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Two-positional Functional -Frequency Device

for Automatic Regulation

I.A. MASLAROFF __

Introduction

The complicated character of the technological processes has
developed in parallel with other research methods of ascertaining

ways of improving the qualities of the two-positional method °

for regulation. The simplicity of the device and the low price
of the required elements have not detracted from its significance.
From all published literature on this subject the extensive work
of Campe Nemm! is particularly noted. The author analyses
the existing methods of reducing the fluctuations of the unit to
be regulated: increasing the extent of current: the use of cut-off
two-positional regulation: and the introduction of inverse
connections on the first and second derivative, etc.

This paper gives some results of the methods undertaken to
improve the two-positional regulation by changing the frequency
of the influenced impulses. The methods are mainly directed
towards decreasing the fluctuations of the unit to be regulated.

The Essence of Two-positional Functional Frequency Regulation

The present survey refers to the monotonous varying
processes of a unit with a comparatively small changing rate
of regulation and the form of the equation to be used:

| c__zQ )

The principle of two-positional functional frequency regula-
tion consists in the addition to the object of previously fixed
identical portions of the utilized unit in the form of impulses.
The frequency of these impulses depends on the difference 44
between the given and actual value of the unit to be regulated.
Initially the influence of the net delay in the system is neglected
in the survey.

Figure 1 shows the change of the unit to be regulated.
During the time of impulses it is determined by: A4 = A,
(1 —e4T)) and during the pauses, by: 4 = A e T
(r =0, 4 = A;). These two expressions are the integrals of (6))

in the presence and absence of current. In such cases, at the end

of the impulses and pauses, the unit to be regulated will be
determined by:

A=A, (1—-e7"T)

By using the method of full mathematical induction, we
determine that the value of the unit to be regulated after n
consecutive cycles (impulses and pauses) will be equal to:

n
- Z [tr+(n—a) t: )/ T

Ar=A, (1= T ¢ | (3)

and after #» + 1 serial impulses:

n

) - X {+in—(a-1)6}/T @
Agprr=A,(1—e"N 1+ Ze = ]

Eqns (3) ahd (4) show that by changing the duration of
pauses one can effectively influence the unit to be regulated.
In order to obtain the regulation we need the functional relation
t = @(44), at which the time of the pause will increase with the
decrease of the magnitude of the difference A4. Such a depend-
ence may be realized simply by introducing the exponential
block in the scheme of the regulator (Figure 2).. - .

The equation, characterizing the work of this scheme is:

kdA(1—e T =B

The time constant of the exponential block of the scheme must
be much smaller than the time constant of the object.
Then at 44 = const. the time of the pause is equal to:

k4A

t=T11n———kAA_B )

Eqn (5) shows large values of the difference when the
percentage change in the pause time is insignificant. At an
established regime when there are small values of the difference
between the given and actual values of the unit to be regulated,
the time of the pause is determined only by the parameters of
the object (T'> T;) where the delay due to the regulator is
slightly neglected in comparison with the common time of the
pause. In such a case the time of the pause is determined taking
into consideration that the consecutive fluctuations of the unit
to be regulated at a determined regime are also equal:

3A'=384" (6)
- - - here
Ay=A;e”T=4 (1—e W/Tye 1T s
: 1 s y( —t:/T : —t;/T 8A'=A2n+I_A2n+2; 8A”=A2n+3—A2n+2
Ay=A,(1—e")+A,e7 =4, (1—e"M)e +/T (2) Since
Ag= ... Arnez=A,(1—e"N) 4 A, 677
: Azpra=Agyse” 0007 -
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the time of the pauses is equal to:

A2n+1 '
- (N
Azus1—A,(1—¢ ti/T)

By exerting an influence on the coefficient of amplification
and the internal limit of putting in motion B of the scheme it is
always possible to receive an equalization fo the maximal and
given values for the unit to be regulated. Then egn (7) is modified
as:

A
t,+1=TIn "
n+1 A —Ay(]__e—ti/T).

(7Ta)

The maximum value of the fluctuations of the unit to be
regulated is given by: .

SA=AA=%=A9—A2,,+2=(Ay—-Ag)(1—e‘“/T)e""‘/T 8)

Eqn (8) shows that by decreasing the duration of the impulse
t; the fluctuations of the to unit be regulated may be most effec-
tively reduced. The coefficient of amplification & may be deter-
mined at a previously chosen value B of the limit out of the
duration of the impulse.

Influence of the Net Delay on the Two-positional Functional
Frequency Method for Regulation

Usually, the effect of the delay which increases fluctuations
of the unit to be regulated is shown in the systems of the type
examined. In the following it is proved that the influence of the
net-delay upon the value of fluctuations may be substantially
decreased using the functional frequency method for regulation.
Actually Figure 3 shows that the additional increase of fluctua-
tions 644, which follows from the delay of the system, is equal to:

SAy=Ag,ys(1—e Ty 4, (1—e ™47 ©)

With the usual two-positional regulation, the delay increases
the fluctuations of the unit to be regulated in the direction of its
decrease, as well as in the direction of its increase. These addi-
tional increases are of the same order.

It follows that with functional two-positional regulation the
fluctuation of the unit to-be regulated increases in the direction
of its decrease and because of this the received additional
fluctuation is about twice lower.

The total value of fluctuations is:

SAy=8A+8A4,=(4,—A)(1—e"T)e T+ A4 (1—e“IT)

(10)
If it is accepted that 64 = 84y, then:

Ay 44 —e") et

From eqn (11) some conclusions can be drawn for deter-
mining the parameters of the system to be regulated.

It is evident that at considerable values of the time of delay
At it is apt to accept 4, > 4,, i.e. to use strong impulses.
However, at small values of 4¢ it is apt to accept 4, =~ A,, i.e.
the impulses will be comparatively weaker.
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From eqn (8) two fundamental parameters for the regulation
may be determined—the internal limit for setting in motion B
and the coefficient of the earlier amplification k. These para-
meters may be easily changed into parameters to be regulated
in large limits, depending on the requirements of the object
to be regulated.

Constructive Data of the Device for Functional Frequency
Regulation

The device uses a vacuum-tube scheme (Figure 4) consisting
of a measuring part 1, amplifier 2 and an integral group 3,
two channels for constant current amplifiers 4 and 4’ and an
executive trigger 5. It differs from Figure 2 by the use of
a second channel for the constant current' amplifier 4’, which
is included in a circulating chain of the integrating group and
the base constant current amplifier 4. Its purpose is to accelerate
the process for establishing the regime. When there are many
large values of 44 the output voltage of 4’ passes through the
logical scheme ‘IF’-6 and sets in motion the executive trigger.
In this way the scheme works as an ordinary two-positional
regulator. Placed in a regime, close to the one established, the
output voltage of the second channel is not in position to set
in motion the executive trigger, and the device works like a
functional frequency regulator.

In parallel with the passing of each impulse from the trigger
exit 5 to the object 7 the signal for clearing the integrating chain
is simultaneously passed through an internal link.

Experimental Data

Initially the device was constructed and tested for regulating
the concentration of solutions. Conductive transformers linked
by a bridge scheme with temperature compensation were used
as a measuring device*.

The excutive trigger exerts influence on an electromagnetic
valve which adds a drop of concentrate to the solution at each
impulse. The results obtained at the time of regulation were
very good.

The device is used to regulate temperature, and for this
purpose the excutive trigger is replaced by a delay multivibrator.
The time of the impulse may be regulated at will by changing
the parameters of its device. Figure 5 shows the diagrams of
temperature change of one and the same object, recorded with
the help of an electronic potentiometer. It is seen that the quality
of regulation with the functional frequency method is much
better than that of the ordinary two-positional method.

Conclusions

1. The two-positional functional frequency device for
regulation allows the possibility of decreasing the fluctuations
of the unit to be regulated, particularly those emerged out of
the delay in the system.

2. By the character of its work, the device approaches the
statistical regulators.

3. The devices for regulation can be realized by using
practical simple means.

4. The test results prove the expedience of using this method
for regulation in many cases.

* Eng. D. Detcheva took part in the computing of the qonstructi()n
of the device.
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Nomenclature At Time of the net deiay
) Number of the impulses
C  Coefficient of the generalized capacity of the object to be regulated 77 Time constant of the object to be regulated
A The unit to be regulated T, Time constant of the exponential block of the scheme
B
k

Ay Fixed value of the unit to be regulated Tnternal limit for setting in motion the acting block of the scheme
Ay Given value of the unit to be regulated . . Coefficient of amplification

AA Difference between the given and actual value of the unit to be
regulated

Q Generalized quantitative index of the process ‘ :

dA Variation of the unit to be regulated in the period of one impulse ! CampPE NEmM, A. A. Two-positional automatic regulation and

References

or pause methods of improving its characteristics. Thermoenergical and
t Time - i Chemicotechnological Devices and Regulators. 1961. Moscow-
t;  Time of the impulse Leningrad; Mashgiz
, 1 2
. Ag AA kAA
L=
. S aal ' |
As T Agn A2ns2 |
. A,
A
Ay \
/ 110 R —
6™ S e = Object |
) Figure 1

Figure 4

Y e i

-t
- T
A—A> <k N Ty kAAﬁ eh) B v->—o the
object
Figure 2
| 2

y:
t“ 278 l'
/; < I‘ \\\ .. < I JJ
Y N // ‘3?“‘? ot
T ll ¥ Ve d
A2 n+2 RN \ .g S ]
£ g {
2n+2 :
"] At L_
(@) (b)
Figure 3 - : Figure 5

Curve 1—Change of the regulated unit in close proximity to the source  (a) Change of temperature by using a contact thermometer for regulation

of the impulses (b) Change of temperature by using functional frequency regulation

Curve 2—Change of the regulated unit in the field of the sensitive element . of the object
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On the Estimation of the Decaying Time

H. LING

The problem of stability is one of the basic problems in the
proper operation of any dynamic system. After Liapunov’s bril-
liant work?, very great effort has been expended on its theory in
the last twenty years® 8, In the monograph by Zubov?, the sta-
bility of the invariant sets of the abstract dynamic systems in the
metric space are treated in a very general sense.

Consider the differential system

X=X (X1,.., X, 1) (s=1,2,...,n) ¢

It is often necessary to study the stability problem for the given
values ¢?, ..., @9 of the coordinate functions

¢i=¢i(x1="':xn) (l=]’2asK) (2)

Without loss of generality, ¢9 =0, ..., 3 = 0 may be taken.
Thus, the standard working state of the system is given by the
equation

Gi(x1, ey x,) =0 (i=1,2,>...,K) 3)

Let the set of points defined by (3) constitute an (n — k)
manifold & (n— k). By means of (3), some particular and inter-
esting motions of system (1) can generally be described (for
example, the self-excited oscillations or the motions which
demand their characteristic functions to take on given values).
Here the generalized stability differs from the Liapunov sta-
bility in that the unperturbed motion is no longer a particular
motion (e.g. trivial solution) but its X coordinate functions take
on given values. In general, (3) represents a class of motions and
constitutes a manifold in the phase-space. From the research
point of view, the coordinate functions (2) are of more interest
than the coordinates x, ..., x,, themselves.

Obviously, when ¢; = x;, i = 1, ..., k, k < n, the stability
of the partial coordinates is obtained, and when ¢, = x,, i = 1,
...k, k = n, it agrees with the stability in Liapunov’s sense.

In papers by Liapunov! and Rumyantsev® the stability of the
partial coodinates and the stability for the given values of the
functions are discussed. They require the absolute values of the
initial perturbations xJ, ..., x? to be sufficiently small and thus
essentially the unperturbed motion was supposed to be a pint
in the phase space. The approach in this paper differs from theirs,
and it will be explained clearly below.

The set of points which satisfy the inequality

K
RO ®

is called the H-neighbourhood of % (n — k) and is written as
F (n — k) (H). 1t is assumed tacitly that through each point of
& (n — k) (H) there exists a unique solution of the system (1).

Of course, it is necessary that the standard working state (3)
of the system has a certain upholding ability, which means that
the functions

B,(%y, ..., Xy )=grad X (i=1,...,K) (5)

should satisfy the conditions
D;(Xgs..., Xy 1)=0as {x},€Z (n—k) 6)

or equivalently, & (n — k) is an invariant set of the system (1), -
where {x}, represents the n-dimensional vector.

