intermediate reservoirs is felt to a greater degree when
their number is large and the cross section gradient of the tubes K is
significant,

16l
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Table 3.16
n
k 0 1 2 3 4 oo
2 1 1,035 1,036 1,044 1,048 1,062
4 1 1,1 + 1,155 1,185 1,186 1,25
10 1 1,272 1,4 1,48 1,53 1,74
100 1 1,67 2,25 2,7 3,05 5,04

Any deviation of the ratio of the cross sections s, from the optimal value
leads to a decrease in the pressure amplitude in tﬁe leading edge of the
shock.

The problem of the propagation of a disturbance through a series of inter-

mediate reservoirs can be generalized to the case of the propagation of

a disturbance through the tube of variable cross section. For this purpose

the tube of variable cross section is considered as a complex string of
- pipe made up of individual short sections of tubing of constant cross
section, that is, the continuous nature of the variation of the tube cross
section is replaced by discontinuous. In each section of tubing of constant
cross section the corresponding Riemann invariants are valid, and the
calculation of the liquid parameters on going from one tube to another is
realized in accordance with the presented formulas for the tube cross
section discontinuity.

If the segment of tubing of variable cross section is broken down into

"n" segments of tubing of comstant cross section (see Fig 3.11), the total
number of investigated regions is n+l. Let us denote by Ar,k the
coordinate of the point lying at the intersection of the forward character—
istic r and the discontinuity cross section of the tubing k. To the left
of this cross section is the region with the index "k," that is, the sec-
tion of tubing of constant cross section sb, and to the right of this cross
section is the region with the index "k+1," that is, the segment with
tubing of constant cross section S8k+1+ The index of the region with the
corresponding parameter.is located at the top in parentheses, and the index
of the cross section is at the bottom. In order to determine the liquid
parameters on both sides of the cross section "k" it is necessary to know
the value of the invariant on the characteristic of the inverse direction,
running from the cross section "k+1" from the characteristic of the forward
direction along below and also the value of the invariant of the light
characteristic, but running from the cross section "k-1" (see Fig 3.11).

The initial system of equations for the point Ar k has the form:
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—(k)__ TGk —(k =(8) | (A o(R+1) | =(R+1), (3.52,a)
pra=Jid1—cii; 2piatcin =2pi Y +eft
—(h1)__ =(k+1)  TlhED) | Skl .
PV = T s Skel
Sk
city=cDstrn,
. - —(k+1)
where the invariants Jﬁfk’_x, Ll. k1 are found from the preceding calcula-
tions:
(k) =0 T L kel ~(k+1) ~(h+1)
J! =i+ ﬁ—l,%+l=cr—l.h+l—p$—l,k+l-

After the transformations (3.52, a) we find the expression for determining
the velocity:

saen_ 1 [y /T 20 =)~ o |
e = |/ ]+_1-T-_s(T+W—( r,k-l’l‘-lr—l.kﬂ)"l!'

Then from (3.52,a) we find the values of all other parameters of the liquid
and construct the invariants:

- - ~(k+1 Tk =(k —(R)
TN =2 4 oY, TR = — i

If at the initial point in time the liqﬁid in the tube has become quiet,

then the initial conditions for the problem are the following:

T+ py=0 . and ;0 is the initial pressure. Otherwise J{iHl=cit))—pitt1)
where the initial parameters are given for the undisturbed flow of liquid.
When the pressure discontinuity pt enters into the tube in the form of a

rectangular step, so that the reflectionsat the cross sections k=0 and
k=n+l are absent, the boundary conditions are written in the following form:

75.1c’a=*2;+ _;o; -7#:3%’{';0’—'& (3.53)

When at the boundary k=0 the pressure is given ;(0())=EI 0 the boundary
condition in this cross section is written as foflows:’

TN =25+ T 24, T8+ py=0.
The time is related to the parameters r, k by the expression

= < 2(r—1) k
P gk
nATCn n+1 +n+l

’
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where —t‘=ta/2, % 1is the total length of the segment of tubing of variable
cross sections; a is the speed of sound in the liquid.

In Table 3.17 the results of the calculations are presented with respect
to propagation of the rarefaction shock to_the tube of variable cross
section when s,41=9s7, s(k+1)=1.73; p+=0, p0=10‘2 under the boundary
conditions (3.62) and n=4. The table values of the parameters must be
multiplied by 1072,

. Table 3,17
I I I N T - N TR
| 1,267 0,682 0,288 0,267 0,6085 0,7125
2 1,515 0,715 0,226 0,513 0,796 0,774
3 1,73 0,608 0,1975 0,73 0,813 0,802
4 1,89 0,578 0,1925 0,895 0,809 0,8075.
H) 1,81 0,598 0,202 0,81 0,794 0,798
6 1,783 0,606 0,215 0,783 0,796 0,797
7 1,79 0,603 0,015 0,79 0,799 0,798
8 1,8 0,602 0,201 0,8 0,799 0,799
9 1,8 0,602 0,201 0,8 0,8 0,8

The analysis of the results of the numerical calculations indicates that in
a channel of variable cross section the appearance of both large pressure
amplitudes and small significantly exceeding the amplitude of the initial
disturbance with respect to magnitude is possible. Thus, on propagation of
the rarefaction shock to the convergingchannel, the calculated values of the
pressures reach negative values, which indicates the possibility of the
appearance of cavitational phenomena. In particular, for the constricting
channel the maximum surge of negative pressures occurs on the characteristic
of the first series in which the parameters of the liquid are determined

to (3.51). If we denote by py the saturated vapor pressure in the liquid,
then the minimum value of the pressure at the entrance to the tube for
which the pressure at the exit reaches the value of pPs for n== will be
defined by the formula (3.51) after the corresponding transformation:

- 1 -
— ——— — D)y S=S,20,/S . Key: 1. i
(pmm» Po) Vs (Po— Ps) G‘n; “?02‘) v ey 2 03 gflt

In particular, for s=100, pg=0, py=10"2, E+min=0.9-10-2. This means that
for p+<p:11n the pressure at the exit is expected to be less than Pg-

3.7. Propagation of Disturbances Through the Joints :of Complex Tubing
A study is made of the case of the propagation of a disturbance through

the joints of complex tubing in which a drop liquid moves with constant
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speed of sound (n=1). At the joint several simple pipes converge where the
basic main line has a cross secticn sg. The disturbance :ls propagated from
the main line through the joint to the other tubes (see Fig 3.12). The
solution of the problem for this case is generalized to another where the
disturbance approaches the joint made up of tube with cross section Sq-

The initial system of equations has the form

P1=7’1+‘110(01‘—El); Po=;o+aoQ(203'—-,zo~Co): (3.54)
2Po+QC(2)=2P,+(1+€;)QL‘?; ‘ '

m
Cosozzclsu
i

where m is the number of tubes running from the joint; e4 is the coefficient
of local losses reduced to the velocity cj; Pis Pgs Ci» Cp are the values
of the corresponding parameters in the vicinity og the joint which are
established at the time of transmission of the disturbance.

Figure 3.12, Schematic of the complex tubing with joint

In the case where two pipes run from the junction, in particular, one to
the gas generator and the other to the combustion chamber, the system of
equations (3.54) is resolved in radicals with independence of the

coefficients ey with respect to the velocity. After transformations, for
m=2 we have:

08a4+cgaa+0302+coax+ﬂo=0' (3.55)
where the following notation is introduced:
0= B—D; a;=4B(A +¢)+dagl;
ar= A4+ 2842 KO~ Q) —aiD — 28 o, 18801,
@=4(Ae) (47— HiQ Q)+ Bt (2 + )

i 1+‘2 1+l1
ap=(A2— £iQ, — £3Q,)* — 4£3£3Q,Qy;
, ___aik aky . 5o L B
A_l+ll+l-|-l2, B=1 14eg 14’

_ 44145
T+l te)
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- _ak} | ek} 0= a} 2F, |
——l-l-l] ll+lz' ! (1 +¢)2 1+q’
2
| 2AFy |
Q’"‘(1+.,)2+1+-z’
o Fo—F Fo—Fyp . . ~ -
AF ==L " L; AF,=20 P 23 l"o=Po+aoQ(2‘-'5"—“u)3

ﬂ=m—m@:&=%—w@:h=ww

ky==S$,/s,.

The roots of the equation (3.55) coincide with the roots of two quadratic
equations.

() oot (v + 22— 2) o,

where y is the real root of the cubic equation of the type

2 2 o
8y°— 402 s 2ala3 8ay y+_|39_ 412___“_:24_ _i:,_o_
ay a,

ay Ty ag
In turn, the parameter B is defined:
= HY_4 &
Pt l/8y+(a4) 4 a "

The disturbed values of the velocities in the tubes 1, 2 are defined,
respectively, as follows:

b19=

1 2)
AFy,0—agey +~— ¢
_ap +l’/ aly ( 12— di+ 5 b

l + 8,0 1+ t1,2)2 14e
The disturbed values of the pressures are determined according to (3.54).

For essentially subsonic flows of liquid where the following inequalities
are valid
I2(l +‘°‘H (AFI "'aoCo“-o,DCo)l <<ah
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the disturbed value of the velocity in the tube sg in the vicinity of the
junction for arbitrary m with accuracy to the linear terms of the expansion
is defined

m

ki [ Do —p ~ -~
2 : -'—(—u +2a5ed — agcy +am)
o a Q

Cp ==

m
14a vi
g

The disturbed values of the velocitjes in the other tubes in this case are

defined
- ¢ = AF;— agey .
a;

In the case where the disturbances approach the junction simultaneously
along all of the tubes, on the corresponding characteristics of which the
invariants J3", Jy~ are given, in the initial system of equations instead
of (3.54) it is necessary to write the following:

I

Pi=aQlt,—Jr); po=aw (/¢ —c,); J§=ct + -
@y

.
]

4
JF + Pi

=C; —_——,

a;Q

In the linear approximation in this case the expressions for the velocities

are valid:
mj " o m
"0;2‘_1'(“0-’3.'*‘“1/1_): "*‘%Ei H
s ay o 2

{=i

¢ g!;‘—{-%’- (/3 —cy).

3.8. Propagation of Simple Waves Through the Gas Line Cross Section
Discontinuity

It is of interest to consider the problem of the propagation of the simple
compression or rarefaction wave through the cross section discontinuity of
a tube filled with an ideal gas that is moving or is at rest, for in this
case the subsonic nonsteady flow of gas in the simple wave can become a
sonic flow on observation of defined conditions.

For determinacy we assume that the simple wave is propagated from left to
right, and through the cross section discontinuity of the tubes it goes
from the tube with cross section sj to the tube with cross section 8. In
this case in the cross section discontinuity the simple wave experiences

a reflection to the internal region of the tube 8y {to the left of the
cross section discontinuity) and passes as a simple wave with altered
values of the parameters into the tube sj.
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The initial system of equations for calculating the parameters of the gas
on transmission of the wave includes the equations:

of mass flow rate

Q16151 =252 (3.56)
energy

9+ (n — 1) =223+ (n—1) ¢k (3.57)

the adiabatic curve in altered form

2 _n-1 2 n—1
a1 =0r1Q5l H

_ the equation of constancy of the Riemann invariant on the positive
characteristic at the time of reflection

2ay

+ 28 =
= ] = ————-1C1;
Ji T +e p—Y +a

n—

the equation of constancy of the Riemann invariant on the positive character-—
istic for a simple wave

The parameters with the subseript "1" pertain to the gas in the tube sy,
and with the subscript "2" to the tube s3. In the investigated problem
the invariants J1+, J,” are given. Therefore it is expedient to express
the desired values of the velocities cj and ¢y 1n terms of them. After
transformations instead of (3.58) and (3.59) we have the system of equa-

_ tions:
9 2ax]3 (n—1) 2 ' 2411?‘('1—-]) 41 -__, (n—1)
— e el (s (ks
: n+1 @ T TUT = )2(n+1)‘ (3.38)
2
+_ 2a| . 242 N g?_——l
(j‘ n—x)s‘_(n_x j’)(a,)" S (3.59)

In order to obtain the numerical results, let us be given a number of
values of the speed of sound a; in the tube sy for the given disturbance
propagated in the tube s;; then from (3.58) we find the corresponding
values of the speed of sound as which occur on disturbance of the gas in
the tube sy. Then from (3.59) we find the values of the cross section
ratios 51/82 which correspond to the given values of a;. The results of
the numerical calculations for the case & =52=0, 4;=3,=300 m/sec,

n=1.4, a1*=330 m/sec, c;*=150 m/sec, J1+=i800 m/sec, 52'=1800 m/sec

are presented in Table 3,18, Obviously, the cases of subsonic or sonic
gas flows are of practical interest.
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Table 3.18
a, 0 200 220 230 | 290 | 300 | 310 | 330 340} 360
ap 539 | 375 ] 359 | 352| 324 300) 324 | 330 337 | 345
c1 1800 | 800 | 700 | 650 350 | 300 250 | 150 | 100 0
[ 1205 [ 3731 295 262 | 120 120 | 120 150 | 183 | 224
My = 4 [3,1812,82]1,2 1 |0,805 0,455| 0,284 O
M; 2,32 | 0,995 0,823} 0,743} 0,37 | 0,37 | 0,37 | 0,455| 0,54 | 0,65
si/s2 o |10,8)4,88]3,3({0,6 |0,580,397 1 |1,77]

By the results of the numerical calculation we have the conclusion that
the critical flow conditions in the tube s1 come for defined magnitude of
the disturbance (in the given cases compression). Here the speed of
sound in the tube s, reaches the minimum value just as the cross section

ratio of the tubes sj/sp. Hence it follows that the following condition
must be satisfied:

/] LI
day (Sz)

In expanded form this condition has the form

9a; ay+co c)—ay )

da; @ ayey
which is valid on observation of the identities:

c1=ay, 0ag/da;=0.

Fromthe equations (3.58), (3.59) considering these identities after the
transformation we find that on transmission of the compression wave in the
tube 81» the sonic conditions of the flow are established for the depen-

dence of the ratio of the tube cross sections on the initial disturbance
expressed in terms of the invariant J1+:

]/ 2_n_ '14-]/'1112 1 = (3.60)
n_l(—)(. — (=1 :

J 7 '

S=Sl/$2=

where we have denoted J=J1+/J2',

169

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000200090053-2



APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000200090053-2

FOR OFFICIAL USE ONLY

From physical arguments it follows that the criticial (sonic) flow condi-
tions are established for the given magnitude of the ratio of the tube
cross sections for the interval of dimensionless invariant

n+1
l/'l+l j<3—-u

In Table 3.19 the results are presented from the numerical calculations for
n=1.4,

Table 3.19

7 1,004 1,1 1,2 1,3 1.4 1,5

s 0 0,03 [ 0,59 0,86 0,97 1

The expression (3.60) denotes that if for a given value of the cross sec—
tionratio s the disturbance is larger than J (defined by Table 3.19 as an
example for n=1.4), sonic conditions are established, and vice versa.

The other is also valid: for the given disturbance J the sonic conditions
are established for a value of the cross section ratios less than defined
by formula (3.60).

In the tube sy the sonic conditions of the flow on transmission of the
compression wave are established under the condition cp= ap so that the
cross section ratio is related to the disturbance by the expression

',T=T‘(J ——1/ (l—J,’.) (J +l/-""(|—/3,))"“‘ (3.61)

where j_Ja—n ,3_n

—— e,

n41 I7n—1"
The dimensionless invariant J, is found from the physical arguments in

such limits:
) )
l/ </, <.
n+1

The results of the numerical calculations for n=1.4 by formula (3.61) are
presented in Table 3,20,
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Table 3.20

J l 1.5 : 1,47 1,4 1,37

Let us consider the cases of the establishment of sonic flows on trans-
mission of the rarefaction disturbance from tube sj} to tube Sg. If the
sonic flow is established in tube S1s then it is necessary to assume that
considering the direction of propagation of the wave and the direction
of the disturbed velocity opposite to it,

n—1 J,+.
3—n

Taking this into account after the transformations (3.59), (3.58), we
obtain the relation between the ratio of the cross sections and the dis~

turbance: :
= (5 )
N2
e A T ) o

In Table 3.21 the results are presented from the numerical calculations
for n=1.4 by formula (3.62).

Oy=—0=—

Table 3.21
7 0,686 [ 068 [ 060 | 07 [ o7 | 0,72 , 0,73

s 1 0,73 0,555 0,393 | 0,257 | 0,119 I 0

Here the dimensionless invariant J is within the limits:

3—n _ 3—n
< —.
ntl ST YEmED

The sonic flow is established in tube s, on propagation of the rarefaction
wave under the condition

=1

02=—a2=—n +1

Here the cross section ratio is defined

%=‘:‘=(l/;_2—,('—/’)—1)(1+ l/%([__ﬁ))%’ (3.63)
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i where the dimensionless invariant is within the limits

3—n 2
<J .
ar S7< 41

In Table 3,22 the results are presented from numerical calculations for
n=1.,4 by formula (3.63).

Table 3.22
, o,e—'s' 0,7 | 015 | 0,8 085 | 09 [ 092
s 1 ' 1,035 1,086 I 1,33 1,99 l 8,56 L
L |
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CHAPTER 4, RANDOM PROCESSES IN ENGINES
4.1. Sensitivity of Dynamic Characteristics to the Disturbances

Previously, a study was made of the engine characteristics under the
assumption that the values of the parameters of :the working process coin-
cide with the values adopted for planning and design.

At the same time as a result of a number of causes (the effect of the
internal and external disturbing factors) the real values of the parameters
always differ from the calculated ones.

It is natural that this leads to variation of the dynamic characteristics
and deformation of the stability limits of the engine.

The analysis of the effect of the variation of the parameters on the dynamic
characteristics of the engine can be made using the sensitivity functionms.

The sensitivity functions are the partial derivatives of the j coordinate
of the system with respect to the variation of the i-th parameter
pji=8xj/aci —-— the frequency derivatives calculated for the rated values
of the” parameters.

Initially let us consider the application of the sensitivity functions in

general form. Let the transfer function depend on the parameter aj, that

is, ®(s, a4); then B (s)=0¢(5.¢r1) which determines the additional transfer
“ 0(11 !

function equal to ’

AD, (s, a)) =B (5, a,) — D (5, &)=t (5) Agy. (4.1)
Since the initial transfer function can be represented in the form of the

ratio of two polynomials, the additional transfer function is defined as
follows:

A®, (s, q) =2 RE. D g D(s" R = (s,0) AD(s)),

da; D(s, ap) (4.2)
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where AR(s) and AD(s) are the versions of the polynomials in the numerator
and denominator of the transfer function. Formula (4.2) makes it possible
to construct the structural diagram of the sensitivity (Fig 4.1), which can
be used to calculate the errors on a computer

-7 R Ag g)’

AR(S)
D(s)

Figure 4,1. Structural sensitivity diagram

_ For analysis of the dynamic characteristics, in particular, the frequency
characteristics, it is expedient to consider the variation of the amplitude

and phase frequency characteristics as a result of deviations of the
engine parameters.

Let the transfer function of the engine parameter have the following form
without considering the transformation time:

' W(s); Ko (4.3)
- Tes+1
The amplitude and phase characteristics
s

H —te ~ ar
() Viero @ (w)=-arctg ti:TK ;

(4.4)

Let us assume that ka, & and Tk‘Are calculated values, Aka’ fs ATk are
their deviations from the calculated values, -

In this case in the lipear approximation the amplitude and phase
characteristic has the form

H(mv AK’ AT)=H (m)—i—l"'ﬂ.xAK_l"p'ﬂ;TAT- (4 '5)
@ (w, AKv AT)=(P(“’)+P'~P,KAK +PP»TAT'

where Hjj are the first-order sensitivity functions
AT =AT,, AK = AK‘,K_,;,-
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The sensitivity functions u i are defined by expansion of the initial
function in a Taylor series in the vicinity of the calculated values of
the parameters and dropping the terms of the series above first order.

Thus, from expression 4.4 the sensitivity functions are defined as follows

oH . " Kol |
- P i H.T== (1 = 72.9V002
K i V14 Thu2 (1 + Tia)

["'H:x—'

_O.. — e
o=, Pa.r——m-
13

Considering the sensitivity functions, the phase-amplitude frequency char-
acteristics (4.4) will have the form

K, ';‘"l"AK K .oy —AT

H (0) = —22 el
Vier (14T
wAT
3 (w):_— —arctg u)TK— W .

In the general case the transfer function of the engine has the form

bos™ + bys™ 4+ .. 4+ bpyS + b . (4.6)
ags® +ays" " 4 ... 1S +an

W (s)=

The coefficients of the transfer function depend on the parameters oj,
that is, by=b(a;); ag=a(aj), k=0, 1,2,..., m, 2=0, 1,2,3,.404n. If

we make the substitution s=jw in the equation (4.6) and after making the
corresponding transformations, we obtain

Hw=1/ A+ B}

(“‘} l/ C_:, ('m)"+' 'm (“;)' H

% (v)=arctg Z@C ()= A(w) D (w) %.7)
A@)C(w) + B(w)D(w) *

A(0) =P (jo)]=bp— b+ byy_A ...
B(w)=Q[b(Jw)}=bp_ 0~ b, _30*+...
C(o)=Pla(Jv) =an__an-2f"2+am_4‘”‘+..i
D(w)=Qla(Jo)]=a, v —a, *}a, g°+...
P[.] is the real part, Q[+] is the imaginary part of the polynomials.

(4.8)

Since the coefficients by and a; depend on a4y, then

H (0)=H [w; ap(e,); ... a,(a); bo(ay), ... by ()] (4.9)
e(0)=o[w; ap(a,); ... a,(a); by(ar); ... bu(ay)]
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and the sensitivity functions are defined as follows:

n
OH _ V0 day , OH b,
e, _)9,, 201 amT d 084 00, .10
0? 0a,+ 01: 06,, (IG .ll)
- z day 0a; % by oa;’
I

The factors ‘l’ o, 0?; i
6b~ 00.( db.

transfer function (the values of m and n) and the values of the coefficients
ap and bk'

are defined only by the structure of the

In accordance with the equations 4.7 the cofactors in the equations 4.10
and 4.11 are determined by the equations of the type

04.

ot _| (—1) : "’*C('D)H’(w)lb(jw)i“ £k is evenys.
(— I)TW‘D(w ) H3 (@) [6(jo)l~2, if k is odd.

db. Lol

?ﬂ:.—{ (—1)%"’/\ (w) H (0) |6 (jo)| 2, if k is even,
(=D TRB)H (@) b(/o) ™ if k 1s odd.

ﬁ={( 2«;"H’(m)D(m)ll)(jm)]—2 if k is even,
- NTWCEH@BU™ 1t k 1s odd. -

% _

0b

(=1 2 m*B(w )16 (Jo)l 2, if k is even,

l
(=7 m"'A(m)lb(ﬂ»)l‘2 if k is odd.”

The factors 8ak/8ai and abk/aa are defined by the coefficients of the
transfer function as a function of the parameters Oy

- The sensitivity functions make it possible to estimate the effect of the
deviation of the engine parameters on the dynamic characteristics. Let
us use the expressions
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¢ ("'):‘c?[“’v a,+ Aay; a, +Au2; cee Gy +Aam)=

=0(v, a, a,..., am)"'ZPP,QAal,

{1

From the equations (4.12) it is possible to determine the dispersion and
the mean square deviation of the dynamic characteristics.

In particular, in the absence of a correlation between the random parameters
a; we obtain m
2
DH = 2 P, 'iDul;
i=1

o, (4.13)
DV =2 p'F.ﬂ,Dnl:
in1

where Dy is the dispersion of the frequency amplitude characteristic; D¢ is
the dispersion of the phase characteristics; Dai is the dispersion of the

engine parameters. In the case of normal distribution of the values of 0y
the probability that H(w) or ¢(w) will 'be within admissible limits Hy
and Hy; ¢; and ¢ will be defined by the equation

. P(H,<H<H2)=0,5[fp (%TE_,':—”)_@(H}I/%&)]’
P <p<9)=05 [rb ( ‘“;;D_’l: )—m ( "1‘/‘2_0”%' ﬂ (4.14)

where ¢[.] is the Laplace table function. The sensitivity functions also
permit determination of the probability of stable operation of the engine.

As an example, let us consider the stability limit (Fig 2.27). The
parameters of the regulator Kp, T; in the plane of which the stability
- limit is constructed are the random variables, and they are defined:

Ky=Ky[o, Ta, P, (@)
T1=T1 [“’a TZ- Qy (“’)]’

In turn, Py(w) and Q,(w) depend on the engine characteristics, Using the
functions (4.13), the dispersions DTl and ka are determined.

As a result of the scattering of K and T, the stability limit also will
have scattering. In order to estimate t e probability of stable operation
considering the scattering of the engine and regulator parameters it is
expedient to use the reliability method "fitness conditions,” "load-

- strength" [7].
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In the given case, by load we mean the values of and Ty, considering the
random scattering, and by strength, their values at the sta ility limit Kpp,
Typ.

ir

Since the boost factor and the time constant of the regulator can be con-
sidered statistically independent, the probability of stable operation is
defined as

P=PK PT.;

? (4.15)
where P, is the probability of satisfaction of the condition KpF'Kpp>0;
PTl is the probability of satisfaction of the condition Tip—Tlp>0. For

normal distribution, according to [7], the probability of stable operation
will be defined by the function

P = Kpe—Kpp
KP - l/ °§( +ﬂﬁ' .. (4.16)

where ¢[.] are the Laplace table functions.

The equations (4.16) make it possible to determine the required values of
the boost factor and the time constant insuring the given probability of
stable operations.

Being given P, and Py, from equations (4.16) we determine
k, T1 ;

7 o Koe—Kw Zp=— Tie—Tip
‘P___—————-g_— ‘—_—2——————2-" .
}/w}’(" + a"pp Vﬂ’ tr + qup

From the tables for ¢(2) of [27] for Py=0.995 we find 2Z4=2.58, P,=0.99,
Z24=2.33. Thus, for example, if P;=0.995 is given, then the stability
margins

By=Ky—Kpp=2.58 ok, +or_;

AT =T —T;,=2,58)/ E +or,

which insures stable operation of the engine under operating conditions
with the probability P=Py PT1=0.995x0.995=0.99.
p
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4.2. General Characteristics of Random Processes

During the operation of the engine under operating conditions all of the

parameters are random, for they are realized as a result of the combined

effect of various random processes occurring in the individual assemblies
- and external disturbances.

The basic causes determining the random process are the following:

Turbulence of the flow of fuel and gas components in the lines and reser-—
voirs;

The presence in the liquid and gas flows of bodies that are poorly stream-

lined (valves, chokes, jets, turns, and so on), which cause turbulization
and eddy formationj

Internal sources of disturbances in the form of the flashing of the blades
of the pumps and turbines, pulsation of the fuel combustion, and so on;

Cavitation phenomena in the pumps;

Variation of the parameters of the qperating process as a result of function-
ing of the control systems, and so on.

Px .
xit) 123
|
T t,

4 t

Figure 4.2, TForm of the oscillogram Figure 4.3, Realization of the
P (£) random process x(t)

As a result of the enumerated and other random processes the parameters
of the operating process in the set of engines are formed as random time
functions.

As an example, let us consider the variation of the pressure in the thrust
chamber in the steady-state mode. The recording of the pressure on the
oscillogram for a specific engine will have approximately the form shown

in Fig 4.2.

The pressure in the second engine of the same structural design and simply
operating in the same mode will vary differently than in the first engine.
In general the recordings of the variation of the pressure of the different
engines in time are not at all similar.
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The time function describing the random phenomenon is called a realization;
in our example, p1(t), pz(t) and p,(t) are realizations. The set of all
realizations which can be obtained when recording the given random phenome-
non is called a random process.

Stat ionary and nonstationary random processes are distinguished. In turn,
the stationary random processes can be ergodic and nonergodic. The concept
of stationarity and ergodicity is defining for the construction of the
mathematical model of the process and its calculation.