Definition 1. The system (1) is said to be stable with respect
to the functions (2), taking on zeros (3) whenever, given any
&> 0, there is a 0 (¢y- &) > 0, such that, for all trajectories
x (¢) with initial values satisfying

{x(t)}a={x"},eF (n—k)(8), 1,>0 M
one has :

O} eF (1-K) (@) ®)

for all t > ¢,

Definition 2. The system (1) is said to be asymptotically -
stable with respect to the functions (2) taking on zeros (3) if

(@) Definition (1) holds,
() . X _
lim ®*=lim Y ¢?[x,(1),...,x,(H]=0 9)

t= o t2ooi=1
i.e. for any given 7 > O there is positive number 7" = T (7, t,, x%)
such that : :

X} eF (—k)(n) as t2to+T (10)

Definition 3. The system (1) is said to be equi-asymptotically
stable with respect to the functions (2), taking on zeros (3) if

(a) Definition 2 holds,
(b) there exists H> 0, and T = T(»), such that for ali

trajectories {x (t)}n with initial values satisfying
{x(to)},eF (n—k)(H)

then (10) holds.
If the initial conditions were subjected to the following
restrictions

to=0

(1)

x(t0)},eG° 1,>0 (12)

then the above-mentioned stability, asymptotic stability and
equi-asymptotic stability are said to be stable, asymptotically
stable and equi-asymptotically stable under condition (12)
respectively.

In the sequel, the function V' (xy, ..., #) is called the Liapu-
nov function with respect to functions ¢, ..., ¢k if

V(xg...,x,, 6)=0as {x}, egf"(n:— k) 13)

and V is assumed to have continuous partial derivations. .

103/1
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Definition 4. The function V(x,,..., x5, ) is said to be
positive (negative) semi-definite with respect to (2) if

(a) (13) holds,

G®V=>0[V>0]inZ (n— k) (H).

Definition 5. The function V (x4, ...,
(negative) definite with respect to (2) if
(a) Definition 4 holds,

(b) there is a positive function- W; (o4, ..
F (n— k) (H),

V(X os Xy D= W [0 (%45 00 %), ooy P (X4,
{V(Xl, ey X,,, I)S "’Wl [¢1(X1, ey X,,), .

X, #)issaid to be positive

. ¥, such that, in

Lx)] (14)
x’l)]}

s qDK(xl: seey

Definition 6. The function V is said to be uniformly sma]l,b

if for any given & > 0, there is § () > 0 such that the conditions
t>0and {x},eZ (n— k) (0) imply V' < &.

Definition 7. The function V (xy, ..., x,, ©) is sald to have
infinitely small upper bound with respect to (2) if there is a
continuous function W, (yy, ..., yk) such that

(a) W2 (Ola ceey O) =0,
) inZ (n — k) (H),

WZ [¢1 (x1,-~-,xn),-~:¢1((x1,~ >xm I) (15)

Definition 8. The function V(xy, ..., x,, £) is said to have
the property A, if there are two positive continuous functions
W; (S) and W, (S) such that

@ Wy (0)=W,(0)=0, W,(c0)=W,(w0)=+co (16)
B) Wyl Pl)=V (X1 vy X )= Wy (Il ) an

Parallel to Definitons 1 and 3, one has the fundamental
theorems shown in the following section.

X =V (x4, ...

The Fundamental Theorems

(A) For the system (1), if if there is a Liapunov functlon
V (x5 ..., Xy, £) such that

(a) V satisfies Definiton 5 and it is positive definite with re-
spectto (2),

(b) V satisfies Definition 7,

(c) the total derivative

dv ov

-&—t—“ 6t+ gradV-X

(18)
is negative definite with respect to (2), then the system 6))
satisfies Definiton 3.

(B) If the system (1) satisfies Definition 3, :amd the rank of
matrix

Declassified in Part - Sanitized Copy Approved for Release 2013/02/13 : CIA-RDP80T00246A023400480001-9

which satisfies all conditions in (4). The proof of this theorem
is given in the Appendix. It is not difficult to prove the following
corollaries.

Corollary 1. 1f V satisfies Definitions 5 and 6, and d¥/d¢| (4)
is negative semi-definite with respect to (2), then the system (1)
satisfies Definition 1.

Corollary 2. If V satisfies Definition 8, and dV/d¢] (y) is
negative definite with respect to (2) then (9) holds for any
fo > 0 and any x° in the space.

Let the set of position points at time of the motions which
take on the initial positions in G° be written as GO .

Corollary 3. If V satisfies (A4), Corollary 1 or Corollary 2
in GONF (n — k) (H), then the system (1) is stable, equi-
asymptotically stable, or asymptotxcally stable in the .whole
under condition (12) respectively.

Corollary 4. If the system (1) satisfies Definition 3 under
condition (12) and the rank of matrix (19) is X in the neigh-
bourhood & (n — k) " GW and @, (i = 1, ..., k) are uniformly
bounded in G® N.F (n — k) (H), then there is a function V'
which satisfies the conditions in Corollary 3.

Example—Consider the system

X= ay cx(bx +ay)s1n— 1

+ay (20)
N N 2 NS
y=—bx—cy(bx"+ay )smbx2+ay2
(a'b-c>0)

Obviously, if one takes ¢ = bx® + ay* then ¢ = l/kn
(k =1,2,...) are the invariant sets of (20), they are closed
orbits. By means of the Liapunov functions ¥ = % (¢ — 1/kn),
with ‘respect to ¢ — 1/km, the following statements can be
proved: '

(a) In the exterior of the ellipse ¢ = 1/z, there is no closed
orbit;

(b) in the interior of the ellipse ¢ =1 /n, there are infinitely
many closed orbits;

(c) the closed orbit is asymptotically stable when. K is even
and it is unstable when K is odd;

(d) the origin x = y = 0 is a singular point of (20) and it is
stable. In any of its neighbourhood, there are infinitely many
closed orbits, and hence the origin is not asymptotically stable.

In the regulating or the dynamic systems, it is often necessary
to estimate the decaying time of perturbations for the standard
working state. In this paper the problem of estimating the
decaying time is considered. In the sequel it is assumed that
system (1) is equi-asymptotically stable with respect to (2), and
the following discussions are vahd in certain attractive

0¢, 0, regions of # (n — k).
Ox, """ ox, Let V be a Liapunov function of (1) which satisfies the
D(¢y,.--, 05 _ (19) conditions of the fundamental theorem (4). In the general case,
D(xyy..es X,) 3 3 there are two positive definite functions W, (3, ..., y,) and
¢K, o ¢k Wy (31, ..., ¥,) such that
Ox, ox,
. > vees Xps
is K, and the functions @, (i =1, ..., %) defined by (5) are W2 [1(0)s 00 6k ()] 2V (55 s X 1)
uniformly bounded in% (n — k) (H), then there is-a function ¥ =W [ (%), ..., px (X)] 21)
103/2
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Besides, it is. assumed that there are two functions f(9)
and f; (s), such that inZ (n — k) (H) the inequalities .

1)< <f2 () " (22)

hold. Furthermore, from (21) one has, in general,
{x,} € {W,<V,} implies {x},e{V<Vo}
{ {x,}€{V <&} implies {x},e{W; <&}
where ¥, and ¢ are given position numbers. Denote

o dr |9
e J1(D) 2 e J2 (D)

Then, the following theorem estimates the decaying time.

(23)

T,=- (24)

Theorem 1. The decaying time T of the motion of the system
(1) from an initial point in the region

Wy [y (%), ..., px (X)] <V, (25)
to a point in the region
Wil (x),..., 9 ()] <e (26).
satisfies the inequality
: T<T, 2N

The decaying time 7 from an initial point in the region

w, [¢ 1 (X), 0 0k ()2 Vo (28)
to a point in the reglon (26) satisfies
T>T, (29)

Let M, (R) be the maximum value of W, on the boundary

I ¢l =R of F (n— k) (B
and let n,(y) be the minimum value on the boundary || ¢ ||, =y

of & (n — k) (). Again denoting
M (R) dir- - JMZ(R) dx
T, =f —_ T,= —— (30
=)o 7O "o R 0
the following theorem is obtained.

Theorem 2. The decaying time T of the motion of the system
(1) from an initial point in the region % (n — k) (R) to a point
in the region% (n — k) () satisfies (27), and the decaying time T
of the motion of the system (1) from an initial point in the region
| | = R to a point in the region.% (n — k) (y) satisfies (29),
where T3, T, are deﬁned by (30).

By taking ’
fiw)=—ow f,0)=—pv («>f) (31)
one has ]
1 M, (R

Particularly, when ¢; = x;, i = 1, ..., k < n one obtains the
formulae to estimate the decaying time for partial coordinates,
and when ¢; = x;,i =1,..
to estimate the decaying time for total coordinates (9), (10)
and (11).

., n, then one obtains the formulae

Declassmed in Part - Sanitized Copy Approved for Release 2013/02/13 : CIA RDP80T00246A023400480001-9
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The above method is used to solve the following example.

Example—Consider an autonomous system

x=x—a’x*—b’xy’

. a>b 33

y=y—qzyx2—_b2y2 ( ) (33)
and its unique closed orbit

d=a*x>+b*y*—1=0 (34)

If one selects the Liapunov function with respect to ¢ to be

V=(a*x*+b%y*—1)?
then it may be asserted that:
(@) the system is asymptotically stable with respect to ¢=0;

(35)

b) the decaying time T of the motion of the system from an
initial point in the region | ¢ | < ¢, to a point in the region
| | < esatisfies T'< a2 log (1 + &) Po/(1 + Do) &;

(¢) the decaying time T of the motion from an initial point in the
region | ¢ | < ¢, to a point in the region | ¢ | < e satisfies
T > b2 log (I + &) o/(l + Po) &

On the Estimation of Decaying Time for Linear System with
Quasi-constant Coefficients

In the study of a practical dynamic system, one usually takes
the linear system with constant coefficients as its first approxima- -
tion. In general, the frequency method may be appliéd to
estimate the time of transient process for the regulating system
with constant coefficients. However, this method is only applic-
able to the case of single output under specific initial conditions. .
In addition, the method is not rigorous. This paper gives the
formulae to estimate the decaying tlme in the general case, and
the method is rigorous.

A large amount of work®1? is devoted to the estlmatlon
of decaying time for the asymptotlcally stable system

S=1,..,N (36)
where the coefficients pij are constants. There results may be
summarized as the following. For any ngen positive definite
quadratic form

Xs=DPs1X1+ ... FDPsnXn

U=x' Ux 37N
there is a positive definite quadratic form

V=x'Vx (38)
such that

v gy (39)

dt 36) . )

If M, and m; are, respectively, the maximum and the minimum
eigenvalues of the matrix ¥, and M and m are the maximum and
the minimum eigenvalues of the matrix U, then the following
results are obtained.

"Theorem 3. The decaying time 7 of the motion of the system
(36) from an initial point in

Z xs=R?

S=1

. 103/3
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to a point in the region
N
Y xi<r?
s=1
satisfies the inequalities
my M 1R i M 1. My R2
—*log <T<—lo g —7 40)
M, mr? m; (

In practice, it is of interest to select a suitable Liapunov
function ¥, such that for the given system (36) the range defined
by (40) is as accurate as it can be. It is very difficult to answer the
above question in the general case. But if the system (36) is
normal and the elementary divisors of the coefficient matrix P
are all simple, it may be proved that when

N
V=13 x3
5=1

the equalities in (40) may be realized (i.e. the estimation is
accurate).
Let the normal transformation be

y=Cx 41

where C is a matrix with real coefficients, and the system (36)
is reduced to the normal system

y=Jy (42)
where
(—a, o)
N\
U
—Bi—w,;
J= 43
w;— By “3)
AN
—w
0 i
" =B
V=x'Cecx (44)

may' be taken as a Liapunov function of the system (36). By
means of (42) the following results may be proved.

Theorem 4. The ziecaying time T of the motion of the
system (36), from an initial point in the (# — 1)-dimensional
ellipsoid ¥ = ¥, to a point in the ellipsoid V = &, satisfies

V°<T<—log—V—

1 —1lo
g =27

5 (45)

where u = max (x;, fi;), v = min (x;, §,). It is easy to select the

initial points such that the equalities in- (45) hold (i.e. this

estimation is accurate).

In the following, the general formulae to estimate the
decaying time is given.

All roots of the characteristic equation D (2) = det (R — i)
* = 0 are assumed to have negative real parts. Let 7%, .oy A e
"negative real roots, written as 4; = —o; (i = 1, ..., ), and let

Au1s .. Ay be the remaining roots, wrltten as B+ w,i
S=1,..,n—12=k), and the order of the correspondmg
elementary divisors be #y, ..., n,.

It is known that there is a non-singular linear transformation

Declassified in Part - Sanitized Copy Approved for Release 2013/02/13 : CIA-RDP80T00246A023400480001-9

'y = Cx to reduce the system (36) to the normal form (4i),

in which
M, 0
N\
. M,
J= N, (46)
AN
0 Ng
—o; 1 0...0 —Bi—w; 1 0...0
0 —o 1...0 . w;—p; 01...0
0 N ! 0 0 ...—Bi—w
T 0 0 wi_ﬁi
(47
If one writes the m; X m; matrix
’ 1 1 1
o 202 43
- 1 1
o O R
A
4o

as a(;";), this is constructed according to the following rule:

(@) when s = 0, a® is equal to (1/x) (1 +- al™ ¢), and let

1
alP’=—;
f
(b) when
s>, a§:’f’— [aif";) a1
() ag;"i) = ag’;’i)

Thus the matrix is completely defined through the eigen-
values — «; and the order of its elementary divisor. The maxi-
mum eigenvalve of the matrix a("™i) is assumed to be v;

1

whenmi=1,vi=&* _ -
12 % 4

whenmi=2,v,-=,l+i2 L-{— 4+—17 “9)
o 4o Lo h

~ Following the method of construction ‘of the fnatrix a(™),
the 2 n;" X 2 n; matrix d27 may be constructed in the following
manner J

: (a) d(z "') d(l 1”12)_]- 1=V

(b) d(Z n:)

iL,j=1,...,m

2 1) (m)
2j-1"d(21n—1 2i-1=4

Lj=1,..,mn

(c) to replace &, by f; in the matrix ",
For example »n; = 2, one has

a® 0 a0

(2) (2)

@) _ 0 aiiy 0 aiz
@ 0 a0

2 2

0 a® 0 a

103/4
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Obviously, the formula for the maximum eigenvalue of d @) is
the same as that of ¢ in wich a; are replaced by ;. Consider
the Liapunov function for system (36) to be

V=x'C'ACx

where C is the normal transformation matrix, and

(50)

a(ml) 0

a(ml) )
prern (51)

AN
0 d(2 nx)

/
It is not difficult to prove that V satisfies

<-Zvy (52)

where v is the maximum eigenvalue of the matrix 4, and it can
be calculated by the aforésaid method. When m; = 1 or m; = 2
it can be calculated through (49). If the maximum and the
minimum eigenvalues of ‘the symmetric matrix C’'AC are
assumed to be M and m respectively, then the followmg theorem
is obtained.

Theorem 5. The decaying time T of the motion of the system

(36) from an initial point in the (N-1)-dimensional ellipsoid

V =V, to a point in the (N-1)-dimensional ellipsoid V = ¢
satisfies

_—log—V—

The decaying time T of the motion of the system (36) from
an initial point in the sphere

©
[
-

to a point in the sphere

<]
1}
=
=
“ N
II
~
~

satisfies
2

Ts_vlog]\nif2

Moreover, the system

Xx=px+X(x,t) (53)

is considered, where X is a vector function which contains the
-non-linear terms and the unknown components. If one constructs
a Liapunov’s function (50) of its principal linear system

% =px (54)
and if one assumes X to satisfy the inequality
lgrad V- X|<bx'C'Cx, (b<?2) (55)

then the following results are obtained.

Theorem 6. The decaying time T of the motion of the system
(53) from an initial point in the sphere

N
2 %=
s=1

103/5
to a point in the sphere
. : N
Y xZ=r?
s=1
satisfies
v MR?
5
TSZ(I—b/Z)lOg (56)

' As an application of this theorem, an example of a forced

oscillation is considered.

Example—Consider the system _
Su)+F (1) &)
where p. is assumed to have all its eigenvalues with negative real

parts, € is a small parameter, U is continuously differentiable

and F () is the forcing term with period T.
Let the system (56) have a periodic solution

' u=pu+eU(u,..

ug=ul(®), u®O=ul@t+T) (s=1,..,N)  (58)
and let the linear tran‘sformatioﬁ
y=Cu (59)
transform the system ## = pu into its normal form
y=Jy (60)

By means of the transformation (59) the system (56) was reduced
to a system

y=Jy+e Y+ () (61)

where @ () = CF (¢) has the same period as F (7).-Under this

transformation, the periodic solution (58) is reduced to

=y, ()= % cos u, (f) (62)

Consider the perturbations x; == y; — »%(¢) then x satisfies

x=Jx+eq () x+eX (x,1) (63)

where g (#) is a periodic matrix with period 7, and it may be
evaluated through Y (¢) and y? (¢). If one takes & = C~1x, then
& = u — u°® (¢) is the perturbation vector in u space.

By means of the above method the matrix A4 is constructed,
with its maximum eigenvalue », and the maximum and
minimum eigenvalues of the matrix C’AC are M and m respect-
ively. The following results are obtained.

Theorem 7. The decaying time T of the motion of the system
(57) from an initial point in the R neighbourhood of the periodic
solution (58) to a point in the » neighbourhood of the periodic
solution (58) satisfies

-

2
T< - log MR (64)
[ (b+¢) ] mr
21 1— €
2
where the term X in (62) satisfies '
jgrad V- X|<bx'x (b<2V=x'Ax) (65

and C is the max1mum eigenvalue of the matrix g () + g 0]
when 7€ [0, T] By the above-mentioned r neighbourhood of

103/5
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the periodic solution (58), is meant the set of points which
satisfies the inequality

% [us - ug (t)]z < r2

On the Estimation of Decaying Time for Quasi reducible Linear

" System

0

In the study of the dynamic systems, one may sometimes fail
to approximate it by a linear system with constant coefficients.
In this case one may take a reducible system as its approxima-
tions, and construct the corresponding Liapunov function and
estimate the decaying time.

Consider the non-linear system

x=p{t)x+X(x,1)

(66)
Let the linear approximation system
%=p(t)x 67

be a reducible system. Assuming the characteristic number to
be all positive, there is a Liapunov transformation

y=C({®)x

which transforms the system (67) into its real normal form

(68)

y=1ty (69)

By means of the method mentioned in the previous section,
V=x'c'ACx

is taken as a Liapunov’s function for the system (67). Since (68)
is the Liapunov’s transformation when ¢ > ¢, the maximum
and minimum eigenvalues M and m cannot equal zero. Obviously,
the maximum eigenvalue ¥ of 4 can be calculated through the
characteristic numbers of (67) by the same method. Parallel
to Theorem 2 the following results may be obtained.

Theorem 8 The decaying time T of the motion of the system
(67) from an initial point in the sphere

¢

(70)

toa pbint in the sphere

N
3 x=
. s=1
satisfies

T< v lo MR?
S2(0-b2) Cmr?

where X satisfies (72).

Since the linear system with periodic coefficients is a  reducible
system, and its characteristic number can be represented through
its characteristic exponentials, the results in this section can be
applied to the general periodic systems.

(b<2)

(73

Appendix

Proof of the Fundamental Theorem

Obviously the system is stable with respect to (2) taking on
ZEros.

Forany givenn > Otheregion H > || ¢ |, = nisconsidered.
From the conditions mentioned in the theorem, the function V
takes on maximum M > 0 and minimum m > 0 and the nega-
tive definite function d¥/drs|,.,, with respect to (2), takes on
maximum — &« < 0. Let T = (M — m)/x + 2, where f is
any arbitrary positive number. This is the required T and it
is_independent of the initial conditions. Thus, part (A) of the
fundamental theorem holds.

Parallel to Theorem 3, from the conditions of the fundamen-
tal theorem, the following lemmas can be proved.

Lemma 1. If the system (1) is equi-asymptotically stable with
respect to (2), taking zeros for the initial values in# (n — k) (H),
then there is i (7) such that the motions, defined by the initial
points of the above-mentioned region, satisfy

(a) o [x (to+7, %7, ..o X t) I x <Y (2)
(b) lim ¢y ()=0 ¥ (1)<0 >0

‘t—’w
Lemma 2. For any given two positive functions M (n) and
!p (), where M () is an incréasing function and lim ¥ () = 0

_ there is a function G (1) such that

N : :
Y x2=R? (@ Gm>0, G'(M>0 as 7>0
s=1
b G(0)=G'(0)=0
to a point in the sphere (b) (Oo) ©) .
N (c) Gy ()]dr< o G'[y ()M ()dr< oo
Y xZ=r? 0 0
satisfies s=t Lemma 3. If the system (1) is equi-asymptotically stable with
M R2 respect to (2) taking on zeros, and the rank of the matrix (19)
T<—log —r2 (71) is K, then there are two positve constants A and 4 independent
of 7y and ¢° such that
Furthermore, if X satisfies the condition 3 4’2 ¢2
- <Ae** <Ae*
lgrad V- X|<bx'C'Cx (b<2) (72) oty a¢7
: ) where
then one has the following results. ) K ) . o
Theorem 9. The decaying time T of the motion of the system ¢ =SZ,1 os(t, 1, ... Pn to)
(66) from an initial point in the sphere .
. ¢,° (@ =1,...,n) are the initial values and ¢ is replaced by
z x2=R? ty + 7. Parallel to Theorem 3, the Liapunov function may
= be taken as

103/6
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then one has

ov| (= T 09>
a%=£ G [¢2(t+1,¢1,...,¢,,,t)5¢—idr]
(i=1,...,K)

It is convergent and uniformly bounded. This implies that V
satisfies the Lipschitz condition and thus ¥ has an infinitely
small upper bound.

1 2,
V>ﬁ[¢1

¢s2 (t+T’ ¢17 (EET) ¢n= t)]dr

<00 -

16|35 ]

where L is the Lipschitz constant. It implies V to be positive
definite

dv|

dr|y, = OO+ 4]

Hence
dv
dr
is negative definite with respect to (2).
The proof is complete.

11
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Quasi-invariant Hybrid Mu]ti-parameter Control Loops

V.STREJC %Mj\ -

Introduction

Previous papers by the author!=3 contain the general theory of
the synthesis of control systems and of the compensation of the
effects of disturbances in hybrid, multi-parameter control loops,
with due consideration of the conditions of autonomy, invariance
and the finite number of control steps. A control loop is regarded
as hybrid if the function of the controller is performed by a
discrete filter (digital correcting member), the realization of
which is assumed to be attainable by an automatic digital com-
puter and a continuously-acting controller. In practice, hybrid
control loops can be formed by the addition of an automatic
computer to control loops containing continuously-acting con-
trollers. This arrangement is made either in cases where it is
necessary to improve the quality of control and to attain a higher
stage of complex automation that would be difficult or too
costly to realize by other means, or in newly designed control
systems with the automatic computer as the principal technical
means of realizing automation and in which the simple, con-
tinuously-acting controllers are used as a stand-by for sustaining
the operation of the control system in the case of an outage of
the automatic computer.

In practical applications the case of a multi-parameter control
system may occur frequently where the desired values of the
controlled variables remain constant (their relative deviations
being zero), and the task of the control system is confined to the
compensation of the effects of disturbances. If a control-system
structure, according to Figure 1, is selected for a multi-parameter
control loop of this kind, the conditions of invariance cannot
be fulfilled. However, the existence of a solution will be pre-
sented according to which only the controlled variables x;, i = k,
are influenced by disturbances K, with the possibility of deter-
mining the limits of this influencing, according to the selected
criterion of the quality of control, or according to other suitable
control conditions. Let control loops of this kind be designated
as quasi-invariant control loops.

For a control loop according to Figure I:

[K2 (2, 0]={[1T+[Q"* (. O] [P* (z,0)]} ' [2} (z.0)] (D)
(KD (z,0]=[Q (z.9)] - [Q* (z, 9] [P* (z, 0] [K} (z 0)] (2)

where

[Q(]={[1]1+[SMI[R @]} * [G(p)]
[(R,P]={{1+[SP][R (@]} ' [G.(p)]

In the compensation of disturbance effects [K, (z; £)] and
[K, (z; 0)] are the matrices of the transfer functions of closed
control loops with the elements of the matrices expressed as
discrete Laplace transforms (Z transforms). In eqn (2) e stands
for the relative value of the independant time variable that

during one interval of sampling attains the valueof e < 0 = 1 >.

The sampling interval T is constant, and let the sampling be

synchronous at all points of the control loop.