Let the random process have n realizations (Fig 4.3). Then the mean value
(the first moment of the distribution) of the random process at the time
t] will be defined as

n
m,(6)=lim - $ x, (6),
) nee =1

(4.17)

where x;(t) is the realization of the random process. Analogously, the
correlation between the values of the random process at two different points
in time (mixed time) called the autocorrelation function, is defined by
averaging the products of the instantaneous values of the process at the
times t] and tj+t over the realizations:

R (t; 11+T)=ﬂl_i.f2,+ in EACE 27] (4.18)
1

Here it is proposed that the appearance of all of the realizations is
equiprobable.

The functions which have static properties that are uniform in time, that
is, for the stationary random process the correlation moment Rx(tl, to)=Rx{t)
(depends on one argument 'r=t2-t:1) and the mathematical expectation does

not depend on time are considered stationary random functions; otherwise,
the process is nonstationary. The checking of the stationmarity of the
random process is done by static processing of the results.

However, in some cases the stationarity of the process can be determined
from analysis of the physical nature of the phenomenon to which the reali-
zation belongs.

If the basic physical factors  defining the processes do not depend
explicitly on time, then it is possible without further investigation to
propose the random process to be stationary.

Let us consider, for example, the random process of the pressure variation
in the chamber during operation of the engine.

In the steady-state mode the pressure in the chamber will be defined by
the function
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P= .

b(x) Fxp
If a program variation of the mass flow rate (the thrust relation) does not
take place, then all of the values defined by py are random, not depending
on the operating time, and they vary as a result of the effect of the
external and interhal disturbing factors. Consequently, the process of
variation of py(t) in the steady-state mode can be considered stationary.

During the process of the testing and the application of the engine, it is
not the set that is obtained, but one realization of the random function

of the operating process. Therefore, it is necessary by this realization

to characterize the properties of the random process. This can be done only
in the case where the process is stationary and has the property of
ergodicity,

Thus, if the random stationary process has the property of ergodicity, the
observation of one realization in a sufficiently large time interval t=T

in the sense of the volume of obtained information turns out to be equiva-
lent to the observation of several realizations.

x(t)

T

t
Figure 4.4. Realization of the ergodic process
For such random functions the mean with respect to the set of realizations

i{s equal to the mean with respect to time of one realization in an
infinite interval T (Fig 4.4)

T
m}:fﬂjg —; Sx(t)dt:
]

.
Re(x)=lim - { [x(() = m ] [x (¢ +7)—m]dx. (4.19)
0

The mathematical apparatus has been quite completely developed for random
processes having the property of stationarity and ergodicity.
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4.3, Statistical Characteristics of Random Processes
4.3.1. Characteristics of Random Processes

The random process is fully characterized by the correlation function Rx(t)
and the spectral density S(w). Having the indicated characteristics, it
is possible also to define others, for example, the mathematical expecta-
tion and dispersion (the mean square deviation). The correlation function
is defined by the equations (4.18) and (4.19). The value of Ry (1) is
always a real, even function with maximum at the point 1=0; it can be both
positive and negative, that is, Ry(~T)=Ry(1). The mathematical expecta-
tion, dispersion and mean square deviation of the random function with the
correlation function are related by the functions [4]

me=y Re(oo);
Dy =R(0)— R(oo); (4.20)
0y =V R(0)— R ().

Fig 4.5 shows the correlation function of the pressure in the thrust
chamber and the pressure after the fuel pump of one of the engines without
afterburning of the generator gas.

For the overwhelming majority of random functions of the operating process
the analytical approximation of the correlation function has the form

Re(v)= D%, (4.21)

where Dy is the dispersion of the random function; a is the damping param-
eter defined by the static properties of the engine,

The analysis of the relations between the different random functions which
are characterized by mutual correlation functions is of practical interest.

Let the realization of two random functions x(t) and y(t) occur (see
Fig 4.6). The statistical interrelation between the functions x(t) and
y(t) will be defined by the mutual correlation function

T .
1
Rep(¥) = lim —— eraw(t +9dt.
(1) is always a real function which can be both positive and negative.

In addition, the function ny(‘l') does not necessarily have a maximum at
the point 1=0, and it is not necessarily even.

(4.22)

In the case where (1)=0, the functions x(t) and y(t) are statistically
independent, that 1s, uncorrelated. If x(t) and y(t) are interdependent,
then always ny('r)ZO.
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Figure 4.5. Correlation functions Figure 4.6. Realization of two
Rpk and R'Ppump random processes
Key:
L. t, sec

Since ny(r) is an odd function, its value must be calculated for >0

and <0
T—=
fm _1 Sx(t)y(t+1)dtf >0
. . >0,
T—7 ° (4.23)
Rey(v) =
i T4
Il_l_r.n_r—_*:og x(¢ —v)y(t)dt fort < 0.

Fig 4.7 shows the mutual correlation function for the pressure in the
thrust chamber and the flow rate of the combustible component of the fuel
to the gas geaerator, and Fig 4.8 for the flow rate of the combustible
component to the gas generator and the flow rate of the combustible
component to the transfer mains of the regulator in the engine with after-
burning of the generator gas. As follows from the presented figures the
engine parameters are correlated,

Another important characteristic of the random process is the spectral
density S,(w).

The spectral density characterizes the energy .istribution of the random
function investigated in the form of an infinite superposition of harmonic
oscillations with random amplitudes and phases with respect to frequencies.

Thus, the spectral density characterizes the dynamic load taken by the
engine frow the effect of the random process.

s,(...') =r“."l # 1F e (Jo)2, (4.,24)

where Fy(jw) is the Fourier expansion of the random function x(t).
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The spectral density is related to the correlation function by the
Fourier transformation

Sp(w) = f R (x)e~/*t 4t. (4.25)

Since the spectral density and the correlation functions are even real
functions, the formula (4.25) is represented in the form

Sy(w)=2 fR,(t)cosmtdt;
0

- (4.26)
1
R (%) = S S:(w)cos wdt.
¢
Rou, 1013 R iy
| 1,0 10
' r
I as N
o N\ g
noe  \a02 ’ \Juoz / ogé g
5 406 004 962 ¢ 062 Loy
| ’
Figure 4.7. Mutual correlation Figure 4.8. Mutual correlation
functi " T function Ry - (1)
unceion Ry g fuel( ) unction Ry, .., By

The spectral density uniquely determines the dispersion of the random
variables

. -
DX=TSSX(U)d0. (4'27)
. 0

If as the argument we use the frequency f=w/2m and replace the integration
limits, we obtain

T
S;(f)=4[Ry(x)cos2nfrdt. (4.28)
0

Fig 4.5 shows the spectral density of the pressure in the thrust chamber;
Fig 4.10 shows the pressures in the gas generator, and Fig 4.11 gives

the pressures after the engine fuel pump with afterburning of the generator
gas.
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Under real conditions it is possible to represent the random function as
the sum of the nonrandom component and the elementary random components

imposed on it

x()=me + NV x,(t),

(4.29)

where m, is the mathematical expectation; Vy is the random mutually corre-
lated coefficients with zero mathematical expectationms; x,(t) are the

elementary random components.

The representation of the random functions in the form of (4.29) is called
the canonical expansion. There are various methods for finding the

canonical expansion of the random functions [36].

5 (F)
ox Sps, ()

@”‘I\ 0,06
003 =

’ '\_‘//’ \\’ﬂ\ 0,03 N

0 00 30 Ay 0 W30 Fra
Figure 4.9. Spectral density Figure 4,10. Spectral density
Sp, (£ S f

pk( ) pgg( )

When using the canonical expansion, the execution of the operations on

the random functions is simplified.

From (4.29) the correlation function is defined as follows:

Re(t )y =m2+ 3D x (1) x, (),

(4.30)

where D,, is the dispersion of coefficients of the canonical expansion,
For the stationary random function given in the interval -T<t<T

the difference 1=t,-t varies in the interval -2T<1<2Ty, the expansion
of the correlation” function can be written in the form of a Fourier

series
R(®=m} + 3 2D, cos w3,
Yl
where
v J—
© = -F; v=1,n
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This correlation function corresponds to the canonical expansion of the
random function itself

x(t)==m,+io(X'cosw,t+Y'sinm'l), (4.32)

where X,, Y, are the mutually uncorrelated random variables with my=0 and
with identical dispersions 0.5D,.

~S‘17)12(”
08

04 i N

i

0 10 20 Fry (1)

Figure 4.11. Spectral demsity Sp (£)

Key: pump, fuel

1, f, hertz

In the case where the difference between the two adjacent harmonics
A“’=“’v‘“’\,+l="/2T approaches zero, which corresponds to T+», the spectral
density of the process

S() = lim4rD,. (4.33)

The mutual spectral density is defined analogously to the mutual correla-
tion function. Just as the spectral density of one realization of the pro-
cess is the Fourier transformation of the correlation function, so also the

mutual spectral density of the two realizations is the Fourier transform
of the mutual-correlation function

Sxy(“’) - f Rx]g (,‘) e"/'"'dt. (4 . 34)

Inasmch as the mutual correlation function does not have the property of
evenness, the spectral density is a complex variable.

As the argument let us take the_ frequency £=27/w; then [4]
Sxy(£)=2[Sp(f) + JSa(Nl;
Splf)= [ Ryeycos 2nftdt; _ (4.35)

Se(N == [ Rey(®) sin 2nftdt,
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where Sq(f) is the real component, and S;)(f) is the imaginary component.
In exponential form the mutual spectral 2ensity is written in the form

Say () =185 (Y, (4.36)

where the modulus |Sxy| and the argu-ent exy are defined by the formulas

Sey (N =V'$H(N+SH(F); o (4.37)
S
By = arctg Sig; .

Fig 4.12 shows the mutual spectral density between the chamber diameter
and the flow rate of the fuel into the gas generator,

In order to estimate the degree of the mutual effect of the random functions,
the coherence factor is used [4]

1Sxy(f)? (4.38)

2 —
W= hs,m

If for some value of the frequency v,,(f)<0, the functions x(t) and y(t)
on the given frequency are independeg, if v2 (f)=1, the functions are
dependent on all frequencies. Thus, the coh¥¥ence factor characterizes

- the dynamic relation between the parameters of the operating process.
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Fig 4.13 shows Yi (f) for different combinations of parameters of the
operating process’and disturbances for the engines without afterburning
of the generator gas.

For each combination of parameters the form of 72 (f£) is entirely defined
and is characteristic only of the given combinat¥¥n.

This property of the coherence factor can be used for diagnosing the state
of the engine, and yﬁy(f) can be taken as the diagnostic attributes.

4.3,2. Determination of the Statistical Characteristics of the Properties
of the Random Process

The determination of the correlation functions and the spectral demsities
of the random variables of the parameters of the operating processes is
an independent problem going beyond the framework of this monograph. Here
we shall only indicate the general events in the solution of the problem.

In the most general form it is possible to isolate five steps in the
determination of these statistical characteristics:

a) Gathering

b) Recording and transmission of data;
c) Preparation;

d) Estimation of the basic properties;
e) Analysis.

The first step of gathering the data provides for the conversion of the in-
vestigated physical variable using the special conversion devices.

- The converter converts the physical variable (pressure, temperature, flow
rate, rpm and so on) to another one, as a rule, the electric one -- the
voltage.

In the ideal case the transformation must be made without any distortions
of the measured variable as a time function. In other words, if the
realization of the input process is x(t), and the output process y(t), then
in the case of the ideal converter the relation between them has the form
y(t)=cx(t), where c is the calibration constant, Unfortunately, this
situation in practice is unattainable. For operation of the converters,

as a rule, variation of the amplitudes and phases takes place, which

leads to errors in the gathering and processing of the data.

The data is recorded for various methods; the basic ones are oscillographic

recording on magnetic tape and rddio telemetry. The preparation of the
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data for analysis depends on the method of processing. In the case of

- processing the data in analog form, scaling is carried out. If the
analysis is performed in digital form, then it is necessary to convert the
analog signal to a digital signal, that is, carry out digitalization,

The digitalization is tke process of determining the points in time in
which the samples can be taken, In addition to the digitalization,
quantization is carried out, that is, conversion of the readings taken at
the corresponding points in time to digital form.
Let at the output of the recorder a continuous random function be obtained
- (see Fig 4.14). It is necessary to select the magnitude of the digitaliza-
tion interval At=h, T is the realization time. On the one hand, for small

values of h the number of points will be large, and correlated data can be
obtained.

On the other hand, when selecting large h it is possible to confuse the

low and high~frequency components of the process and skip the characteris—
tic components.

For selection of h the following function is recommended [4]

1

h=2fc ’ (4.39)

where f, is the maximum expected frequency in the spectrum of the process.

X(t)

Figure 4.14. Digitalization of the process
The estimation of the basic indexes of the properties is made at the
present time by two methods: analog and digital. In the analog method
the calculation of the correlation functions and the spectral density is
made by direct processing of the electric signals which are realizations
of the process with continuous time.

In the digital method the required calculations are made by operations on
the numbers which represent the analyzed process in digital form.
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For determination of the correlation function Rx(T) by the experimental
realization of the random function, the following operation is used
r .

Rm)=+-{ x @ x () at.

0
Replacing the integral Ry(t) by the sum, the correlation function is
calculated. In order to calculate the correlation function, the oscillogram
of the random process is represented in the form of segments of the y-axes
at a distance h=At from each other (see Fig 4.14). Then the individual
paints of the correlation function as the mean value of the paired products
of the y-axes of the realization curve separated by the interval ih (i=0, n)
can be calculated using the equations

R(0)=—:l—(x§+x§+---+xﬁ);

R (AT)='I“—(-"1-"2+X2X3+ cee X X (4.40)

The correlation function is measured using correlators, the block diagram
of which appears in Fig 4.15,

The correlator contains a multiplier (2), an element with adjustable delay
(1), and a smoothing circuit (3). The output variable from the multiplier
x(t)x(t-1) goes to the smoother, which transmits the constant component
and the slowly varying components of the signal x(t)x(t-t).