[u ()] is the (&; 1) type column matrix of the disturbances

[x ()] is the (v; 1) type column matrix of the controlled variables

[S (p)] is the (v; w) type rectangular matrix, u > » of the transfer
functions of the controlled system containing a servomotor
and a final control element

[G (p)1is the (v; u) type rectangular matrix, u > », of the transfer
functions of a controlled system containing a servomotor,
final control element and a holding member

(G, (p)]is the (v; &) type rectangular matrix, £ £ v, of the transfer
functions of the controlled system containing a holding
member

[P*(p)] is the (u;») type rectangular matrix, u > », of the
transfer functions of digital correcting members

[R(p)]is the (u; v) type rectangular matrix, x> v, of the transfer
. functions of continuously-acting controllers

Conditions of Stability

As it is desirable to express the quality of control by the
requirements upon the transfer functions in matrix (X, (z, 0)],
the matrix [P* (z, 0)] is the function of matrix [K; (z, 0)]. It can
be calculated from eqn (1) that

[P*(z,0)]=[2" (z,0)] " {[2} (z,0)] - [K} (z,0)]}
(K:zol™ 3
By substituting relation (3) for [p* (z, 0)] into eqn (2)

(K (2,8)]=[QF (2, 9)] —H [Q* (z.6)] [w* (2,0]

{2 0]~ [KX (0]} @)
where
%Z—E—OO; [0* (2,0)]=[2* (z,0)]"* )

As the continuously-acting controllers, the transfer functions
of which have the matrix [R (p)], are determined by the condition
of all loops of the control system remaining stable in the case
of a computer outage, it may be stated that the elements of
matrix [2), (z, £)] will always be stable.

On the other hand, the elements of the second term on the
right-hand side of eqn (4) can be unstable if the polynomial
Agp (2, 0), which is the numerator of the determinant 1 Ag (2,0)

+ The ‘determinant’ of the (m; n) type rectangular matrix A4, with
m — n, is to be considered as being identical with the determinant of
matrix A TA where T4 is the matrix transposed towards matrix A.
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of matrix [2* (z, 0)], has its zero outside the zone of stability.
The unstable zeros of polynomial Agz (z, 0) must be assumed,
however, to be compensated by the numerator of the elements
of matrix {[.Q“ (z, 0] — [K, (z, 0)]} which, as can be seen
from eqn (3), is a cofactor of the matrix [P* (z, 0)]. In accord-
ance with the assumptions stated previously, the elements of
matrices [Q2* (z, €)] and [w* (z, 0)] in eqn (4) are stable, while
the stability of the elements of matrix [K; (z, 0)] must be

presupposed. On the basis of the above findings, it is possible.

to state the condition of the stability of a hybrid, multi-parameter
control system for the compensation of disturbance effects, as
follows:

[QF (z,0)] - [Ki (2,0]=455(z,0) [} (z.0]  (6)

where [D;, (z; 0)] is the matrix of auxiliary functions that must
be determined in more detail, while Agp (z, 0) follows from
equation

Agp(2,0)=Ag5(2,0) Agp(z,0) (M

where Agp (z, 0) signifies the product of the stable, and Agy(z,0)
the product of the unstable root factors of the numerator of the
determinant of matrix [2* (z, 0)].

Introduce ’

[Ki (z,0)]=[07 (z,0][(1 -z7")"C*(z,0)] ®)

where [Q, (z,0)] is the matrix of auxiliary functions, and
[(1 —z7Y™ C* (z, 0)] is a diagonal matrix of the (¢; &) type, the
elements of which should be polynomials independent of the
properties of control loop members. Let these elements be the
denominators of the Z transforms of the general form of the

disturbances
. _ F*(z,0) ]
[U (Z’O)]“[a-z-l)m G0

Now, eqn (6) can be rewritten in the form
[Q0 (2. 0)]-[0F (z, 0] [(1-z")"C*(2,0)]
- =Ags(2,0)[D} (z,0)] - (10)

After substituting relations (8) and (10) into eqn (3), matrix
[P* (z, 0)] expressed by this equation will acquire the form

©)

® Ags(z,0)c & %
[P*(z,0)]= A 0)[ (z,0)][Dy (z,0)]

{[0F(z,0][A-z"1"C*(,0)]} ' (1D

Now, let the real functions in eqn (2) be marked with the sub-
script s, and the imaginary functions in eqn (11) with the sub-
script p. After substituting relation (11) into eqn (2), it follows

[Ki(z,0]=[2(z,9)]

-2 B0 2, 0)] [0} (O Dy (2.0] (12
provided that
[07,(z,00] 7' [0k (z, 0)]=[1] (13)

Assumption (13) can be fulfilled only if the zeros and the poles
of the determinant of matrix [Q;, (z, 0)] are inside the zone of
stability.

The following holds for the elements of matrices in eqn (10):
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Q4 (z,00= 0 4 (2,00 (1 -z~ Cix (z 0)
=Ag5(2,0) Dy 4 (2,0) (14)
Introduce
K,’f «(2,0 i 0
K::ik(zao)=l<*8’—k((0) 0. .k( 0)_M
ud, i (Z,0) 4, (2,0)
. (15)
Q*‘.k(z O):M) D* 'k(Z 0)=D:=B. ,-k(Z,O)

M:A, ik (Za 0) D.TA, ik(Z,O)
where fractions (15) represent the ratios of polynomials in z7!
with a finite number of terms. By using relations (15), eqn (14)
can be rewritten in the form
My, 4 (2,0) _ Ous, (2, 0)
M:A,ik(zso) Q;kA w(2,0)

uB xk(Z 0)
=A Q) 2B ik 2> Y,
an (% )D:; w(2,0)

(1—z" ") C(2,0)

(16)
Similarly, the following holds for the elements of the matrices
ineqn (8)
Kfn, w(2,0) _ Q:kB, i (2,0)
K:A, w(2,0) Q:A, x(2z,0)
In the case of
D:A, x(2,0) =M;TA, w(z,0) Q:‘A
eqn (16) will acquire the form
Q:A, (z,0) M:s, w(2,0) .
- Q:fB, #(z,0) MfA, w(z,0)(1—z" l)zlk ka (z,0)
=Ag5(2,0) D:‘B, x(z,0) (19)

(-2 Y5ChE0) A7)

, ik (z,0) (18)

Denote

L -4
Agp(z,0) =1+ b,z™" Ouy u(z,0)=1+ ) p,z"’
v=1. v=1

. c QB
C:k<zso) =1+ Z ¢z " Q:B,ik(2,0)= Z q,z”"
= vt (20)

' . DB
uA Ik(z 0) 1+ Z ay Z_v DuB lk(z!o): z dvz_v }
v= v=1

M:B, w(z,0)= Z Bz~
v=1
Let the degree of polynomial 0., ;% (z, 0) be assumed as

0s=0Q+N 1)

where Q is the lowest possible degree of the polynomial

0.5, ix (z, 0) that follows from eqn (19), and N the number of -

degrees of freedom.
Assuming that

QA4‘A435;Q34'A4A4'W14'C (22)

the degree of the resultant polynomial on the left-hand side
of eqn (19) will be

12072
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Qs+M,+m+C=L,+D+N 23)
From eqn (23) follows the degree of polynomial 0*,s, ; (z, 0)
QOz=L+N=Q+N

and the degree of polynomial Dz, ;1. (z, 0)
D=M+m+C (24)
(25)

By comparing the coefficients of the equal powers z™! in the
resultant polynomials on both sides of eqn (19), the system
of Qs + D linear algebraic equations is obtained where

DB=D+N

Qp+D=L,+D+N (26)

To this system of equations it is necessary to add further N + Q4
equations of conditions that follow from the selected conditions
of control. The system of Op + Dp + Q4 equations obtained
in this way determines the coefficients of polynomials
Q;B, ix (2, 0), Q:b i (2, 0) and D;B’ i (z,0) of the auxiliary
functions, provided that the determinant of the equation system
does not equal zero. The number of such coefficients is

Q4+Qp+Dp=L;+D+2N+0Q, 2n

A more detailed analysis would prove that 8, = ¢, and d; =0
holds generally, and consequently the number of conditions
necessary for the determination of the coefficients of auxiliary
functions may be reduced by two.

The solution is somewhat simplified if it can be stated that

K:A,ik(z’0)=Q:A, ik(z,0)=M:A,ik(Za0) (28)
1t follows
Dy, u(z,00=Mjy 4(2,0) (29)
and eqn (16) will assume the form
Mja, #(z,0)— Q—:B, w(z,0(1-z" 1);3( C:k (z,0)
=Anp(z,0) D:B, «(2,0) (30

The above simplification does not allow the inclusion, in the
characteristic equation of transfer functions K, ;; (2, 0), of
additional requirements above those asserted in the character-
istic equation of the terms Q,, ;.. (z, 0).

After the determination of all elements of matrix [J,, (z, 0)]
it is necessary to check the zeros in the numerator of the deter-
minant of this matrix.

Now, the conditions of stability can be summarized as:

Theorem 1—In the defined hybrid control loop where Agp (2, 0)
is the product of the unstable root factors of the numerator of
the determinant of matrix [2* (z, 0)], with the poles of this
determinant lying within the stable zone of plane z, the transfer
functions of the control loops, i.e. the elements of matrix
[K; (z, £)], are stable, provided that: (a) the poles and zeros
of the determinant of matrix [Q; (z, 0)] lie within the stable
zone of plane z, (b) the matrix [0, (z,0)] is in accordance
with the equation of conditions (10) and none of its elements
is equal to zero, and (¢) the poles of the elements of matrix
[D, (z,0)] in-eqn (10) also lie in the stable zone of plane z.
These conditions are necessary and sufficient.
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The Conditions of Zero Offset

Provided that the conditions of stability are fulfilled, it is
possible to state the condition of zero offset according to the
theorem of finite values by the following equation:

z—+1
The above condition can be fulfilled if the value of m in the
general relation (8) is at least m = 1. In other words; the product
of the numerator root factors of transfer functions K, ; (z, 0)
must necessarily contain the factor (1 — z1).

Quasi-invariant Control Loops

Provided that all zeros of the determinant of matrix
[©Q* (z, 0)] lie within the stable zone of plane z, the following
substitution can be made in eqn (14):

_ Agp(z,0)=1 (32)
If the selectable functions are stated as
Q,’i x(2,00=0 for i#k (33)
it follows
D} 4(z,0)=QF 4 (z,0) for i#k (34)

and the remaining functions D, ;; (z, 0), i = k, can be deter-
mined by the same method as shown earlier in this paper. In this
case the matrix [0}, (z, 0)] will be a diagonal matrix and con-
sequently, with regard to eqn (8), [K, (z, 0)] will also be a
diagonal matrix. This solution permits a situation to be reached
where disturbances U (z,0), (k =1,2,...,%), (where £ > »
and v is the number of controlled variables) will influence only
the controlled variables X (z, &), for which i =k, and will
have no influence upon the controlled variables X ; (z, &), for
which i # k. If & < », the effect of disturbances Uy, (z, 0) will
be confined to the controlled variables X; (z, €), for which
i=+kandi=1,2,...,¢&and with no effect upon the controlled
variables X; (z, €), for which i # k and also those for which .
i=kbuti=&+1,&+2,..,7

Due to this solution the transfer functions in diagonal
matrix [K, (z, 0)] can have an arbitrary number of degrees of
freedom that can be utilized for the fulfilment of further con-
ditions of control, or for the compliance with a suitable criterion
of the quality of control. In this way it is possible to reach a
solution at which the effect of disturbances, that cannot be
eliminated by the introduction of condition (33), is kept within
admissible limits.

In principle, this method of the compensation of disturbance
effects can also be applied to continuously-acting control
systems. However, up to the time of writing this paper, this
possibility has not been mentioned in any technical literature
accessible to the author.

Finite Number of Control Steps

In the compensation of disturbance effects a multi-parameter
control loop complies with the requirement of a finite number
of control steps, if the same requirement is complied with by
all components of output signals X;(z, &) of the controlled
system. In this case

Xi(z,6)=Ky u(2,8) Ui (2,0) (35)
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The finite number of control steps is understood as the number
of sampling intervals, at the attainment of which the offset is
permanently zero or constant at any one instant of sampling.
In the intervals between the instants of sampling this condition
need not be fulfilled. If it is possible to express the Z transforms
of the general forms of the disturbances by eqn (9), and the
matrix of transfer functions (K, (z, 0)] by eqn (8), it follows

X*(z,00]=[0x (z, 0] F*(z,0)]

It follows from eqn (36) that the requirement of the finite number
of control steps can be complied with only if the elements of
matrix [J,(z,0)] are polynomials having a finite number of
terms.

In this case it is necessary to substitute in eqns (18) and (19)

Q:A, x(2,0)=1 37N
Then for individual components
XG5 (2,0)=0p 4 (2,0) F (z,0) (38)
and the degree of polynomial Xi; (z,0) is
X=L+N+F (39)
The transform of the controlled variable is
g
X[ (z,0)= Y Xi(z,0) (40)
k=1
with the degree of polynomial X;* (z,0) being
X;=L;+(N+F); (41)

where (N + F);.is the highest value of the sum N + F in the
polynomials X7 (,0), (k = 1,2, ..., &).
The number of the control steps is thus

=Ly +(N+F);+1 42)

The highest value of n,; (i = 1, 2, ..., v), is regarded to be the
finite number of the control steps of the whole multi-parameter
system.

If disturbances u;(f) can be regarded as the linear combi-
nation of the function #™~1/(m—1)!, it follows F = m— 1 and
the number of control steps is

=Ly +(N+m), 43)

It can equally be proved that it is also possible to obtain a
zero deviation of'the controlled variables X; (z,¢) for e < 0+ 1>
beginning with the instant n = n,,; provided that: disturbance
uy(t) varied from instant » = 0 according to the function u,(¢)
= ™1/(m — 1)!, the elements of matrices [G(p)] and [G,(p)]
have at least one m-fold zero pole (in hybrid loops the elements
of matrices [G(p)] and [G,,(p)] must have a holding member at
least of the order (m — 1), in the equation of conditions (6) and
in the equations derived from it Agg (z,0) is substituted for
Agpp (2,0) and the auxiliary functions in matrices [D;, (z,0)]
and [, (z,0)] are only polynomials in z~L.

Then it follows from eqn (16)

M::B, x(2,0).
- Q.’fs, w(z,00(1-2z" 1);:'/; ! C;ckk (z,0) M:A, x(z,0)

ZAQB(Z70) D:fB ik (Z,O) M:A,i)c(Z, 0) (44)

(36) .

[AM)
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The degree of eqn (44) is

Qg+m—1+C+M, =l +D+N+M, (45)
Dy=D+N (46)
D=m—-14+C+M, (47)
Op=Li+N+M, (48)
The number of control steps is then )
n;=(Qp+F); (49
ng=li+M4+N+C+m),—1 (50)
where /; is the degree of the polynomial Agg (2,0).
Let it be noted further that in eqn (44)
Dl u(z,0)= fo a2 (51

differently from the polynomial in eqn (20). Owing to d, # 0
it has been possible to reduce exponent m in eqn (44). It should
also be mentioned that in this case the number of control steps
cannot generally be lowered by the value of M4 by setting

D;kB, x(2,0) -

MuA, ik (Z’ 0)

because the output signal of the digital correction members is
E3 (2,0)= — Aoy (z,0)[0* (2, 0)] [D} (z, )] U*(2,0)]  (52)

and it cannot be assumed that in a general case M,y ;; (z,0) is
contained in Ag, (z,0). The denominators of the elements of
matrix w* [(z,0)] are contained in A, (z,0). )

D¥ 4 (2,0)=

The Optimum Compensation of Disturbance Effects in Wiener’s
Sense

A method has been shown how to limit the effect of dis-
turbances in quasi-variant control loops by the criterion of the
finite number of control steps being considered as the criterion
of the quality of control. Another method of solution will be
shown where the least square of the deviations of the controlled
variables is taken as the criterion of the quality of control. Let
the problem be stated by the application of the conventional
diagram shown in Figure 2 with the following meaning of de-
notations:

[u(n]
[m(n)]
[K3(z,6)] = the (v; &) type rectangular matrix of the transfer

functions of the control system that are to be deter-
mined

= stationary random disturbances
== parasitic noise

[*(z,8)] = the (v; &) type rectangular matrix of the ideal trans-
fer functions of the control system

= the deviations of the controlled variables x[(£)] from
the ideal output signals [y(#)].

A,(n, &)= x;(n, &)~ ;(n,) (53)

For the sake of brevity the analysis that follows deals only
with the case of non-correlated input signals. By using the
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results published in an earlier paper by the author, the transfer
functions sought for, i.e. the elements of matrix K, (z,&)], can
be determined by the solution of equation

C T N1ok o — —

K:f, ik(]wa 8) S;ckk(wa 0)_1-:1;: (]CL), B) ZS:k (ﬂ), O)=O (54)
where K3}, ;. (jo,¢) and I'j (jo,¢) are the z transforms of the
above-mentioned transfer functions, z = e/®, @ = T while
1S4 (@,0) and 2S} (@,0) are discrete forms of the performance
spectral densities: ’

'Si(@,0)=S, (@,0)+ 5% ... (»,0) (55)
28 (@,0)=5%,. (,0) (56)

Eqn (54) is representing the discrete Laplace transform of the
Wiener—Hopf integral equation, the solution of which

[1" i (j0,8) *Sk (@, 0)]

—_— 1 —
K o (jo,8) = o (@.0) (57)
Six (@, 0)
by the known method fulfils the condition
k, w(n,e)=0 for n<0 (58)

where k,, ;. (n,€) is the original of the transform K} ;; (j@,e).
In eqn (57)

'S (@,0) 1S (@,0) =S} (@,0) (59)
where all the poles of 1Sz (@,0) are inside, and all the poles of
LSk (@0,0) are outside the zone of stability of plane z. The + sign
in the place of a subscript of the brackets in the numerator of

-eqn (57) signifies that the function in the brackets has all its
poles inside the stability zone of plane z.

For & = 0 the elements of matrix [K,, (z,0)] can be determined
from eqn (57), and subsequently the matrix of the transfer func-
tions of the digital correcting members is determined from
eqn (3).

Equation (2) represents the unequivocal relationship that
exists betwcen transfer functions K ;. (z,0) and K i1 (z,9),
with the former necessarily fulfilling eqn (6) and also the con-
ditions of stability attached to this equation. Eqns (2) and (6)
must equally be complied with by the ideal transfer functions
I'% (2,0) and I} (z,6). Consequently transfer functions
I’ (z,0) cannot be selected arbitrarily. They must fulfil eqn (6)
and the conditions of stability that follow from it. If transfer
functions I}k (z,0) are determined in this way, the stable transfer
functions I}, (z,¢) are obtained unequivocally from eqn (2).

If, in the opposite way, transfer functions I (z,0) are
selected arbitrarily, the required course of the controlling actions
can be ensured only at the instants of sampling by the digital
correcting members calculated from eqn (3) and with the aid of
transfer functions K ;; (z,0) determined by eqn (57). However,
during the periods between the sampling instants, the course in
time’ of the controlled variables cannot be guaranteed, and it
may even be labile.

The new conceptscan be summarized in the following theorem.

Theorem 2—For the determination of the digital correcting
members in Wiener’s sense, i.e. in a control loop containing a
continuously-acting controlling system and exposed to the effects

120/5

of stationary random disturbances the mean square of the de-
viations of the real output signals from the ideal output signals
should attain its minimum value, the command transfer func-
tions Kj ;1 (z,0) must fulfil the conditions of stability issuing
from the solution of the Wiener—-Hopf integral equation, and,
in order to ensure the stability of transfer functions Kj ;5 (z,¢),
the ideal transfer functions /' (z,0) of this solution must com-
ply with the conditions of stability pertaining to eqn (6).

These conditions are necessary and sufficient. This is the
fundamental difference between the described control loops and
control loops containing- only discretely-acting or only con-
tinuously-acting members.

The conditions stipulated in Theorem 2 can be fulfilled, if .
the root factors in the numerators and denominators of transfer
functions Kj ;;. (z,0) derived from the relations 1S¢ (©,0) and
284 (,0) are introduced as a condition into auxiliary functions
0Os i (2,0) and D; ;5 (z,0) calculated from the equation of con-
ditions (6). From this point of view, the solution according to the
least square of deviations in Wiener’s sense represents only the
utilization of a possible application of the required criterion of
quality of control within the determinative synthesis theory, and
the possibility of extending the auxiliary functions O ;; (z,0)
and Dy ;. (z,0) by the required number of degrees of freedom.
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On Systems with Automatic Control of Configuration

J.BENES

Introduction

A further development of the theory of automatic control
results from its application to complexes of many elements
subject to automatic ordering action. Owing to the impossibility
of following the dynamics of the very numerous elements of the
complex, statistical characteristics, accessible to macroscopic
measurement, may be used for the description of the evolution
of the ensemble of the elements. These characteristics are to be
compared with the corresponding theoretical ones, derived
from the mathematical model of the process of configuration
based upon the properties of the elements and upon the condi-
tions of the process, including the influence of the control
action. The problem of controlling the development of the
ensemble of elements leads to the introduction of a deterministic
control of certain frequency functions of events pertaining to
the formation of configurations. The corresponding mathemati-
cal models use probabilities instead of frequency functions.

Definition and Basic Scheme

A system with automatic control of configuration is a
system with a complex of elements which develops by auto-
matic control towards an assigned state or set of states, charac-
terized by the configuration of these elements.

During this development one (or more) of the following
basic operations of configuration, pertaining to the elements of
the complex, is realized: the aggregation; the orientation; the
liaison; the arrangement; the connection.

The general scheme of a system with automatic control of
configuration is shown in Figure 1. Here K = the complex;
F = the formator; S = the measured state variables of the
complex; A = the acting variables of the formator; P = the
perturbing signals acting upon the complex; ¥ = the output
variables of the complex; R = the command variables.

The function of the formator is to elaborate the acting
signals for the influencing of the configuration of the elements
of the complex. The output variables V of the complex are, in
general, different from the measured state variables S which are
chosen so as to inform, by their ensemble, about the configura-
tion of the elements of the complex.

Description of 'the State of the Complex

An approach to the description of a complex with a great
number of elements consists in its division into equal zones and
in considering the ensemble of elements contained in each of
these zones. The interrelation of the ensembles contained in the
zones, especially in the neighbouring ones, may be of interest.
In two-dimensional representation we draw the meshwork of
zones as, for example, in Figures 7 and 8. As it may not be

possible to measure the state variable in all these zones, we -

W/

introduce sample zones. The measured state of the complex
may be expressed by the measured state variables S in the
form: (a) of a column vector with elements s, (9), 53 (9), ..., s, (O);
(b) or, in the case of a two-dimensional arrangement of measur-
ing points, which may be advantageous for the expression of
the configuration, in the form of a quadratic matrix |[s;; ()]
(G,j=1,2,...,n); (¢) or, in the case of a three-dimensional
arrangement of measuring points, in the form of a cubic matrix

s @l Godske=1,2, ..., ) 1)

Measurements of state variables in three-dimensional or in
two-dimensional arrays of zones of the complex can be reduced
by scanning to a sequence of measurements. Similarly, one can
express the required state of the complex using the command
variables R. .

A theoretical measure of the state of the complex with many
elements is the configurational redundancy

AS,,,
e @

. Rp,=1-

where AS;,, < AS,,,.

The index m applies to the intermediate state between the
initial state (index v) and the final state (index c) and where the
differences of configurational entropy are

ASfm=klog(Zm—Zc) (3)
Ava =klog(zu _Zc) (4)

where k is a scale factor. Z, is the number of possible ways
of having the elements ordered at the initial state, Z,, is the
number of different ways of ordering of the elements suiting
the definition of the intermediate state at a certain phase of
development and Z_ is the number of different ways of ordering
of the elements suiting the requirements upon the final state.

The configurational entropy is a concept used in statistical
physics. In crystallography, the entropy change for a transition
in the crystalline phase is divided into: the change of the
configurational entropy and the change of thermal entropys.
The configurational entropy of the arrangement of atoms in a
lattice is determined by the number of different ways in which
the atoms may be arranged over the available number of lattice
sites. In chemistry, the information content I, of a protein is
divided into: I, depending upon the amino acid sequence, and
I, depending upon the configuration of the polypeptide chain
in the native molecule?.

The state of the complex may':be described by different
concepts and measures depending upon the basic operation
of configuration of the elements6, 12,
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Quantitative Expression of State During Aggregation

The simplest expression of the state is in terms of the number
of elements or of their concentration in the different zones. The
information connected with the concentration into a single
zone s of elements of a certain type 7, which previously have
been distributed over the whole complex, is

eon(®) B0 o

where c;, is the concentration of the elements of type i in the
zone S,
¢;5, is the concentration of the elements of type 7 in the
whole complex.
When several types i (= 1,2, ...
it is

) of elements are involved,
I, Zlog2< ) [bit] - ©)
Cik

Quantitative Expression of State During Orientation

The orientation of the elements of a zone of the complex
may be expressed by angular measure. The information connect-
ed with the orientation of the ith element of the complex may
be expressed by its orientation information I, ;;. If the configu-
ration of the complex requires that the orientation of the ith
element be fixed within A@®, Ad, Ay, where O, ¢, are Euler
angles, it is

I, 1y=10g, {Z‘@%} [bit] )

Quantitative Expression of State During Liaison

Consider the operation of liaison of the elements in a
complex of constant volume, with elements of different types 7,
where i = 1, 2, ..., k and denote ny, ny, ..., n;, the numbers of
these elements. They move and combine at random to form
new types of elements by liaison. To characterize the develop-
ment of the state of the complex use the probability P (n, ),
which is the probability, that in time ¢ the complex has the
composition n, where n is a vector, whose components are the
numbers of the elements of the different types. By the action
of the formator one wishes to influence the probability P (n, ).