. The digital computers insure higher accuracy, They determine Ry (1) by the
equations (4.40). Magnetic correlographs have become widespread. On
such correlographs the graph of the investigated process is recorded
immediately on two tracks of the magnetic tape with constant time shift t.
Then by variation of the position of one roll of the tape drive mechanism
by the amount /2, a shift t in time is established between the magnetic
recordings read by the heads. The signal from the heads processed in a
special computer is output to an electronic potentiometer which records
the correlogram.

Figure 4.15. Schematic of the correlator

It is possible to check the stationarity of the random process by the
criterion [27]
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where N is the number of digitalization steps; n is the digitalization
step; T is time, If J=0, thea the function is stationary. The analysis
of the calculation data indicates that all of the random functions of the
parameters of the liquid-fuel jet engines are stationmary.

The condition of ergodicity of the process is Y R, (v) dt <L o0,
]

that is, with an increase in 1, R(T) approaches zero.

The graph of the correlation function Ry(t) obtained as a result of the
calculation is approximated by the mathematical function. The correlation
functions of the parameters of the liquid-fuel jet engines in the majority
have the form

R (v)=D.e~, (4.42)

where a is a parameter which characterizes the rate of decrease of the
curve, In the specialized literature [30] it is demonstrated that any
correlation function can be approximated by the series

R@m=Y c e W,

It is possible to define the spectral density by different methods [27].--

- by direct calculation with respect to correlation functions, expansion of
x(t) in the Fourier series and using the analog spectrometers. The digital
analog of the theoretical functions (4.28) is the estimate of the spectral
density for arbitrary values of f in the range 0<f<f,.

. L2 2
xit} X(/jw) £os wit 1/xtief Cos “wy | 3 ) Sx(ws)

Figure 4,16, Diagram of the calculation of the spectral density

m=1 :
- }‘1 nrf ' am
Sx (f)_‘2h (R0+2 Rr cos fc—+Rm €cos - fe ) ’ (4 .43)

r=1

where f. is the cutoff frequency (4.39); h is the digitalization interval;
Rj is the estimate of the correlation function for the step r, m is the
maximum number of steps, m=Tp,x/n.
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The estimate of the spectral density by equation (4.43) camnot be mixed
with the two-way theoretical spectral density which is defined both for
positive and for negative frequencies,

In addition to the described method, wide use has been made of the determina-
tion of the spectral density using the analyzer which makes use of the
Fourier expansion (4.24). The random function x(t) is fed to the harmonic
analyzer 1 (Fig 4.16) which is a narrow-band filter with fixed frequency wj.
At the output of the analyzer the harmonic with wy is generated. The out-
put signal from the filter is squared using the squarer (2), and it is fed

to the measuring device 3, which averages the signal in the interval 2T.

At the output a spectral density is obtained with a frequency w=wj. By
varying the adjustment of the analyzer to other frequencies, the series
Sx(wy) is defined, and the graph Sy(w) is constructed.

For the majority of random processes the spectral density is approximated
by the function

=3 ’C-a .
S=gra (4.44)

4.4, Transmission of Random Signal

The engine of the dynamic system can be represented by the equation
y{t)="2(s)x(¢),

where x(t) is the input coordinate; y(t) is the output coordinate; ¢(s) is
the transfer function. If the spectral density of the imput signal Sx(w)
is known, then the spectral demsity of the output signal is defined by the
function [30]

S, (0)=|0@ (jo)* S« (v). (4.45)

Thus, the spectral density of the output variable is obtained by multiply-
ing the spectral density of the input variable by the square of the modulus
of the partial transfer function,

A dispersion with respect to the nonspectral density is defined as follows:
L 4.46
G=Dy= | (S (0)do. (4.46)

If there are several input variables and they are independent and their
spectral densities are known Sx1> sz and an, then

Dy=Dyr,+Dye,+:.. 4Dy (4.47)
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The transfer function of the engine and the spectral density are rational
expressions

o= s=L1,

where a, b, c, d are polynomials of the argument juw.
The square of the modulus of the frequency transmission function
, o) B o) LD TTR)
2 — —_ )=
10 (alf =@ (o) (= /)=y atm *

where b(jw) and a(jw) are complex conjugate variables. The denominator
and the numerator of the spectral density can also be expanded in the
complex conjugate factors

c(o)=c(jo)c(Jo); d(jo)=d (juw)d(jo).
Considering the presented expressions, we have

_ BRIy | s
1@ (ol S (Y= 0a orama e (4.48)

Let us denote
B(Jw)="b(jw)c(jw),
A(Jo)=a(jo)d (jo).

From (4.46) we obtain o -
p,=_1.{ _BUaBGsY .
D=5\ Fiaaos o (4.49)

In formula (4.49) we proceed to the variable s=jw, we obtain

jeo ——
_y__ 1 B3 (4.50)
Dv"‘-’n"'jzz .s‘ 3 A(s)Z(—s) 481

—i
where
n—1 n
B(s)=2 sy A(s)= D dysh

kw0 k=0

The integral (4.50) is resolvable; let us present the final values of In
for n from 1 to 4 expressed in explicit form [5] for the coefficients
¢y and dk
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% .
1= EJ; ’
Jp= ol + oy |
2doddy
Jy= cidody + dody (3 — 2¢003) + cidydy .
2dod; (dyd — dods)

e
J=-22 +é
e

where ’ \

eo=c3(dodda — dds) +(c3 — 20,0,) dodidy -+ (e — 2qca) dyddg;
e\=0cy(dyds—ddy)dy; : . '
€y== 2d°d‘ (d]d2d3 - dodg— d%d‘)-

(4.51)

As an example let us consider the transmission of the random signal from

the pump to the thrust chamber (see Fig 2.2).

Let the spectral density of the pressure after the pump

Dpa
S ll(uo)— oy e

The transfer function of the engine

@ (S)_—‘ bys + bo
a3s® +aps? +ays +ag

where by, as=f (Kp, Tk’ TM). Let us represent the spectral density in the

form
qp"VTl ’p,,]/E
P WV

Spg(fn)=. a+s "a—_-‘s

where °P‘ﬂ=mpﬂ'

Following the discussed procedure, we determine

B(s)=5,Va (b,§+b°); .
A(s)=(a:*+ay8? 4 ays +ao) (s 3 a).

The coefficients of the integral cj and dk

Co= bo"p. Va; = blap. Ya;
d0= aao; d[ = a_+a,,; d2= aa, +al;
d3= aas +a2| d4=a3

D”.=J‘= &te .
L
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Substituting the exnression for the coefficients in equation (4.52), we
obtain the pressure dispersion in the combustion chamber as a function of

the pressure dispersion after the pump and the values of the time constant
and the boost factors

= ablay (aa; + ag) + 62 [(aa; + a1)(ads + 83) — a3 (@ +- a5)]
/] Pu 2a, [('a + q;) (aa; - a3) (aaz + a3) — a3 (@ + ag)?

@]
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CHAPTER 5. STARTING UP THE ENGINE
5.1, General Start-Up Characteristic
5.1.1. Components of the Start-Up Process

The engine start-up is a nonsteady-stéte operating condition, during which
the parameters of the operating process vary with time from their initial
values to the values of the rated regime.

During the start-up process large parameter gradients exist. Thus, for
modern engines the gradient of the pressure variation in the gas cavities
is (200-1000) -105 Pa/sec; the gas velocity gradient is 200-3500 m/sec?,
and the temperature gradient 4000 K/sec,

As a result of the large gradients in the variation of the parameters in
the start—up process, the engine and the aircraft are under the effect of
‘significant mechanical and thermal loads capable of leading to destruction
of the structure. In addition, as a result of the high rate of occurrence
of the processes the start-up mode is uncontrollable. All of this taken
together gives rise to great complexity of the organization and development
of the start-up process and isolates it from all of the operating condi-
tioms.

The presence of the specific processes which includes the following is a
distinguishing factor of the start-up conditions from others:

Filling of the hydraulic lines and reservoirs with fuel components;
Winding up the TNA impeller, during which the pumps receive the necessary
power providing for feeding the fuel components to the thrust chamber and
the gas generator;

Ignition and combustion of the fuel components}

Emergence of the engine in the rated regime, that is, achievement of the
rated values by the parameters of the operating process.
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During the start-up process replacement of the indicated phenomena takes
place in a defined sequence, but there are inverse interrelations among
them. Thus, for example, the characteristics of the process of filling the
gas generator and thrust chamber reservoirs with the fuel components
determine the conditions of ignition and combustion of the fuel, and this,
in turn, influeaces the winding up of the TNA impeller and movement of

the fuel components through the lines.

In the engine with a pump feed system the sequence of replacement of the
phenomena in the start-up process is the following. On sending the
instructions to start up, the start-up valves installed in the input lines
of the pump open. The fuel components, under the effect of the pressure
from blowing the tanks and the hydrostatic head, fill the hydraulic channels
(the lines, pump cavities), and they approach the injectors of the gas
generator and the thrust chamber., At a defined point in time the command
is sent to ignite the pyrostarter (in the case of starter start-up), the
powder gases of the pyrostarter go to the vanes of the TNA impeller.
Accordingly, the rpm increases, the pressure after the pump rises, and
forced pumping of the fuel components into the gas generator and the gas
chamber is realized. In the gas generator the fuel components ignite,
combustion takes place and a further increase in pressure after the pumps,

x(t)

/’-7'
o /(D)
Pag (3)
7y
= (2)
7, [ ox
m.
2"

t

Figure 5.1, Nature of the variation of the parameters of the
operating process during start-up
Key:
1. oxidizing agent
2, combustible component of the fuel
3. gas generator

At some point in time, the filling of the chamber reservoirs ends, ignition
and combustion of the fuel takes place in it. At this time the turbine
has sufficient power to insure the required flow rate of the fuel
components to the chamber and forced emergence at: the rated regime,

The qualitative variation of the parameters during the start-up process is
illustrated in Fig 5,1. At tp —- the time of opening of the start-up
valves, the fuel components, under the blowing pressure pPgapk, ox and
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and Prank fuel fill the free volumes of the fuel lines and approach the

injector head. The flow rates initially increase, and then as the lines
are filled and the hydraulic drags increase, they decrease.

At the time tj, the ignition of the pyrostarter takes place, and
windup of the TNA impeller and an increase in the flow rates begin.

When the jets are filled, the flow rates slowly decrease as a result of the
hydraulic drags.

At the time t;, the fuel components are injected into the gas generator,
and the gas generator goes into operation with further windup of the
TNA impeller.

At the time ts, the filling of the injector head of the thrust chamber
ends, and ignition and combustion of the fuel (t4) take place in the
. latter. The engine reaches the rated regime.

The nature of variation of the parameters during the start-up process is
determined by the structural diagram and the cyclogram of the start up and
for a specific engine will differ from that shown in Fig 5.1.

5.1.2. Classification of Types of Start-Up
It is possible to classify start-ups by various attributes.

Depending on the method of initial windup of the TNA impeller, there can
be two types of start-ups: gtarter and starterless. In the case of
starter starting, special starters are included in the engine (pyrostarters
or pneumatic starters, feed starter systems, and so on).

The pyrostarters are pyrotechnical caps installed in front of the guide
vanes of the turbine.

The pneumatic starters are compressed gas reservoirs located on board the
aircraft.

The powder gases (pyrostarters) or éompressed gas go through special or
working nozzles to the turbine vanes and create excess pressure capable of
providing for the initial turnover of the TNA impeller.

The pyrostarters are capable of creating significant thermal gradients in
the turbine with insignificant gas flow rates. However, the pyrostarters
starting have a significant deficiency. As a rule, the pyrogases contain
excessive combustible fuel components and are capable of afterburning in
the oxidizing medium of the generator gas on the turbine vanes during
joint operation of the gas generator and the starter, as a result of which
a dangerous rise in temperature and burning of the vanes can take place.
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Therefore in the case of an oxidizing gas generator the pyrostarter is
installed on an auxiliary starting tubine,

Pyrostarter starting is used in the engines without afterburning of the
generator gas with active turbines. In the engines with afterburning of
the generator gas with jet turbines, the required pressure gradient on the
turbine providing for the required excess power can be created without the
application of the pyrostarter.

In this case the initial feed of the fuel components to the gas generator
is realized from the fuel tanks under the force of the blowing pressure
and the hydraulic pressure of the fuel column.

Fig 5.2 shows the nature of variation cf the turbine rotor rpm during the
starter and starterless start-up.

Curve (1) corresponds to the starter start-up, to is the operating time of
the pyrostarter. Curve (2) is characteristic of starterless start-up. The
time for turning over the TNA impeller in the starterless starting is
greater than for the starter starting..

With respect to nature of varlation of the pressure in the thrust chamber
in time, starting can be: slow, fast and "full-flow" (Fig 5.3).

n
2! Pr
1 Px
. 3 2 1
2
te t ' t
Figure 5.2. Variation of the rpm Figure 5.3, Types of start-ups
during starter and starterless

starting

In the case of slow starting (curve 1) the pressure in the thrust chamber
varies smoothly, and the rate of variation of the pressure is variable
dp/dt=var. The pressure build-up time in the chamber with this form of
starting can reach 2 seconds. Fast start-up (curve 2) is characterized by
a constant rate of pressure variation dpy/dt=const; the pressure build-up
time will be approximately 1 second,

The full-flow starting (see curve 3) is characterized by constant and large
magnitude of the pressure build-up rate dpy/dt+¢5; the pressure build-up
time will be tenths and even hundredths of a second.
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Slow starting is used for engines which have large thrust, for in this
case the dynamic load on the structure of the flight vehicle decreases.

Fast starting is used for medium thrust engines, and full-flow for low-
thrust engines and the engine for which the time (the upper bound) for
reaching the operating conditions is limited.

- In addition to the investigated types, start-ups can be single-stage and
double-stage. The double-stage start—ups are used in high-thrust engines
and engines inclined to high frequency vibrations,

In this case the double-stage fuel valves are used. When starting, the
valves are first opened to the preliminary stage, and the fuel is fed with
small flow rates to the thrust chamber which begins to operate. The
pressure in the chamber is set at (0.4 to 0.6)py (Fig 5.4), the delay of
t=0.5-2 seconds is realized for Pk~Pk. co v for monitoring the fitness of
the engine and then the valves are openecri1 to the main stage and the engine
reaches the rated operating conditions.