Quantitative Expression of State During Arrangement

The number of correctly occ{lpied sites or lattice sites by
the elements of the complex is a simple measure of arrangement.
The information connected with the position of the ith element
in the complex of volume ¥ may be expressed by its placement
information 7, ;3. If the configuration of the complex requires
that the ith element remain within a space Ax;, Ay;, Az;, it is

|4 .
I‘, = 10g2 {m} [blt] (8)

Quantitative Expression of State During Connection

As a characteristic quantity of a random net, Clark and
Farley have used the connectivity. An element, #, is connected
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to an element j with a probability P;; which may depend upon
both i and j and on other characteristic quantities of the net as
a whole. Uttley has considered the probability of the connection
of an element in a given position to an input point. This proba-
bility is a function of the position. Beurle has used a proba-
bility of connection of an element to all elements which are in
a distance r of it, this probability being a function of the co-
ordinates x, y, z of the element and of the distance .

As we are interested in characterizing the state of a develop-
ing random net, the use of test impulses, applied in points of
sample zones and the measurement of the number of elements
activated at a given distance in a given direction, or of the speed
of the signal spreading, can be suggested, according to the
particular case. These quantities are related to the statistical
characteristics of the random net.

The Interaction of the Formator and of the Complex

The acting variables of the formator are from the point
of view of automatic control the output variables of a multi-
dimensional controller with many inputs, some of which are the
measured state variables of the complex. The information about
the behaviour of the complex only from the measurement of
external input and output variables of the complex would be
insufficient. This is also in compliance with the principle of
uncertainty in the structural behaviour of multivariable systemnis,
formulated by Mesarovict.

Therefore direct measurement of the state variables, amend-
ed by theoretical relations yielded from the mathematical model
of the configuration process, is required.

A methodical approach towards the indentification of the
process occurring in the complex consists in the following
stages:

of configuration of the elements.

(2) Computation of the relevant mean values S(T) () on a
mathematical machine on the basis of the mathematical model
and using complementary information about the physical
conditions of the process.

(3) Comparison of the computed mean values S(T) and their
development in time with the measured state variables S.

(4) The appropriate adaptive correction of the model sub 2
in order to minimize the difference of the comparison sub 3.

The objective is to obtain an approximate model of the
process in the complex based on theoretical results about the
statistical dynamics of the elements of the complex. Such a model
is intended to bring a better insight into the mechanism of
configurational changes and to help in the choosing the method
of control.

Two basic deviations which have to be considered in the
theory of these systems are:

(1) oH)=R(H-SE®) ©)

where R (¢) are the command variables and S (¢) the measured
state variables,

) OB ORN ) (10)

where S(I) (f) are theoretical state variables computed from
the mathematical model. The minimization of ¢(T (¢) is a form
of the identification problem of the process in the complex.
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(1) The formation of a mathematical model of the process
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When using the cubic matrix expressions the basic devia-
tions are: .

@ 16Ol =lrun®l = lls @l (11)
®) ¢ ROl =Rl ~lsin®]] Godik=1,2,...,n) (12)

Consider a set of discrete simultaneous values of the time
functions. A typical operation with the cubic matrix consists
in applying to the trilinear form

Z Gijic X Y Zi (13)
ij, k=1 |
the linear transformation
=% g X 0=12..m) (14)
with the quadratic matrix
g=||gy1| (Yai=1=22""n) \ (15)

There is then obtained the product cubic matrix in the index i:

843} e=I1 %, bl (16)
Similarly, ”

¢ {j} g= Ily;1 | (17

¢‘{k}3=“ Z,l ‘i’ijy gyk“ (18)

Applying certain bilinear transformations with a cubic
matrix of nth order to the trilinear form we would get product
tetric matrices of the nth order, which are already more com-
plex to handle3.

Owing to the number of input variables of the formator and
to the complexity of its function, the formator should be a
digital computer.

A special role in the introduction of this point of view of
the influencing of probabilities of events by the formator is to
be assigned to the concept of controlled probabilistic transducer.
As an example of a type of controlled probabilistic transducer
let us derive from the transducer type, mentioned by Kochenl1,
the transducer of Figure 2, where the conditional probabilities
¢, and ¢, are, respectively, functions of the acting variables
a,, a, of the formator. The conditional probabilities are

c1=P|:y(t)=1|x(t—1)=1]
c,=P[y()=1|x(t-1)=0]

where x () is a two-valued variable (value 1 or zero), and
t denotes the number of the time interval.

Another type of controlled probabilistic transducer (Figure 3)
can be derived from the concept of binomial probabilistic trans-
form, studied by Sugimori4, by making the parameters p and ¢
functions of the acting variables g, and a, of the formator. Let
x, y be two-valued variables (value 1 or zero) and § a time lag.
For the special case, that p and é are constants, and when x has
a Poisson distribution with parameter A

(19)
(20)
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2 \
p(x)=ﬁc g _ (21)
then in time & and only in this time
PO)= T p@bOsx, p=er @)

where b (y; x, p) is the binomial distribution of the random
variable S, denoting the number of successes in x Bernouilli
trials.

Further, a simple scheme of a controlled probabilistic
transducer without time-lag for a sequence of equidistant pulses
can be represented by an element for logical product, steered
by a generator of random pulses with controlled’ statistical
parameter, under the assumption of the synchronization of the
pulse sequences.

The Optimization of the Process of Configuration

The attainment of a certain state of configuration (or set of
states) can be considered as a result of two opposite actions: the

one of configurational ordering, the other of disordering.

An important problem in connection with the systems with
automatic control of configuration can be raised: the stability
of the controlled complex in remaining in a definite set of
states. For the description of the development of some complexes
with many elements, mathematical models based on Markov
processes seem suitable.

.The number of states which the complex with many elements
can take is infinite and countable. The theory of the Markov
processes with an infinite and countable number of states is
to be applied.

In order to formulate certain basic relations concerning the
optimization of the process of automatic configuration we shall
willingly limit ourselves to consider it as a Markov process with
a finite number N of states. Let this process be defined by the
matrix of transition probabilities P = [p;;] and by the matrix
of rewards W = [w;;], where the indexes j and k apply to the
transition from the state j.to the state k.

The result w;; is the increment of configurational ordering
associated with this transition. It is to be expressed in the units
of configurational measure. A physical interpretation may be,
for example, as the increase of the number of a new type of
element formed by the liaison of two types of elements, or of the
number of correctly occupied sites in a lattice a. s. 0. During
the development of the complex some wjy can be negative.

Applying the method of Howard2, one expresses the mean
reward from a transition

N
g= Z T;q; (23)
j=1
= the probability of the complex being in state j after
a large number of steps,

g; = the immediate reward expected at state j, i.e. the
expected reward connected with the transition of
the complex from the state j to the next one.

The immediate result g; is

where 7;

N
qjd__kzlpjkw-jk (]=132,’N) - (24)
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The aim is to maximalize the mean reward g of the Markov
process of configuration.

Supposing that at each state j one of the alternatives of the
action of the formator upon the complex can be chosen. To
each alternative a corresponds a transition probability Pji and
a reward w . When chosen, the alternative becomes a decision d.
One denotes by d; (n) the decision taken at the state j, which
means # states before the attainment of the final state. A column
vector d, with elements d; () expresses the chosen policy. The
* total expected reward during the development of the complex
in n steps starting from the state j and applying a specific policy
is v; (n). Under the assumption of the Markov process being
completely ergodic, it is for large n

v;(n)=ng+v; (j=42,..,N) (25)
Between the introduced quantities there is the relation
N
gtvy=q;+ ijkvk (j=1,2,...,N) (26)
k=1 :

Following further the method of Howard, let vy = 0 and call v;
the relative values of the policy. By a judicious choice of the
pjr and g; for each state j the reward g is to be maximalized.

(1) For each state j the alternative ' which maximalizes the
value [see the relation (24)]

N
41[;"*"‘21 P Ok 27
is to be determined. Here the index a denotes the values belong-
ing to the alternative a. Then by putting pfk = Dy’ q"jl =g
the resulting values are used below.

(2) Using these p;; and g; in the system of linear simul-
taneous equations (26) and by solving this system one gets the
v; and the g which will be again used in (1). By the iterative
computation process involving (1) and (2) one finally gets the g,
and the p,; 'and ¢;. The speed of computation would be too high.
On the other hand, assuming that the complex evolves relatively
slowly, the change of the p;; would be done by the action
variables of the formator. Without the action of the formator,

~ the isolated complex would develop ‘spontaneously’ with
transition probabilities pj.,sc).

Theoretical investigations require the application of the
theory of Markov processes with an infinite and countable
number of states. Some notions are common with the theory of
Markov processes\with a finite number of states, as for example,
the notion of undecomposable groups, of transition groups and
of final groups.

Suggested Examples of Systems

As an example of a system with automatic control of con-
figuration, consider a system with controlled operation of liaison
of three different types 4, B, C of the very numerous elements of
its complex. The elements move with random Brownian move-
ment and have the following properties: () when 4 and B collide,
a new element D results, (if) when D and C collide, a new
element E results, (7ii) the collisions of the elements are at
random, (iv) the liaisons are irreversible, (v) the direct liaison of

C with A or B is impossible, (vi) the liaison rate parameters are

k, and k, (Figure 4).
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The state variables of the complex at time ¢ = 0 are r,q,
Mo Me0s 0, O—the numbers of elements of the different types.
The command variables ry, r, are the required numbers of the
elements D and E respectively (Figure 4). The acting variables of
the formator are a,, a,, influencing the liaison rate parameters
k, and k, respectively. Let x,, x, be the number of elements D
and E respectively at time 7.

The control of the operation of liaison is based on making
the liaison rate parameters appropriate functions of time:
ky (8), ko (D).

In order to simplify the expressions, first consider k; and k,
as constants in the mathematical model. The differential equation -
describing the development of the complex is then:

dP(xq,%,,t
POX2D g, (nyg 51+ 1) (g =31+ 1) Py =1, %21
—ky (ngo—%1) (Myo— X 1) P (x4, %3, 1)
+k2(x1+1)(nco-—x2+1)P(xl+l,x2—1,3)
—kz(x1)(”co—X2)P(x1,X2,t)
(28)
Using the method of the generating function one takes
F(sy,8250)= Z P(x4,%5,1) 5753 (29)
X1, x2=0
and finds
oF
§=F[_k1 Mo Mpo (1 —51)]
OF .
+o—{ky sy (L=51) (o +1p0—1)
0s,
+k, [(51—52)“”co(51"52)]} (30)

The boundary conditions are
F(0,0;0)=1 and F(l,1;0)=1

The mean values of the numbers r, and n, of the elements D and
E respectively are then as functions of time

oy ()= [flmgF@Dspo} 31)

s1=s2=1

0
my, (t)=[5s: log F (51,823 t):l o (32)

The dispersions are

(33)

o2,(t) = [—7mgF@bn,0+ELMgF@Dsp0]
s1=s2=1
(34)

s1=s2=1

2
ane(t) I:_'flOgF(SDSZat)—*_ IOgF(slsslal)i|

Thus the model of the complex may be represented as a
black box with 2 inputs: k; and k,, with an initial state, charac-
terized by the vector components #,q, Hpgs Heg, 0, 0 at time ¢ = 0,
and with 2 outputs: m,, (f), m,_ (f) or a%,, (9), 6%, (?).

More generally, if k, and k, are not constants, set in advance,
but change in time under the control action, the corresponding
Markov process is non-homogeneous.

121/4
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On Figure 6 there is a closed oriented chain of reservoirs B;,
B,, B;, containing many elements of the same type. This chain
forms the complex. The acting variables of the formator ay, a,, a3
control the probability transducers represented by full points.
The probabilities of the random transitions of elements from one
reservoir to another are thus controlled. The aim of the function
of the system is to reach a repartition of the elements over the
reservoirs, prescribed by the command variables ry, 75, 5. The
total number of elements is N. The number of elements contained
in the reservoir B, at time ¢ is x,. The probability of the transition
Xy—> Xy -+ 1 in the time interval (¢, t + Af) is

Ay, At +0 (A

where, at first, let the A in the relation
Ay =, (35
be constant in time.

If at time ¢ the reservoir B, contains x, elements, the prob-
ability of the tramsition x,— x,— 1 in the time interval
(t,t + Adis

Uy, At+0(At)
where, at first, let the 4 in the relation
My =1 X (36)
be constant in time.

The probability of the transition to a number of elements
other than x, + 1 or x, — 1 is o (Af).

The probability of no change in the time interval (¢, 1 + Af)
is

1= (hy + i) At 40 (A7)

By making, in addition, similar assumptions for the reser-
voirs Bz and B, one gets the system of differential equations:

dpP, (1) )
| dt( =1 Prm 1 ()= (A F 1) Py () + i1 Pr1 (8),

i=1,2,3 (37)

When the parameters 2 and  in the relations as (35) and (36)
change in time; as under the control action of the formator, one
has to deal with Markov processes of the birth and death type
non-homogeneous in time, describing the development of each
of the reservoirs. '

Another example of system may be suggested with com-
plexes whose schematic representation is in the form of a two-
dimensional array of zones, which may have, for example,
rectangular (Figure 7) or triangular (Figure 8) form. The zones
contain many elements. The transition of the elements from one
zone to other zones is controlled by probabilistic transducers
steered by the acting variables of the formator and represented
as full dots. On Figure 7 the state of the selected zone Ry, is a
function of the states of the neighbouring zones. Considering at
first a Markov process homogeneous in time as a model of the
development of the zone R,,, which can be represented as a
rectangle with two inputs and two outputs, one makes the
following assumptions:

The number of elements in the zone R,, at time ¢ is x,,.

The probability of the transition x,,— x5, + 1 in the time
interval (¢, ¢t + Af)is

2

“X22s

for x;=1,2,... and

At+ 2, At+a(AD)

X222
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The probability of the transition x,,—> x5, — 1 in the time
interval (¢, ¢ 4 Ay), if at time ¢ the zone is in state Xy (X5 = 1,
2,...),1s.

Paza,; A+ sy, At+0 (AL

The probability of the tramsition to a state other than
Xg9 + 1 Or X5 — 1 is 0 (¥).
The probability of no change of state is

1- (;!'Xzzs + )'XZZz + Hzz g + MXZZU) At+o (At)

The corresponding Markov process pertaining to the zone
Ry, is of the birth and death type.

Because of the interrelation of the zones there is an inter-
dependence between the parameters A and y relative to neigh-
bouring zones. It may be e.g.

}’x225=ux12j'x12; Il-xnj=ﬂxzzj'x22} (38)

Aigre= ey X215 Hxypy = Haggy X22

The quantities u;; and p;,, where i,k =1,2,...,n, may be
arranged into a quadratic matrix. Owing to the action of the
probabilistic transducers, the y;;; and u;, change in time.

Perspectives of Develoﬁment of the Theory and of its Applications

There is a large field for the development of the theory of
systems with automatic control of configuration. The methods
and results of the statistical mechanics form the basis for the
dynamics of complexes with many elements. The representa-
tiveness of mathematical models is to be checked against physical
measurements. The solution of problems, related to the Markov
processes of configurational development non-homogeneous in
time, could be aided by modelling the process on simulators
using random signal generators.

The field of application of the theory may be seen, for example,
in these directions: the influencing of the formation of strips of
molecules; the automatic control of the cultivation of micro-
organisms, such as algae; the formation of random nets.

Fruitful suggestions from Professor Robert Fortet of Paris and
from Professor Jaroslav Kozesnik of Prague are gratefully
acknowledged.
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Summary 121

The definition, the scheme and five basic operations of systems with
automatic control of configuration are given. For the description of
the complex with many elements its division into zones and statistical
characteristics as state variables are introduced. The configurational
redundancy and simpler measurable quantities are measures of
ordering. The probabilities involved in the configuration are influenced
by the formator through controlled probabilistic transducers. The
methodical approach to the solution of the formator and complex
interaction is in the formation of a mathematical model, checked
against physical measurements and in using it in the choice of the

control algorithm. The two basic deviations and cubic matrices of
variables of this type of multivariate systems are introduced. The
optimization of the process of configuration is described using the
method of Howard in terms of a Markov process with decisions and
rewards. Three examples of systems are suggested, pertaining to forma-
tion of strips of elements and to the migration of elements in one-
dimensional and two-dimensional arrays of zones. Further progress is
expected from physical modelling of non-homogeneous Markov pro-
cesses. The field of application of the theory can be seen in chemistry,
in aqtbmatic cultivation of algae and in the random net formation.
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Combination of Finite Settling Time and Minimum Integral
MSWMmEmHmD@MCmmﬂWMM;

V. PETERKA %?&aA\

Introduction

The aim frequently followed in the design of digital control
systems is to eliminate the system error, caused by an input signal
of a typical form (step, ramp, constant acceleration), within a
minimum timel~3. Cases are often encountered in such systems
with the fastest response where the transient error has a very
short duration, but an inadmissible magnitude. This shortcoming
can be removed by extending the response by one, two, or more
sampling periods, as required, and by the application of a further
criterion suppressing the system errors®. This article deals with a
simple numerical method of digital controller design where the
criterion of finite settling time has been combined with the mini-
mum integral of squared error.

The Statement of the Problem

Consider a control system compensated by a digital con-
troller according to Figure I. It is assumed that the transfer
function of the plant is a rational fraction

fnj b,p"-
S()=i2t <0 M
;0 avpv . an ]::_[1 (p_pv)

with all its poles p, in the left-hand side semi-plane p, or with
maximum one pole equalling zero. For simplicity, let the prob-
lem be confined to an input signal having the form of a unit step

1

W(z)=

and the holding device being of zero order

e Tp

Hp)=———

Cases with another type of input signal, and with a holding
device of a higher order, can be investigated in a similar way. It
will also be assumed that the time required for the computing
operation can be neglected, and the system has no dead time;
however, it is possible to show that the consideration of both
these lags is possible without any fundamental difficulties.

Let the pulse-transfer function of the, contlnuously acting
member be denoted

. Bo+B,z™!
(I(Z)= 0 1 —
Ag+Az7 +

+...+B,z7" B(z) :
A A O

where

The conditions of a finite settling time have been discussed
in detail'~* and here they are stated only briefly in a form suited
for the case.

For attaining a zero steady-state error at the sampling in-
stants, after a finite number of sampling periods and under the
conditions stated above, it is necessary that the overall pulse-
transfer function

P(z)G(2)

FO=11p060 _(3)

should be a polynomial in z71, and .
F()=1 C))

If the intersampling ripples also are to be eliminated, it is
necessary to attain the settling of the manipulated variable y (¢).
This will happen, if the pulse-transfer function of E,(z)/ W(z)
is also a polynomial in z~, The equation for this transfer func-
tion can be modified by the relations

m@kG% O
into the form
Ey(2)_F(2)_F(2)A() ®
W(z) G(z)  B(z)

It follows from eqn (5) that all conditions stated will be fulfilled,
if the overall pulse-transfer function has the form

F(2)= B(I)B(Z)D(Z) , ©)

D(z)=Dy+D;z ' +...+Dz" " @)

is a selectable polynomial for which

L
D()= 3 D=1 ®

From relations (3) and (6) the necessary pulse-transfer fﬁnction
of the digital computer follows

P@)=g (11)) (ZJ);? 2 ®
—D(z)B(z)

If D(z) =1 is selected the system will have the fastest re-
sponse, nevertheless the transient error can reach an inadmissible
magnitude as shown in the example that follows. Therefore let
polynomial D(z) be of the general order of L, state the problem -

122/1
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" as the determination of the coefficients Dy, Dy, ..., Dy, of the
polynomial with the integral of the squared error
. .
J=f q(H)el(de 10)
0

having a minimum value.

Now it remains to select a suitable weighting functlon q(1),
so the following cases will be investigated.

In the first the same importance is allotted to 4ll errors
during the control process and g(#) = 1 is selected, Figure 2(a).
However, this selection need not be necessarily the most ad-
vantageous, namely the largest share in integral (10) belongs to
errors at the beginning of the control process that cannot be
physically eliminated in plants with a step function response
starting from the origin. The minimalization of integral (10) can
produce rather large overshoots that are not always desirable.

For this reason it is necessary to investigate the second case
where no errors in the first sampling period are contained in in-
tegral (10), i.e. the weighting function is selected in the form of
a unit-step function in time T, ¢(r) = 1 (+ — T) Figure 2(b). The
physical meaning of this condition is the requirement of the
computer liquidating the error, as far as possible, during one
step, and not instantaneously as demanded in the former case.
That is to say, in this second case the requirement put forward
is less severe, and technically easier to realize.

The method of calculation is arranged in such a way that
both cases can be investigated simultaneously, and thus it is
" possible to reach a decision in favour of the case that is more
beneficial at the given concrete application.

The Survey of Results

Coefficients D,, D,, ..., Dy, of the selectable polynomial (7),
fulfilling the condition of the minimum integral (10) of the
squared error, can te found by the solution of the system of
linear equations

[Krs:i [Ds] == [Rr()] (11) .

where the square matrix [K,,] is symmetrical the elements of
which, and also the elements of column matrix [R,], are in-
dependent of the selected cegree L of polynomial D(z). Two dif-
ferent cases are considered in the calculation of the elements of
matrices [K,,] and [R,]: (@) the transfer function S(p) of the
plant has no zero pole, and (b) S(p) has one zero pole.

Case (a)

In the case of the transfer function S(p) having all its poles
different from zero, the step function response of the system is
given by the equation

(=21 {S;p)} Co+ 2 C,eP (12)

In this, and in all other equations that follow, the assump-
tion is made that all the poles differ from each other. The case
of multiple poles can be introduced by means of limits. The
elements of matrices [K,;] and [R,,] are calculated by the fol-
lowing procedure. First of all the following expressions are
solved numerically

0(k)=Y pzk, k=0,1,2,...,n+L (13)
v=1
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where z,=ePT
Co
N pv=cv<—+5v)s = (14)
Dy u.zl pv+pu
The calculation is made for k =0, 1, 2, ..., n + L, where L

is the selected degree of polynomial D(z).

The procedure is continued in such a way that all elements of
the same row of matrix [K,,], and also of matrix [R,o], are cal-
culated simultaneously for the weighting function ¢(f) = 1, and
also for g(r) = 1 (t — T). As [K,,] is a symmetrical matrix, it
is sufficient to calculate the numerical values only of the elements
lying below and on the main diagonal. ‘

In order to calculate the elements of the rth row, the follow-
ing equations have to be solved numerically

T_=0(k)—0(r+k),
’Fk_=c~min(k, nN+0k)y—8(r—k|),

where

k=0,1,2,....n
k=1,2,...,n+r (1s)

¢=C2T (16)

and min(k,r) denotes the lower of the numbers %, r.
The figures "1, and "J,+, obtained in this way are entered into

a column as shown in Table 1(a).

Table 1
(@) ®

”I’_n TUO RrO

Tty Uy R,
An r‘lv—n+k> 1 Ay | TUs > Rrs
Ap—1| Topspta A | Uy
41 TFk -1 TUIc—] An—l TUs+n—l
AO TFL - Ulc An TUs+'n

Tpn+r 4 ntr

A slip of paper is.laid beside the column with the coefficients
Ay, Ay, ..., Ag of the denominator of pulse-transfer function
G (z) written on it one below the other. The product of figures
lying beside each other (see column (a) of Table 1) supplies the
value of

U= Z ATy ‘ (17)

i=0

‘which is then entered in the next column into the row containing

the coefficient 4;. All the required values of "U, (k = 1,2, ...,

n-+r) are then obtained by a gradual shifting of the paper slip .

with the coefficients 4, written on it.
The next operation represented by

R, = Z AirUH-s (18)
=0

122/2
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is performed again by using the paper slip with coefficients A;.
However, this time the coefficients are written in the opposite
order as can be seen from column (b) of Table 1 where the paper
slip is drawn in a position at which the numerical value of R,, is
. being determined. The value R, is already the requested element
of column matrix [R,,] for the weighting function ¢(f) = 1. The
elemcnts of matrix {K,,] are obtained simply as the difference

RrO (19)

The correctness of the calculatlons made so far can be
checked by the relation

n 2
K,,+2R,0=rc<z A,-)

i=0

Krs = Rrs -

(20)

The elements of matrices [K,;] and [R,,] pertaining to the
weighting function ¢(r) = 1 (+ — T) are obtained by adding the
same figure of AK respectively AR to all elements of matrices
[K,s] and [R,,] respectively.