P=p/F
10
Px
Pr-
o576 s o s
Pr.n
t 0 g1 9z 05 04 it
Figure 5.4. Diagram of the Figure 5.5. Diagram of the multi-
two-stage start-up chamber engine start-up

In the engines with afterburning of the generator gas, the two-stage
start-up can be realized by separation of the operation of the thrust
chamber and the gas generator in time.

Initially the gas generator is started, and it reaches the steady-state
operating conditions (the preliminary stage); then the thrust chamber is
switched on, and the engine reaches the rated operating conditioms.

The propulsion devices of the booster rocket having large thrusts have
several engines.

If all of the engines are started simultaneously, then as a result of the
large total thrust, large dynamic loads and vibrations are possible which
can lead to destruction of the structural elements. Therefore such propul-
sion devices are started by individual chambers (blocks) after short,
strictly fixed time intervals, In order to exclude the appearance of
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moments with respect to the rocket axis, simultaneous start-up of two
chambers arranged symmetrically with respect to the rocket axis 1s used.

Fig 5.5 shows the cyclogram of the starting up of the engines of the first
stage in the Saturn booster rocket. As is obvious from Fig 5.5, the
engines are started in pairs every 0.1 second; here the force causing
vibrations is no more than 0.2 of the maximum total thrust.

5.1.3. Forcing the Start-Up Process

In order to reduce the prestart consumption circuit, decrease the effect
of the gases on the starting devices and the time for separation of the
stages, it is desirable to organize the starting process so that there

will be minimum time of developing thrust from the time of sending the
start-u; cormand,

_ In the general case the start-up time can be provisionally divided into the
following components:

t=tVtuo 0+ 2,
@ &3 G W

Key: 1. automation; 2. agr = assembly; 3. tr = lines; 4. chamber
Let us consider the indicated components:

1) t, is the response time of the automation which includes the time of
transmission of the instructions to open the start valves and the time for
opening the valves.

In order to decrease the start-up time it is expedient to use high-speed
fuel valves, which include the starting pyrovalves and the separating
pyrodiaphragm assemblies.

It is possible to approximately define the time for opening of the start-up
valve as follows.

The required gas pressure in the cavity VQ required for shearing the
diaphragm of the thickness A is determined from the equality
ds
P = A, (5.1)
where o, is the admissible shearing tension, The maximum gas pressure in the

cavity Vg on combustion of the pyrocharge in the pyrocartridge is determined
from the equation of state

P
.p@x“vo~dw ’ (5.2)

where x is the strength of the pyrocharge; a is the covalue taking into
account the volume of tiquid and solid residues in the combustion products
of the pyrocompound,
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Figure 5.6. Schematic of the start-up pyrovalve:
1 ~- diaphragm; 2 -- piston-knife; 3 —- pyrocharge

For smoke powder )(=(3--3.1¢)106 joules/kg; =0.5°10"3 m3/kg; for the pyro-
composition ;(=2.l-l()6 joules/kg, 0=0,3.10"3 m3/kg; wis the mass of the
charge.

For reliable cuttirgof the diaphragm between Ppax and py the following
expressions must be observed:

Pmax = 2pq. (5.3)
Solving equations (5.1)-(5.3) jointly we obtain the required charge mass
o=— Yo (5.4)
dgy/8scA +a
After. response of the pyrocartridge, the piston knife moves upward and
cuts the diaphragm. The speed of the piston.knife is determined by the
magnitude of the work of the products of combustion on the path of move-

ment of the knife. The work of the products of combustion is calculated
approximately by the function

A=7pn‘;th (5.5)

vhere ¢ is the filling factor of the pressure diaphragm, ¢=0.6 to 0.7;

- Fy is the area of the piston knife.  'If we do not consider the losses to
friction, the kinetic energy of movement of the knife at the diaphragm
cutting time is determined from the equality

mv? .
5 =%PrstFu .6

Taking the average speed of movement of the knife Vave"‘Vk/ 2, we obtain
the relation for determining the response time of the start-up valve

h
=, (5.7)

I/ P —Vy
m(Vy— aw)
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2) _tassembly is the time for the engine assemblies to reach the rated
regime.

When analyzing the dynamic characteristics of the assemblies, it was
demonstrated that out of all of the engine assemblies, the turbine~pump
assembly has the greatest inertia.

The inertia of the turbine-pump assembly is characterized by the time
constant

Key: 1. THA = turhin-pump assembly

The time for turning over the impeller of the turbine~-pump assembly is
approximately estimated by the value

2, ==23T 1y

Consequently, in order to reduce the time for the TNA to reach the rated
regime it is necessary to decrease the moment of inertia of the rotating
parts and increase the self-equalization factor apyp which is determined
from the excess power of the turbine.

In turn, in order to decrease the excess power of the turbine it is
expedient, if the engine diagram permits, to apply pyrostarter starting.

3) tijne is the time for the fuel components to fill the reservoirs and
lines. '

The movement of the component through the lines is described by the .
function

dm -

RE +sit=p (- (), (5.8)

where pj(t) is the pressure at the entrance to the main; pa(t) is the
pressure at the exit from the main. During the process of filling of the
mains after the start valves are open the pressure at the entrance to the
main is determined by the pressure in front of the start valve, and it
can be taken as constant.

- The pressure at the exit from the main is correspondingly equal to the
pressure of the medium which also is constant to the time of arrival of
the component at the reservoir,
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Assuming that during the process of filling the mains the coefficients
R and £ are constants (the indicated assumption will be discussed further),
the equation (5.8) reduces to the form

dm (5.9)
F—a bm y
where
a=_£1_—&- b= 3

R ' QR °

After integration of equation (5.9), we obtain the filling time of the

main
fy= "_“l ll‘l!"—'—“‘————pl—m
[ . — 5.10
2l/E(p1—pz) m+Vh=nh (5.10)
R2 : .
] From analysis of the function (5.10) it follows that in order to decrease

the filling time of the mains it is necessary to increase the pressure
gradient on the main during the starting period and decrease the hydraulic
drag coefficient, that is, decrease the length of the lines and the local
resistances.

5.1.4. Requirements Imposed on the Starting Process

When designing and -developing the engines, the interrelation and sequence
for putting the assemblies into operation which insures that the following
requirements can be satisfied are established.

1. The elimination of the possibility of accumulating a quantity of fuel
mix in the .thrust chamber and the gas generator at the time of ignition
which can lead to explosion or inadmissible rises in the pressure.

2. The creation of the powerful initial flame in the thrust chamber and
the gas generator capable of igniting the fuel components moving with high
velocity.

3. Insurance of the required starting cyclogram.

4, Elimination of the possibility of the occurrence of low—frequency and
high-frequency pressure fluctuations in the starting process.

5. Insurance of reliable start-up under vacuum and weightlessness condi-
- tions,
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5.2. Conditions of Emergency-Free Starting
5.2.1. Ignition of the Components

At the end of the process of filling the lines, the fuel components arrive
with quite high velocity through the injectors and the working cavity of
the gas generator and the thrust chamber where they are ignited and burned,

The process of ignition and burning of the fuel in the thrust chamber is

a complicated set of physical and chemical phenomena which are discussed
in specialized literature. Here the basic principles are considered which
pertain only to the starting process without giving details about its
various components.

In order to insure reliable ignition, it is necessary to create a powerful
heat source, for the ignition temperature of the nonself-igniting fuel
components exceeds 570 K. In the case of application of nonself-igniting
fuel components to create thermal conditions of reliable ignition, special
thermal igniters are used: pyrotechnical and electrical.

Pyrotechnical ignition is realized by creation of a powerful heat source
in the chamber on combustion of a special pyrotechnical compound., The
dimensions of the cartridge igniter are selected.so that the thermal energy
of the powder gases will be sufficient for reliable ignition of the fuel
components.

Electric ignition is realized both for the internal combustion engines,
electrical discharge created by specialized electric sparkplugs.

For ignition of certain fuels (for example, hydrogen peroxide), catalytic
surfaces are used which promote the occurrence of chemical reactions.

The self-igniting fuel components do not require special igniters, for they
react on contact of the liquid phases under ordinary thermal conditions.

The organization of reliable ignition is only one of the problems of insur-
ing emergency-free starting. After ignition it is necessary to insure
continuous combustion and variation of the parameters of the operating
process with respect to the given law,

The basic characteristic of ignition :and combustion is ignition delay. The
ignition delay is the time which passes from the injection time to the
beginning of combustion.

The accumulation of a mixture of fuel and oxidizing agent in the combustion
chamber which is an explosive mixture inclined toward knock is a conse—
quence of the presence of ignition delay time, The amount of accumulated
mix depends on the flow rates of the fuel component and the ignition delay
time: Mmix=ﬁfde1ay' On ignition of this mixture, a sharp build-up of
pressure of the gases formed is possible (see Fig 5.7, a), as a result of
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which rupture of the structure can take place as a result of peak thermal
and dynamic loads. In addition, as a result of presence of feedback
between the pressure in the combustion chamber and the arrival of fuel,
unstable combustion occurs (Fig 4.7, b). The ignition delay time depends
on the physical-chemical properties of the fuel, the quality of injection
and mix formation, the power of the igniter, the pressure and the tempera-
ture.

Under equal conditions the amount of accumulated fuel in the combustion
chamber depends on the mixture burnup rate,

It has been established that the maximum combustion rate (the minimum burn-
up time) occurs for the stoichiometric ratio of the fuel components).

Px /‘\—
Px /\ /
M7 Px N
E-
< _
2 ¢ b) 3 OTon,onm (1). Bton (‘2)
Figure 5.7.- Relation of py for Figure 5.8. Ignition delay time as
start-up a function of the lead time
Key:
1. optimal lead
2, 1lead

Consequently, in order to decrease the combustion rate, that is, exclude
the explosion of the accumulated mix, it is required that during starting
the first lots of fuel be fed to the combustion chamber for the ratios

KZKst’ that is, a lead of the component by the amount Atj,,q=0.03-0.2 sec

must be insured. The fuel feed to the chamber with lead of one of the
components leads to ballasting of the mix and excludes the knock; in
addition, as the experiments show, ballasting of the hot mix by one of the
components leads to a decrease in the ignition delay time, Fig 5.8.

5.2.2., Starting Overload of the Chamber

The starting overload is the ratio of the maximum gas pressure in the

chamber during the starting process to the rated pressure (see Fig 5.7, a),
that is,
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= Px_mu .

"ok (5.11)
The magnitude of the starting overload must not exceed the admissible value
of n, 4 which is designated considgring the dynamic strength of the struc-
ture and the limits of stable operation engine. For a well-organized
start-up process n;=l, For approximate estimation of the expected magni-
tude of the starting overload, the assumption of instantaneous burnup of

the fuel is used, that is, the actual burnup curve is replaced by the
step curve.

The equation of this burnup curve has the form

a0 for £ T

Key: 1. conv

where T.gny is the conversion time of the fuel to the combustion products.
Then the maximum pressure in the combustion chamber is defined by the
equation of state

Pepay =R (5.12)
. o .

where My is the mass of accumulated fuel in the chamber. The mass of
accumulated fuel is . .
M =('h:on+mﬂ) Tapr
D @ @ (5.13)

Key: 1. start, ox; 2, start, combustible fuel component; 3. conv

where fgy .y § are the arrivals per second of the fuel components in the

chamber on start-up o , .
my=a, VQlAptb.sl(]_) (5.14)

Key: 1, injector, start i

where ag,. .. ; 1s the coefficient which depends on the geometric character-

istics anﬁ the flow rate factor of the injector; Apinjector, start 1 18

the pressure gradient in the injectors during the start-up process.

Considering the expression 5Q==£2&L ’ and after substitution of
Me,s

(5.14), (5.13) in (5.12), we obtain
— (Ks+1)aa.rVQrAPq:.s.rTup(RT)a . (5.15)

X max V‘

207

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000200090053-2



APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000200090053-2

- FOR OFFICIAL USE ONLY

Under steady state operating conditions the pressure in the chamber is
determined from the flow rate equation

o=t (5.16)

Feo (1)
Key: 1. cr

Since ;L==(ﬁ{4-l)a;]/b,Ap¢J, then after substitution of equations (5.15)
and (5.16) in the function (5.11) we finally obtain

k.
”n=( 1"‘ 1) Z"npl/- Apg.s.r (5.17)
(K + 1)1y Apyr

where z=Ss V(RT), . 1 Ve
' nj

8 Foo

L]

Thus, the coefficient of the starting overload is determined by the
pressure gradient on the injectors, the reduced length of the chamber and
the conversion time of the fuel to the combustion products.

The primary factors influencing the start-up overload coefficient which can
be controlled during the start-up preccess are the pressure gradient on the
injectors and the ratio of the fuel components.

5.3. Power Engineering Starting Capabilities

In order to realize the start-up process the engine must have defined power
engineering capabilities insuring an increase in time of all of the param-
eters of the operating process. In the engines with a turbine-pump feed
system the power engineering capabilities of the starting are characterized
by excess power of the turbine insuring an increase in the rpm and an
increase in the flow rates of the fuel components coming into the thrust
chamber and the gas generator (see Fig 5.9)

AN _=N,— S N,;.
'(-{). 2 4

Key: 1. excess

The excess power of the turbine determines the magnitude and the rate of
variation of the rpm

2 dn (¢t :
7 (:_;!u—) n() 7(7)=AN=.(‘)' (5.18)

In order to increase the rpm (the turnover of the TNA impeller) dn(t)/dt>,
the condition ANp>0 must be satisfied.
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The required value of ONgycegg 1n order to insure start-up is 15-20% of
the rated value of the turbine power.

As the rpm increases from 0 to n,, the fuel component flow rate to the gas
chamber increases, and the pressure in the gas generator rises. With an
increase in flow rate, the available power of the turbine Np and the intake
pover of the pumps increase. Depending on the turbine and pump characteris-
tics the relation between BNT/an and aNH/an can be different, and the case
is possible where for the same value of n N<INy; (Fig 5.10), that is,
negative excess turbine power is obtained. In this case, in order to turn
over the TNA impeller dn/dt>0 it is necessary to use an additional source

of power in the form of a starter, for example, a pyrostarter.

The starting device is designed from the condition providing for turning
over the impeller ("winding up") of the TNA for the conditions with rpm
n=(1.1-1.2) npqi,.

The run-up time of the TNA impeller is defined by the relation

n I Za

30 . (5.19)
tn= —dn.

0 N"—ZNI‘
In region A (see Fig 5.10) the excess power is created by the pyrostarter.
The greater the starter energy, the greater N, and the shorter the run-up
time of the TNA impeller,

In region B the excess power is obtained as a result of operation of the
gas generator on the basic fuel components.

The power engineering realizability of starterless starting is determined

by the characteristics of the maing, the turbine-pump assembly and the gas
generator. The excess turbine power depends on the flow rate of the fuel
components to the gas generator and work capacity of the combustion products
which in turn are determined by the pressures in the tanks and the ratio

of the fueli components.

ZNyi
" ”F r
N Zhyi
i or
A}
\p
Sy ,
np n Nin Ay Mg A
Figure 5.9. Diagram of the forma~ -~ Figure 5.10. Excess power as a
tion of the excess power function of the rpm

Key: 1. excess
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The flow rates of the fuel components going to the gas generator after
filling the lines and the pump housing can be defined by the following
relations

';lox__—'alo (pé.ux—‘prr); (5 20)
my=a,, (Pa.r“Prr)- '

where aj; are the hydraulic drag coefficients,

The equation (5.20) is written under the assumption that the movement of
the fuel components through the hydraulic channels is laminar. For turbu-
lent motion, the function (5.20) becomes quadratic, but this has no influ-
ence on the qualitative analysis.

The initial pressure in the gas generator is defined by the flow rate
equation 8
Prp=—,/—m
B = F. T (5.21)

where ﬁT is -the gas flow rate to the turbine. Solving the equations (5.20)
and (5.21) jointly comsidering K=mox /M ombustible fuel component »
mT=m0x+'hcombustib1e fuel component® "¢ obtain

. K41 .
=b,[-— J
(5 e
mr=br(K+ l)pb.r'(z
Key: 1. tank, ox; 2. tank, combustible component of the fuel

(5.22)

By equations (5.22) for the specific engine design (given values of by,

bcombustible domponent) the nomogram of mT+M(ptank, ox’ Ptank, combustible

component of the fuel’ K) of Fig 5.11) is constructed.

Figure 5,11, Start-up region
Key:
1. tank, combustible fuel component
2, tank, ox
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On the nomogram the hatchures denote the maximum values of Ptank, i min

(from the conditions of cavitationless operation of the pumps) and Ky
(from the condition of thermal stability of the operating vanes of the
turbine).

Being given the value of the excess turbine power, Noy.agg

=(0.25-0.2)Ng,
the required flow rate of the working medium is defined

rh"':: (0,15—0,2) N,
Key: 1. spec b Nya(1)
where N is the specific power of the turbine determined for the given

ratio ofPE the fuel components and minimum (start-up) pressure gradient on

the turbine. With respect to the values of mT and Kq from the graph in
Fig 5.11 the pressures are determined in the tanks and by the equations
(5.22) the coefficients bp and bg for which starterless starting is possible
(the point A).

5.4, Characteristic Features of Starting Engines in a Vacuum under
Weightlessness Conditions

5.4.1. Starting in a Vacuum

At altitudes of more than 40 km, the ambient pressure in practice is absent.
and there is a vacuum. The vacuum imposes additional requirements on the
conditions of emergency for a starting of the engines. Under vacuum condi-
tions there is no counterpressure in the combustion chamber, and this

leads to the following:

An increase in the ignition delay time and the time of conversion of the
fuel to the combustion products;

- An increase in the flow rates of the fuel components entering the combustion
chamber and the gas generator;

Worsening of the quality of the atomizing and the mixing of the fuel
components }

Loss by some of the self-igniting components of the fuel of the capacity
for self-ignition,

All of this taken together leads to accumulation of a mass of fuel in the
reservoirs of the chamber and the gas generator at the time of ignitiom,

a drop in pressure on ignition (an increase in the starting overload), and
explosion or nonstarting of the engine.

For reliable starting of the engines in a vacuum, the following measures
are taken:
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Installation of sealing blind flanges in the vicinity of the critical

cross section of the nozzle which are knocked out by the pressure of the
combustion products;

Preliminary purging of the cavities in the combustion chamber or the gas
generator with gas before starting up the engine.

The engines operating on low-boiling fuel components do not require
special purging of the chamber with gas,

In this case, sublimation (evaporation) of the components takes place in the
chamber during starting, as a result of which the pressure in the reservoir
rises, and favorable starting conditions are created.

5.4.2, Starting Under Weightlessness Conditions

The state of weightlessness occurs on disappearance of the g-loads acting
on the medium. In the state of weightlessness the liquid components and
the gases in the tanks do not have flat interfaces, and the liquid and gas
equilibrium is insured only by the effect of the capillary forces, which
are small, Therefore for nonwettable liquids the gas is located around the
periphery of the tank, and the liquid coagulates in the volumes inside the
tank (Fig 5.12, a) and vice versa for wetting liquids (Fig 5.12, b).

The condition of conversion to a state of weightlessness is approximately
defined by the Bond criterion:

B,— 9.81'1(09-)— o(rg)a :

——— e

Key: 1. liquid;.2. gas ¢

where n is the load factor,; Pliquids Pgas are the densities of the
liquid and gas, respectively; £ is the characteristic dimension (diameter)
of the tank; o is the coefficient of the surface tension of the liquid,

For Bp<l, the condition of weightlessness sets in, Under the conditions

of weightlessness, the gas or gas-fuel mix enters the fuel lines, and this
leads either to unstable starting or to the fact that the engine in general
cannot be started. Accordingly, for start-up under weightlessness condi-
tions, the necessity arises for developing special fuel collectors or

the taking of other measures to insure continuity of the flow of the liquid,
separation of the liquid and gas phase and reliable starting.

All of the systems providing for continuity of flow of the liquid and
separation of phases are divided into active and passive systems.

The passive systems do not require expenditures of additional energies;
they include the separating, accumulating and capillary devices, The
separating devices include those in which the gas is separated from the
liquid by nonpermeable partitions (diaphragms, elagtic bags, bellows,
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and so on). Such devices are also called compensators, for in addition to
separation they also provide for compensation of the thermal expansion of
the fuel in the tanks.

Fig 5.13 shows the bellows distributing device and an elastic bag.

When starting the engine the gas for purgiaug the tank is fed to the
compensator, which, increasing in volume, forces the liquid components of
the fuel out of the tank into the main, After starting and the occurrence
of g-loads when the weightlessness conditions are eliminated, the purging
of the tank will be realized by the usual method.

Figure 5,12, Location of the liquid Figure 5.13, System of separators:
and gas in the tanks a -- bellows; b -~ elastic bag
Key:
1. Gas

The deficiencies of the compensators include the following:
An increase in mass of the feed system;
Significant remains of fuel components in the tank}

Not all of the materials of the compensators are compatible with the fuel;
some have permeability with respect to liquid and gases.

The latter deficiency 1limita.the application of the compensators and the
engines of the space systems with prolonged time of existence. The accumu-
lators are special reservoirs in which a defined amount of fuel used for
subsequent starting is accumulated (see Fig 5.14). On accelerated movement
of the flight vehicle the fuel component fills the accumulating reservoir,
and a reserve of the component is formed for repeated starting. For
repeated starting from the accumulating reservoir, the components go to the
feed system, and the engine starts.

An effective method of separating the liquid from the gas is the capillary

devices (screens) in which the phase interface is formed on the screen as
a result of capillary forces (Fig 5.15). The liquid film formed on the

213

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000200090053-2



APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000200090053-2

FOR OFFICIAL USE ONLY

mesh of the screen prevents penetration of the gas under the screen. During
starting, when the G-load appears, the interface (of the film) is broken,
and the fuel component goes into the feed system.

The height of the column of the liquid on which the capillary forces act
can be determined by the approximate relation

P 0,290 cos 9
nQd

’
where 6 is the wetting angle of the liquid; & is the capillary size,
The active phase separate systems require expenditures of additional energy

to create a gravitational field. The active systems are separated into two
groups: the systems creating the initial G-loads and the separation systems,

JI KTHA (1)

Figure 5.14. Diagram of the Figure 5.15., Capillary separator
accumulating device:

1 -~ storage element; 2 —-
separating valve
Key:
1. to the TNA [turbine-pump
assembly]
The initial g-load required for starting is created by various methods:

a) Starting the engines of the upper stages with the engines of the lower
stages operating;

b) The application of solid-fuel engines to create g-loads;

c) The rotation of the tank or the spacecraft as a whole, as a result of
which the g-loads are created,from the effect of the centrifugal forces,

The required g-load created by the enumerated systems is defined by the
Bond criterion
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As a result of creating the g-loads (artificial gravity) the gas bubbles
in the mass of the fuel components float to the surface in 10 to 20 seconds.

The operating principle of the separation systems is based on the difference
in gas and liquid demsities, as a result of which the gw. from the liquid
is separated by an active flow.

5.5. Theoretical Calculation of the Starting Process
5.5.1., .Peculiarities of Calculating Start-Up

Experimental methods still prevail in developing the start-up process.
During the experimental development, the cyclogram of the operation of the
automation and assemblies, the parameters of the starters are determined,
as a result of which the program . is established for the functioning of
the systems and the interrelation of the parameters which insure emergency-
free starting and a given law of pressure variation in the thrust chamber.

This method of start-up is not optimal, for it requires significant

- expenditures of material means and time, Therefore, along with the exper-
imental methods of developing the starting process, the theoretical methods
of calculation are being developed and are finding practical application.

v

P —=—— ' palt)

Vi) ¢,

Figure 5.16. Schematic of filling of the line
The theoretical calculation of the starting process is based on solving a
system of differential and algebraic equations describing the nonstationary
processes in the engine assemblies.
The initial data for calculating startwup are as follows:

The engine diagram;

The system of equations, that is, the mathematical mod2l of the start-up
process,

The system of equations includes the equations of the thrust chamber, the
gas generators, the pumps, the turbines, the intake and delivery lines,
valves and regulators, and all of the enumerated equations are presented
in Chapter 1.

However, when compiling the mathematical model of the starting process it
is necessary to consider the specific peculiarities of starting. First
of all, these peculiarities include the dynamics of the filling of the
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free volumes of the assemblies (pumps, heads, chambers) and the lines with
the fuel components.

During start-up after opening of the starting valves, successive fillimg of
the subsequent sections of the lines with the fuel components takes place
(see Fig 5.16).

The equation of motion of the liquid for an entirely filled line has the
form .

dm(f) , £ -

During the process of filling of the lines the form of the equation (5.23)
is maintained, but the coefficients of inertia R and hydraulic drag £ will
be variable, and they depend on the filled volume V(t),.

The functions R(V) and £(V) are determined by the geometric and hydraulic
characteristics of the lines, and they can be calculated or determined
experimentally,

The approximately indicated functions are approximated by polynomials of
the type

R(V)=aV* (&) 1tV (t)+-c, (5.24)
t(V)=a'V3(e)+bV ()1,

where a,b,c are the approximation coefficients.

Thus, the consideration of the process of filling the line is carried out by
introduction of the new variable V(t) into the equation (5.23) which can
be determined from the equation
! .
vV (H)= j m(t)dt, : (5.25)

te
where t is the current time; tg is the time of beginning of filling.

From equation (5.25) it is easy to obtain the relation
av (t) fn(l)_.o

dt e
Thus, the process of filling the lines with the fuel components is described
by the equations (5.23) and (5.26). On filling of the lines with low-
boiling fuel components as a result of heat exchange in the liquid with
the walls, gasification can take place. For the gas-saturated liquid the
equation of gas and liquid balance has the form:

(5.26)

M (ty=[1—g (O] m(2), (5.27)
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where m(t) is the total flow rate of the component ﬁliquid(t) is the
liquid phase flow rate;
(1)

(t = ’"ra;(t)
,;;(.(2:) ’
Key: 1. gas; 2. liquid ’ '

If it is assumed that the gaseous phase 1s in the volume [V;V(t)] between
the moving liquid front and the final boundary of the line, for the given
case equation (5.26) assumes the form

v _ [—e@imt)_,
dt Q

(5.28)

5.5.2. Mathematical Model of the Starting Process

The system of equations which are presented in Table 5.1 is compiled for
the specific engine layout,

Depending on the layout of the engine, the number of equations can reach

100 to 200,
Table 5.1
Order No Equation Formula No
1 Thrust chamber 1.12
2 Gas Generators 1.21
3 Pump 1.73
4 Turbine . 1,106
5 Automation and regulators 1.136; 1.141
. 6 All sections of mains 1.32; 1.33
7 Filling of the mains . 5.23; 5.24; 5.26
8 Filling of the pump cavities 5.23; 5.24; 5.26

For convenience of calculation and compilation of the program, all of the
- equations are written in relative variables %=x/x. As the base value of
X, the rated values of the parameters are selected,
For example, the equation (5.27) in relative values assumes the form
R 220 1 & it () = 1 s () — Papa )

- In addition to the system of equations, the initial and boundary conditions
are given.

The initial conditions are values of the parameters
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at the time of sending instructions to the start valves t=0

~ -~

Pe(0)= prr (0)=1(0)=m (0)=V, (0)=... =0

and at the time of completion of the starting process t=totart

;K(t)=]; r:r;(t)=land 50 on.

The boundary conditions of the operating conditions of the automation, for
example, conditions of the type

0 i, (8) <y 0 h, <k, and so on

where R, ﬁg are the maximum possible displacements of the moving parts of
the start valves, the regulators, and so on.

Since the starting process is a change in an entire series of phenomena

and events, the onset of which is realized only after satisfaction of
defined conditions, it is expedient to formulate these conditions in advance
and denote the times of their appearance on the time axis.

The peculiarities of such conditions are determined by the engine layout
and the starting cyclogram,

Such conditions and times are the following:
opening of the start valve

[0}—*%;

filling of the lines from the valves to the pumps

V1= 11—ts [V 5l

[¢5) ¢
Key: 1. ox; 2. combuscible component of the fuel
filling of the pump cavity
[Vn.;m: 1] =15 [‘7';-":. 1] =t
filling of the lines from the pumps to the gas generators

Veox=1]—ts [Vi=1]— ¢

P e .

The conditions [j] and the times t.: separate the starting process into a
number of characteristic steps, an% every tj inforns about the completion
of a defined step.
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The indicated unique relation between the condition [j] and the time t.
makes it possible during the calculation process to select the subsysten
of equations describing the translent process before the time the next
condition is reached from the mathematical model.

For example, under the condition [0}, the equations of the start valves and
filling of the lines from the valves to the pumps are included in ihe cal-
culation., At the time tj on satisfactionof the conditions [Vl ox:=1] and
[V] fue1=1l] the system of equations will contain the following:

The equations of the component mains to the pumps;
- The equations of filling of the pump cavities, and so on.

Forthe designed engine the times t; are unknown, and they are determined
during the calculation process, that is, the start cyclogram is defined.

As a result of the calculation, the characteristics of the start process

Pk (t), Pg (t), n(t), and so on, similar to those indicated in Fig 5.1 are
determined.

Thus, by varying the boundary conditions of the hydraulic system of the
engine and the parameters of the starting devices, it is possible to
determine the cyclogram and the starting characteristics satisfying the
technical specifications.

Some of the special problems of the starting process can be solved without
calling on the entire complex system of equations.

5.5.3. Calculation of the Starting of the Microengines

In the engines used for control of spacecraft, it is necessary to know the
law of variation of pressure in the chamber and the thrust created each
time the engine is switched on.

The control engines have low thrust, the simplest feed system, small lengths
of lines (the start valve 1s located on the head of the combustion chamber) ,
For such engines it is possible to neglect the inertia of the fuel
components in the line and determine the nature of variation of pi(t),

using only two equations: equation of the thrust chamber and the equation
of the hydraulic drag of the injector head. Here the inertia of the valve
either is not considered or it is estimated by the functions presented in
Chapter 1.

Setting Tconv=0, the equation of the thrust chamber is written in the form

Vi dpg
RTy dt

=’iluk+r;1r_”i' ‘ (5.29)

N 219

FOR OFFICIAL USE ONLY

APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000200090053-2



APPROVED FOR RELEASE: 2007/02/08: CIA-RDP82-00850R000200090053-2

FOR OFFICIAL USE ONLY

- The gas flow rate from the chamber is

m=pp (5.30)
m
where f= e

For the approximate calculation it is possible to assume that RTk=Rik and

does not depend on the pressure in the combustion chamber. Under actual

conditions .RITy depends very weakly on p§ and is defined by the relation of
n

the fuel components. In the case of using a single~component engine the
condition RT,=RTy 1s correct.

The inflow of fuel components to the thrust chamber is determined by the
hydraulic characteristics of the injectior head

My =i,V 20 (Pt — P (5.31)
where p¢i is the pressure in front of the injectors,

Setting PFIV?T!;=0-1 and Pp.o=Pp.c=Pip» we obtain

Mo+me= AV Py — pu (5.32)
) where 4 + =
=a .= = .
* Voo— pu

Substituting (5.30) and (5.32) in equation (5.31), we obtain
Ve d —
2 S A py— P —bPs

RT. &l
or
V, dpy
=\ —
al SA}/I’@—Pg_ﬁPx (5.33)

[

Introducing the dimensionless variable f‘:k=pk/;k into the equation (5.33),
after transformations we obtain

-~

£ = Vo S”* Ty (5.34)

— -~ 1]
aVb—pe—n
where

l/- Py e
-1
) px R
If we make the substitution of variables of the type x=vYb-fj in the

last equation, the integral (5.34) reduces to the table integral
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dp, 2xdx
—————— = — =—In(x?4-ax—
S aVb-—;‘—pg Sx2+ax—b (x*+ax b)+

+ a 0 a+2x—VYaZtab
Vol +ab a+4+2x+yal+4b '

Returning to the initial variables, after substitution of the integration
limits 0 and ) we obtain

Py
‘ mRTy —In Pr 1 e

Vi l/ﬂ_ﬂ._ﬂ_l/-_pi_l 22 _y
Px Px Py Px M
l/ (222, e (1+1/ (B )) (2
P P Px : Pk Px \ Px Py .
Ve (o gy
Px Px Px Px P Px Px

X In

The left side of equation (5.36) is the dimensionless starting time, and
the right side is the dimensionless pressure in the chamber and in front
of the injectors.

The graph of the function (5.36) for various values of p¢/pk is shown in
Fig 5.17; the results of the experimental determination of the starting
characteristics of the micromotor with thrust of 23 N are presented which
indicate the satisfactory accuracy of the calculation.

For the given rated engine parameters, the graph permits determination of
pk(t) and the start-up time.

Since in equation (5.36) the second term is negligibly small in comparison
with the first term, the starting time is approximately defined by the
function
—
Fe

T P ) (5.37)

mRT, > -
% = 0,95—0,95 ]/ﬁ_ 1
Pk Px
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Figure 5.17. Variation of the dimensionless pressure in the
chamber during starting process
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CHAPTER 6., SHUTTING DOWN THE ENGINE
6.1. Basic Specifications of the Shutdown Process

6.1.1. Types of Shutdown

Engine shutdown is a responsible process, which determines the choice of the
method of separation of stages, the separation of the pay load, dispersion
of the velocity and the coordinates of the end of the active section of the
trajectory.

When shutting down the engine a transient process occurs during which all
of the parameters of the operating process vary with time from the rated
values to zero.

The nature of variation of the parameter in time depends on the shutdown
sequence which, in turn, is determined by the method of controlling the
range, the purpose of the engine and the thrust and the layout of the
engine itself.

The basic range control method is to shut down the engine when the rocket
reaches the given velocity and the coordinates of the end of the active
section of the trajectory. Consequently, in order to select the shutdown
time it is necessary to determine the velocity with high accuracy.
Obviously the less the thrust and acceleration of the rocket, the smaller
the error will be in determining the shutdown time of the engine and the
dispersion of the target points. Beginning with this requirement, the
engine can be shut down in one or two stages.

In both cases the engine is shut down by closing the fuel valves. If the
engine has insignificant thrust, it is shut down in one stage. In this
case the command is sent to close the fuel valves, the fuel feed to the
thrust chamber stops, and the thrust drops from the rated value to zero
(Fig 6.1). Engines having high thrust are shut down in two stages,
Initially the engine is converted to the reduced thrust mode_(the final
stage). The thrust then decreases to a value of p=(0.1-0.5)P,
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Figure 6.1. Thrust variation during Figure 6.2. Diagram of two-stage
engine shutdown shutdown

The magnitude of the thrust in the final stage is determined by the limit-
ing pressure in the thrust chamber for which stable operation is insured.
The operating time in the final stage (Fig 6.2) is determined by the
requirements of accuracy of operation of the range control system,

When the rocket reaches the given velocity, the primary command to shut

down the engine is sent; on this command the fuel valves close and the fuel
feed stops.

In cases where in addition to the primary propulsion device the rocket
stage has steering engines, it is shut down in two stages. On the prelim-
inary command, the primary engines are shut down, and on the primary
command, the steering engines (Fig 6.3). '

6.1.2.Afterﬂ;amirig Impulse of an Engine (IPD)

After shutting the fuel valves, as a result of inertia of the valves s the
lines and the compression chamber the thrust does not drop instantaneously,
but over some time interval. 1In view of the fact that the operation of

the engine after closing the valves becomes uncontrollable and depends on
various factors, the nature of variationof the thrust from engine to engine
is not reproducible, and it has the dispersion shown in Fig 6.4. As a
result of variation of the thrust with time. after the valves are closed, an
impulse thrust is created which influences the rocket after the engines are
shut down. This impulse is called afterflaming impukdIPD) and is denoted
by I. 1In Fig 6.4 the area of the crosshatched region determines the magni-
tude of the dispersion of the afterflaming impulse.

P
P -
P
Po; .
ol
M
tox tax  t tex :

Figure 6.3. Shutdown diagram with Figure 6.4. Dispersion of the
steering engine engine afterflaming impulse
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In the general case the IPD is defined by the function

t
= S Pdt. (6.1)
fl'l(

The thrust of the engine is defined by the function

P=R—Fpa, (6.2)
where R is the tbrust in a vacuum,

Considering the last function, we obtain

¢ ]
I= If Rdt—F, { pt. (6.3)
" ‘I‘R
From equation (6.3) it follows that the IPD is defined by the law of
variation of the thrust in a vacuum and the ambient pressure.
Since under flight conditions the engine is shut down at high altitudes
where the atmospheric pressure is low (for example, at an altitude of

25 km the atmospheric pressure does not exceed 2% of the pressure at sea
level), the first term in equation (6.3) has practical significance.

The thrust in a vacuum is defined by the function
R=KpFipPr (6.4)

where Kp is the thrust factor, K= 10’8 pa/Pk), which as a result of
variation of the fuel component ratio during the shutdown process is a

variable; for approximate calculation it is possible to assume that is
a constant and to determine it by the parameters of the steady-state
regime
Ry==2_, (6.5)
Fo

Fig 6.5 shows the function Kp/_1§)=f (pk) for the process of engine shutdown
obtained experimentally where is the thrust factor for the rated
operating conditions. Substituting the relations (6.4) and (6.5) in the
initial equation and taking the time of sending the instruction to shut
down the engine as the origin, we obtain

! | 6.6
I="-1 Sp,(t)dt.‘ - (6.9

(3
0

hl,k|
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Figure 6.5, Relative thrust factor Figure 6.6. Variation of the thrust
as a function of Pk of the engines of the first and

Key: second stages
1, MPa

Thus, in order to calculate the IPD it is necessary to know the law of
variation of the pressure in the thrust chamber after closing the fuel
valves.

The afterflaming impulse f an engine depends on many factors, the basic
ones of which are the following: the thrust, the response time of the
automation, the volume of the cavity filled with fuel, the temperature of
the fuel components, and so on.

As a result of the fact that the indicated factors are random variables, the
amount of IPD is also random and varies within broad limits. For
example, for an engine with a thrust of 28000 kN the mean of amount IPD is
40 kN, and the mean square deviation is 3 kN.

After sending the command to shut down the engine, the engine becomes
uncontrollable because the control system ceases to operate. The after—
flaming process-:is highly undesirable because the presence of arbitrary
and uncontrolled thrust leads to a significant increase in the range
dispersion or the stage separation conditions. This dispersion is
determined by the dispersion of the IPD. The afterflaming impulse of an
engine can also play a positive role. The engines of the uapper stages
should have positive acceleration to insure reliable starting. In order
to create acceleration of the upper stage when starting its engine, it
is possible to use the afterflaming of the lower stage. In this case the
command to start the upper stage is fed simultaneously with the command
to shut down the engines of the first stage (Fig 6.6). The required
acceleration is created.by the thrust pulse.

6.2, Components of the Afterflaming Impulse

The engine is shut down by closing the fuel valves which control the fuel
feed to the thrust chamber.

After closing the fuel valves part of the fuel remains in the cavities
between the chamber and the valves (Fig 6.7) and will go to the chamber,
afterflame ad create thrust.
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Figure 6.7. Fuel component reservoirs Figure 6.8, Thrust variation after

Key: sending the primary command to
1. ox shut down
2, combustible component of
the fuel

The standard nature of thrust or pressure variation in the thrust chamber
during the shutdown process is shown in Fig 6.8.

The entire IPD (the area under the curve pk(t)) can.be broken down into
four characteristic sections which are determined by the peculiarities of
the processes occurring when the valves are closed.

The first section (I) is caused by the presence of the conversion time of
the fuel fed to the combustion chamber and the products of combustion.

The portion of fuel fed to the chamber at the time the instruction is sent
to close the valves is converted to combustion products at the time
t=toopvttyy. During this time the engine does not react to the command;
therefore the entire process is shifted to the right along the time axis.
The conversion time depends on the type of fuel, the structural design of
the injector head and the organizational scheme of the mix formation
process. The conversion time is 0.001 to 0.1 second. In view of the fact
that Tcopy for the given fuel and pressure in the engine chamber is a
stable value, the dispersion of the afterflaming thrust in the first
section is determined by the thrust dispersion and shutdown time.

The second segment (II) is explained by the presence of inertia in the
response of the control circuits and the valves themselves, From the time
of sending the command to shut the valve to the beginning of the closing
process is a defined time which is caused by the inertia of the valve
control system. The inertia time depends on the type of control automation
the valve has. For pneumatic automation t c=0.05—0.15 seconds; for
pyroautomation t2,=0.001-0.015 seconds. Since in the time t the valve
does not move, the flow rates of the fuel components and the thrust will
be constant and equal to the rated values.

From the time t)c the valve closing process begins which takes place also
during a finite time interval tjy. By the valve closing time we mean the
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time of the beginning of movement of the valve plate to complete closure
of it, In this case the area of the through cross section of the valve
changes; the law of variation of this area depends on the law of variation
of the control pressure, the pipe and the structural design of the valve.
During the process of closing the valve, the fuel component flow rate and
ticust vary, The law of variation of the flow rate depends on the varia- -
tion of the area of the through cross section of the valve Fyalves the

flow rate factor u and the liquid pressure before the valve Pyalves that

is, -

'h=m(Fxm L] pxll)"
@ @
Key: 1. valve ’

The pressure of the liquid in front of the valve varies as a result of a
reduction in the rpm of the TNA and the g-~loads in flight. The valve
closing time depends on the structural design of the valve. For pneumo—
hydraulic valve ty=0.1-3 seconds; for pyrovalves, this time is negligibly
small t51<0.001 sec.

The segment (III) of sharp pressure and thrust drum is described. After
complete closure of the valves, the chamber is emptied of combustion pro-
ducts quickly, as a result of which the pressure in the combustion
chamber decreases to tenths of a bar., The time for the chamber to be
emptied of combustion products depends on the volume and magnitude of the
initial pressure and is thousandths of a second.

The segment (IV) of evaporation of the fuel components which is caused by
the unstable process of flow of the fuel components from the reservoirs

in front of the injectors to the chamber and afterburning. During the
process of emptying the combustion chamber, in accordance with the pressure
drop in it the pressure of the components in the reservoirs decreases.

When the pressure in the reservoirs in front of the injectors drops to the
saturated vapor pressure of the components with the corresponding tempera-
ture of the liquid in the head, the components begin to boil and evaporated.
The vapor formed maintains the pressure in the reservoirs ahead of the
injectors equal to the saturated vapor pressure. Under the effect of this
pressure the components go through the injectors to the chamber and after-
burn,

As a result of the pressure gradient on the injectors the vapor content
increases, During the process of movement. through the cooling jacket the
component is warmed up by the heat taken from the wall to the boiling point.
The temperature of the vapor-liquid mix decreases as a result of expansion
and discharge into the chamber. This decrease in temperature is only
compensated for by supplying heat from the walls. The temperature drop
leads to boiling of the entire mass of liquid (combustible components) in
the cooling jacket and it is emptied of the vapor-liquid mixture under the
effect of the saturated vapor.pressure.
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The component (oxidizing agent) which is in the cavity from the cutoff

- valve to the injectors hac identical temperature in the entire volume. It
begins to boil when the pressure in the chamber is compared with the saturated
vapor pressure. The oxidizing agent is fed to the chamber also under the
effect of the saturated vapor pressure. The inflow of fuel components in
the form of finely-disperse vaporizing liquid mix promotes an improvement
in quality of the mix formation. If we consider that the components come

- into the hot chamber, then in spite of the lew pressure in the chamber,

- the fuel components burn, However, as a result of the fact that the pro-

cesses of evaporation of the combustible component and the oxidizing agent

are different as a result of different saturated vapor pressures, the fuel

feed to the chamber takes place with a variable ratio of the components and

differing from the optimal value. This leads to unstable combustion and

pressure fluctuations.

The combustion process continues until one of the components is used up.

From that time only one component will enter the chamber, and it turns out
to be in excess.

The engine thrust will be created by the reaction of the escape of the vapor
or products of thermal decomposition, The evaporation process is the long-
est, Depending on the type and the quantity of fuel in the pre-injector
reservoirs, the evaporation time can vary within broad limits from several
seconds to several minutes,

After sending the instruction to shut off the engine, the turbine-pump
assembly is not shut down immediately as a result of inertia of the gas
generation system and the TNA itself, If the cutoff valves are closed
before the rpm begins to drop, then the inertia of the TNA does not have
any influence on the magnitude of the IPD. Otherwise, the shutdown process
is greatly complicated by the mecessity for considering the pressure varia-
tion of the fuel components after the pumps.

Thus, the total time of the afterflaming impube is defined by the sum
t=t 4ty o+t +1y (6.7)
The total afterflaming impdse can be represented by the sum of its components
I=1+L+ 141 (6.8)
The calculations and the experimental data indicate that the second and

fourth components have the highest specific weight in the total IPD and,
as a rule, the following expression is valid

Ip+ I, = (0.7 to 0.85) I
6.3. Calculation of the Engine Afterflaming Impulse

In order to calculate the magnitude and the characteristics of the dis-
persion of the IPD, it is necessary to know the law of variation of the
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pressure in the chamber in the engine shutdown process. For this purpose
it is theoretically possible to compile a system of algebraic and differ-
ential equations describing the processes in the engine assemblies on
shutdown and solve it under the given boundary conditions,

The procedure for calculating the variation of the parameters with time in
the engine shutdown process and the magnitude of the afterflaming impulse was
developed by V. A. Makhin [21].

a In accordance with the physical processes of the formation of the engine
afterflaming impulse/see Fig 6.8), it is expedient to perform the calculation
by individual components of the IPD.

- 6.3.1. Calculation of the Components of the IPD in the First and Second
Sections I7_o

The engine thrust in the first section formed as a result of the presence
of the conversion time of the liquid fuel to combustion products, is
constant and equal to the thrust of the final stage.

In the second section during the process of closing the cutoff valve the
fuel flow rate is variable, and it is determined by the variable cross
sectional area between the seat and the plate of the valve. However, as a
result of insignificant response time of the valve (especially if pyro-
valves are used), commensurate with the time constants of the mains and
chamber, without making a large error it is possible to assume that the
thrust in the second section is also constant.

Then it is possible to make P1=P2¥§; where P is the thrust at the time of
sending the primary command to shut down the engine. :

The magnitude of theafterflaming impulse is

_ (6.9)
11—2=Pf1—2,

where

tl—2=fnp +12u +t2xn'
1 3 @

Key: 1. conv; 2, valve; 3. 2¢

6.3.2. Calculation of the Component I

In the third section.a sharp decrease in pressure in the thrust chamber
takes place. The pressure drop in the thrust chamber is described by the

chamber equation and the equation of the line between the valve and the
thrust chamber.
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The equation of the thrust chamber (1.12) without considering the conver-
sion time is

3) . __
ﬂ_ m RT b(x) FK;- VRTx (6.10)

=V gy "

Key: 1. oxidizing; 2. combustible component of the fuel; 3. cr;
4. chamber

The equations of the mains (1,29)

pi= b,,m, + b,, —L_ Pis (6.11)

where pi is the pressure after the cutoff valve; poj is the piezometric
pressure of the component included between the valve and the chamber.

It is possible to determine py(t) by the procedure of [21] if we make the
following assumptions:

The cutoff valves are closed instantaneously and simultaneously;

The cutoff valves are located close to the thrust chamber; in this case it
is possible to set p,=0;

During the process of the decrease in pressure, the component ratio remains
constant;

The quadratic dependence of the flow rate of the fuel component on the
pressure gradient is replaced by a linear function

by B, (6.12)

where

Making the indicated assumptions and excluding pi from the equations
(6.10)-(6.12), it is possible to obtain the equation for the flow rate of
the combustible component of the fuel (or the oxidant)

ad.:, 2, ___+a2m o, (6.13)

where
KBy — By -

2q,== .
VT Kbgoy = b

The function (6,13) is a second-order differential equation with constant
coefficients, the characteristic equation of which is

32,+2a!5’+02 =0.
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- Since for actual conditions the determinant of the characteristic equation
s=¢aZ-az<0, the solution of the equation (6.13) has the form

m, (t)==e=a* (c, cos st + ¢, sin st), (6.14)

where ¢y, ¢, are constants determined by the initial conditions
Cr——-”.l,,
;r +al";r

Co==
2 8

Since K=const, then . .
mg, (¢)=Km.(¢).
(6.15)

Substitution (6.14) and (6.15) in equation (6.10), we obtain

b(x) Fep VRT

. RTK
Ve px_mr(l+K) Tx

dpy
a T
X et (r;t-, cos st el +a). )=0.
y (6.16)

The integral of the equation (6.16) represents the function PK(t)
' P(t)=pe~n+
1 [s4x, + (Ac—ay) A, ] sin st + [(Ac—ap) A, -~ sA J(cos st —1) (6.17)
N (32 + (Ac—a1)7] '

where A tOFe VR, 4 (L +R)RT, =
== V‘ 1 3K T VK (34

X
A = UHKIRTym, 2 +a7)
' W,s )

The component of the IPD 13 is:determined from the equation (6.6)

- —aty
A L L 2) i
= . (. At )
" (582~ apdy) sin sty - (s, = a3;) (1 —e~Mrcos 5¢5) ) (6.18)
8 (af + s2) ) ’

e M

+

where ) B=54, +(Ac—a) Ay,
8= (Ax '_al) -4K. —SAK|;
83= s? +(Ax - al)z-
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The calculations of I3 by equation (6.18) are awkward, and the accuracy of
the determination depends on the reliability both in the initial data and
the assumptions made.

For approximate analysis the component of the engine aftereffect pulse I,
can be defined by the following method.

In the third section there is a sharp pressure drop in the process of
emptying the combustion products from the thrust chamber. The initial
pressure in the chamber is equal to the pressure at the time of sending the
shutdown command, that is, P3=Pgk+ The pressure drop in the chamber takes
place to the highest saturated vapor pressure of the components pyx=Pg max-

The nature of the pressure variation is illustrated in Fig 6.9.

As a result of the fact that the chamber is emptied vcory quickly, it is
possible to assume that the composition of the gases and their temperature
do not drop, that is, a nonequilibrium process takes place. In this case
the law of pressure variation can be defined by the 'equation describing the
escape of a gas from a semiclosed vessel

p=— Pe . (6.19)

g
%41 mRTy

14 —_— ¢

‘/ 2 PV 3

From the last relation, setting p~pg pa4» and pg;bk,'m=m the emptying time
is determined

21

b ;x )'_':l—l
fy== (Ps.max_ . (6.20)
%—1 ’hRT.
2 2Vx
Pr
P
1
@ux/ =
- Al
7
L2
t

Figure 6.9. Diagram of the third shutdown section
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The component of the IPD in the third section
ty

Ia=-Tp-—)'p‘dt. (6-21)
Px
] t3
As follows from Fig 6.9, the integral { can be replaced by the sum of
t
2
two areas
1s
S‘=Sl+s2’
where i :
- -
Sl= _2— (px "'p.s.mu)t:i; Sz—'——p"-,t;.
Finally,

I= P(p + Pamax)f3 .
2px '

6.3.3. Calculation of the Compénent Iy

In the section of evaporation of the fuel components, the latter are fed
to the thrust chamber under the effect of the forces created by the
saturated vapor pressure in the cooling jacket and in the injector head.
Since the fuel components boil in the reservoirs ahead of the injectors,

a finely disperse vapor-liquid mixture reaches the thrust chamber. There-
fore in order to calculate the pressure variation in the chamber with time
in the fourth section it is' necessary to consider not only the hydro-
dynamic relations, but also the equations describing the process of vapor
formation and escape of the emulsion from the injectors.

The procedure for calculating the evaporation of the fuel components was
developed by V. N. Makhin [21].

In order to calculate the pressure variation in the thrust chamber, systems
of equations have been compiled.

The material balance equation for variable amount of emulsion

dm’ <y .y

T[=—‘m¢+mx, (6.22)
where m' is the mass of the emulsionj ﬁ¢' is the flow rate per second of
the emulsion through the injector; g+ is the inflow per second of the
emulsion as a result of boiling of the liquid. Then the following notation
is introduced: y is the liquid parameter; y' is the emulsion parameter;

y" are the vapor parameters. The variation of the volume of emulsion in
the prechamber cavity

av . .
'_d‘—__—vx-l_vnv (6.23)
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where V is the emulsion volume, Vi is the volume of boiling liquid
arriving per secondj V4 is the volumetric flow rate per second. The

energy equation of the emulsion, considering the supply of heat from the
chamber wall and the liquid,

d@'m'y _dQ -0y v (6.24)
= T imetime—pV,

where u', 1' are the internal energy and enthalpy of the emulsion} p is
the saturated vapor pressure; m, 1 are the flow rate and enthalpy of the
1iquid combustible fuel component. The amount of boiled component is
determined, on the one hand, by the heating as a result of heat release
from the walls of the thrust chamber, and on the other hand, as a result
of a reduction in emulsion temperature and saturated vapor pressure

y . 1 dr
VK=z'v'mA+—kT—E— ; (6.25)
m=em 42 4T (6.26)
K. dt
where
e= _’?1—;(" ]
m

- KT is the coefficient defined by the results of calculating the engine cool-
ing in the shutdown mode from the equation:

T= To+K.V;
V is the dynamic volume of the cooling jacet; T4 is the liquid temperature

at the injectors, The amount of heat supplied to the emulsion in the
cooling jacket is determined by solution of the heat exchange equations

%?—=KQA{U'"¢- (6.27)
where
) BT Fox
Ke=—F& '
A = 20,8 (2)"%"2 (g% is the component characteristic;

05505 ( gn)0.66 ()3 ()03

h=N/dg, d_ is the equivalent diameter; Il is the wet perimeter; Fy .k is
the side surface of the chamber; Fyep 18 the mean through area of the

cooled channel; Tep is the average temperature in the cooling jacket.
The inflow of emulsion to the chamber through the injectors is determined
by the flow of two-phase liquid in the injector

my= TV 2k (6.28)
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where i 1s the flow rate coefficlent; ro is the radius of the injector
nozzle; wc is the vapor content of the emulsion in the injector nozzle

q‘c____ Rls—ic) + Yere
()
c \ 2

where g is the gravimetric proportion of the light fraction in the
component; Yo 1s the vapor content in front of the injector. The mass
and volumetric flow rate of the emulsion in the drainage channels

, (6.29)

B . / o 0(pi—pd) (6.30)
my=p F LA
=R l/ 2 1+2610Ff ’
V,=‘um,’,.

The equation for the pressure in the combustion chamber

dm _ RTy (o ,;,'__P:.), (6.31)
at Vi ( o - M B
where o V RTx
T Y

It is necessary to add the equations of the physical parameters u, i, rg, p
of the component on the saturation line to the equations (6.22)-(6.31).

Let us present the approximate formulas for determining the physical param-
eters on the saturated line [21] (Table 6.1).

The following notation is introduced in all of the formulas

T=c—; p=z
Tip Pep
where Typ and Pgp are the critical temperature and pressure of the
components,
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~ Table 6.1
Physical variables Liquid ) Vapor
Density, kg/m3 p=A,(16.47-9 T) _ p"=1.774,T10
Specific volume, m3/kg v=A (0.04+0,084 T) v'=0,5654,T10
Heat capacity, kjoules/kg-K cp=Ac (3+3.7 I% '
Enthalpy, kjoules i=A; (3+1.85)T° _
Heat of vaporization, kjoules r=A,(1.85-3.27 T)
Pressure, MPa p=atbTl _
Internal energy, kjoules u=i+vpkpp

The coefficients Aj depend on the critical parameters Pkp> Tk , the molecu-
lar mass and the compressibility factor. The value of Aj for the propagated
fuel components is presented in Table 6.2.

The equations (6.22)-(6.31) and Tables 6.1-6.2 permit by numerical integra-
tio