K,,=K,.+AK
F, rs 21
Rio=Rig+AR 21
The figures to be added are obtained from
AK= -4,
i 2
AR=1A}—xA, Y A, (22)
. i=1
where
=c—0(0)—Co Y. 5+ > Cv2v<zco+5v>
v=1 Dy v=1 b,
5= Y, Sen @3)
u= lpv+pu
K="y 5(l—zv)—C
v=1 Py
Case (b)

In the case where one pole of transfer function S(p) lies in
the origin, the step function responses of the system is given by
the equation

' N
s(t)=$‘1{s—§)p—)}=c1z+co+z C,e™, N=n—1 (24)

The elements of matrices [K,s] and [R,] are calculated by the
same method only some values are calculated according to
changed formulas. ‘

Now, the numerical values of 8(k) for k =1, 2, ..., N+ L
(where N =n — 1 is the number of non-zero poles) are ob-
tained from the relations

122/3
The value of 6(0) is calculated separately from
2 3 N
9(0)=C"3T —-CiT-2C_ 1TZ %—22 @n
v=1 Fv

The further procedure of calculation remains the same, ex-
cept that for 0 we substitute everywhere
c=C2 1 T3 (28)

and instead of coefficients 4; (i =0, 1, ..., n) we use everywhere
the coefficients 4; (i = 0, 1, 2, ..., N). Their relationship can be

seen from the arrangement of the denominator of the pulse-
transfer function G(z)

A(Z)=Ag+ Az ' 4. +4,z7"

=(1-z"Y( Ao+ Az +...+4yz”"), N=n—1 (29)
This arrahgement is made bossible just because one pole of the

transfer function S(p) equals zero.

The last difference in comparison with case (a) lies in the
determination of the numerical values of A and x which are
used in the determination of the matrices pertaining to the
weighting function gc#) =1 (r — T). They are calculated from
the formulas

- N
Y] =£+C0C_1T2—9(0)—_2 C,(1—-2z) Zc‘lT—Sv
2 = Py
. Yo -z)
6,= z D Sl 74 (30)
u=1 pv+pp
§+c C_,T?~C._ 1T Z %(l—zv)

Example

In order to illustrate the method of calculation described
generally in the preceding section, the calculation of a concrete
case is given below. The transfer function of the plant is

6p+4.5
(r+2)(p+1)(p+0-5)
All poles of this transfer function are different from zero, the

problem discussed is thus of the type of Case (a). The unit-step
function response of the system is

S(p)=

s=2"" {S;p)}=co+cl e+ Cye" + Cye

N =25 py=—1; ps= —0.5; Co=4-5; C,=2.5: C,= —3:
k>0, 6(k)= Z PvZ’:—l (25) Py 2; p, D3 0 0 1 2
v=1 [
where Cy=—4.
=C,(1—z )2 —1_&_ The continuously acting member of the system has a pulse-
v P2 . transfer function
ul B 1309271 —0-092272+0.248 23
2=, 5= 3 _Co 06 G- 130z - - —
W=1Dy+D, A(zZ) 1-1-110z"1+0-3552"2—0-030z
122/3
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Let the calculation of the coefficients of polynomial D(z) for its .

selected degree L = 1, 2, 3 be presented. By solving eqns (14)
and (13) we obtain

5, =4.9375; 8,=—10;  §,=-20
p1=—0-6875; p>=35; p3=16
k = 0 1 2 3 4 5 6
0(kk) = 18813 10-899 6347 3-743 2229 1-337 0-805

Table 2 contains the calculation of the elements of the second
row (r = 2) of matrices K,; and R,,.

Table 2
k ZFIC ZUI\: R2k KZk

-3 2:406
-2 4-118
—1 7156 .

0 12-465 5913 — 0694 .

1 - 20-250 8-833 0-937 - 1630

2 28-035 9-771 2-567 3-260

3 33-344 9-045

4 36-382 8:720

5 '38-094 8-710

The first columin in Table 2 has been compiled according to
eqns (15), the second and third have been calculated schemati-
cally according to Table 1. The fourth column containing ele-
ments K, has been obtained by means of relation (19).

The elements of the remaining two rows of matrices [K,]
and [R,,] are calculated in a similar way. As [K,] is a symmetri-
cal matrix, it is sufficient to calculate only its elements lying to
the left of the main diagonal and those on the diagonal itself.
The correctness of the calculation is checked by substituting into
relation (20) which is the means of checking almost all numerical
operations represented in Table 2 including the compilation of
the first column 717,

By this method it has been possible to obtain a system of
linear equations for the sought after coefficients pertaining to
the weighting function g(f) = 1:

\

1-697 1.630 13-27 D, 0-380
1-630 3-260 2-890 D, = {0-694
1.327 2-890 4.217 D, 0-704

As the elements of matrices [K,.] and [R,,] are independent of
the chosen degree L of polynomial D(z) the mere reduction of
the respective matrices will suffice to meest the case of L =1, 2.
By the solution of the above system of equations coefficients D;
are obtained for 7 # 0, while the coefficient D, follows from
condition (8)

L
i-1
- In this way the following results have been obtained

D,

L D, D, D,
3 0-758 0-046 0-140 0-057
2 . 0-768 0-038 0-194
1 0-776 0-224
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In order to obtain the system of equations for the coefficients
D, pertaining to the weighting funtion q () = 1 (t — T) it will
suffice, in accordance with relation (21), to add to each element
of matrices [K,] and [R,,] respectively the following quantities

" AK = — 04548 and A R = — 0-0646

obtained by the numerical solution of eqns (22) and (23). In this
way one obtains

. Dy

P2 D, b, Dy
3 0-611 0-186 0-120 0-084
2 0-631 " 0170 0-199
1 0-642 0-358

The pulse-transfer function of the continuously acting mem-
ber of the system G (z) = B (z)/4 (z) and the polynomial D (2),
the coefficients of which have just been calculated, determine

. completely the necessary transfer function (9) of the computer.

The respective curves of the controlled variable x following the
unit:step change of input signal w are represented in Figure 3
for the weighting function ¢ () = 1, and in Figure 4 for the

functiong () =1 — T).

It can be seen from Figures 3 and 4 that, compared with the
minimum number of steps (L = 0), a considerable improvement
has been attained, especially in the case where in the minimaliza-
tion of the integral of squared error the errors have been con-
sidered as occurring only after the first sampling period.

Derivations and Proofs

First of all it will be proved that the above stated results hold
for the case where all the poles of transfer function S (p) are
different from.zero.

The sequence of the increments of the variable e, * \(t)

Ae,[i]=e5 (iT)—e5 (iT—T)

has, according to eqns (5) and (6), the z-transform of

L {Ae, [} =(1—2""E, (Z)—B(l)D(Z)A(Z) @30
From this z-transform it follows obiously
, 1
Aez.‘[L] B(D) 2 Z DA;_, 32)

where A, =0fork < Oandk > n; Aey[i} =0 fori>n+ L.
Eqn (32) contains all the L + 1 coefficients of polynomial D (z);
however, only L of them can be selected, as-it is necessary to
fulfil condition (8) that is D (1) = 1. For the purpose of fulfilling
this condition let coefficient D, be detached

L
Dog=1-— z D, (33)
s=1
and eliminated from eqn (32)
L
Ae, [i] -1 l: )y Ds(Ai—s—Ai)+Ai:| (34)
B (1) s=1 ) .
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' Now, the time curve of the manipulated variable y (#) is dis-
solved into the sum of unit-step functions

n+L

y(t)— Z Ae, [(]1(t—iT)

and the curve of the controlled varaible x (f) can then be repre-
sented by the superposition of the unit-step responses

n+L
x()= Z Ae, [l]s(t—lT) (35)
Then for error ¢, (¢) it holds that
n+L
e;()=1-xO)=1- 3, Ae,[i]s(t—iT)
: i=0
n+L _
= Z Ae, [l] s(t—iT) (36)
where ) =0
s(t—iT)=s(c0)—s(t—iT)
t>iT,5(t—iT)=—Y C,e™¢ D
v=1
t<iT,s(t—iT)=C, a7

If the integral of squared error (10) has a minimum value,
the coefficients of polynomial D (z) must fulfil the equations

aJ
aD,

=0, r=1,2,..,L (38)

After the above indicated derivative of the integral it follows

2 f g()e 1<t)ael(‘) dr=0

(39)
The necessary partial derivative is determined from relations
(36) and (34)

dey () 1 "
alD B(l) JZ (A_) -r j)s(t .]T)

(40)

By substituting (40) and (36) together with (34) into condition
(39), and by altering the sequence of addition, it follows

L n+L n+L
n+L n+L _ -

s(t—jT+ Y 2 A; (AJ e ~)s(t—iT)s(t—jT)}dt=0
i=0 j=0

(41)
Under the accepted pre-condition of transfer function S(p)
having all its poles in the left semi-plane the integrals

Gi,-=fwq(t)E(t—iT)E(t~jT)dz (42)
Y ! .

converge and'in eqn (41) the integral of the sum can be expressed
as the sum of the integrals
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L n=L n=L
YD Y Y (Ai—A)A;-,—A)ay,
.s=1 i=0 j=0
n n+L
Z Z r—Aj)Uij=0
and in the abbreviated form
L .
Z D,K,,+R,,=0, r=1,2,....L (43)
s=1
with the following denotations
n+L n+L
=y Z(A; s—A)(A;-,—A)) oy (44)
i=0 j=
n n+L
rO_ z;) Z A (A_] -r ) u (45)
i Jj=

For the degree L of the selectable coefficients D, the system
of linear equations is thus obtained that can be written in the
matrix form (11) as

[Krs] [Ds] = [RKO]

By interchanging the subscripts in relation (44) it can be
easily proved that [K,] is a symmetrical matrix. .

By the solution of integral (42) it follows for the case of
weighting function ¢ (f) = 1

n

oyy=cmin(i,j)+Co 3, Pv —0(j—1)
v=1.+4v

(46)

where the function 6 (k) is determined by relation (13), and ¢
according to relation (16). Integral (42) for the weighting func-
tion g () = 1 (r — T) is to be denoted by &;;. It holds

i#+0, j£0,6;;=0;;—c

C

A A ¥ v
Gox=06x0="Co Z P
. v=1 v

z,—0(k) 47

n
6-00 == Z Cvzvév
v=1

where 5 is determined by the second of relations (23), and
z, = erT .

The calculation of the elements of matrlces [K,,] and [Rm]
according to relations (44) and (45) would be very laborious.
For this reason let'some arrangements be introduced that will
simplify this calculation considerably.

First, let us divide relation (44) into two terms

n+L n+L
Ks:._ZO: _Z i- S(Aj—r_Aj)

J
n ntlL
i=0 j=0
Now, if thé summating subscript i in the first member is shifted

by's, i.e. i — s = i, and considering that 4, = 0 for i > n and
i < 0, it follows

1225
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Krs= Z A;(A
Ti=0

j-r
i i=0

—4;j)o

its, Jj

- Z Z Ai(Aj—r—Aj)U'ij
i=0 j=0

Accordjng to (45) the second term equals R,q, and let the first
be denoted

Rrs=.z Al Z (Aj—r_Aj)o'i+s,j ' (48)
i=0  j=0
In this way relation (19) has been obtained
Krs = Rrs - Rr() (49)

As the term R, represents a special case of R, with s = 0,
it will suffice further to seek only the numerical solution of (48)
for R,;. Let it be written in the following form

n n
R,;= z(,) A; Z Aj(o'i+s,j+r“°'i+s,j)
i= i=0

If we denote

(50)

n
rUi+s= ‘Zo Aj(ai+s,j+r_ai+s, j)
J:
we obtain relation (18)

n
’ Rrs= Z AirUi-f:s (51)
i=0 .

All values of U required for the calculation of the rth row
of matrices [K,,] and [R,,] can be obtained as the product of the

rectangular matrix :

Egn (52) *

and of the column matrix
[Al] = [AO’ Aly e An_]
[Ul=[e][4]

It will be proved that in the case of weighting function
q (1) = 1 matrix [o] has all its elements lying on the lines parallel
to the main diagonal of the same value. For the mth element of
the kth parallel above main diagonal it holds
- "C
am,k+r+m_6'm,k+m=cm+co Z P >

v=1 v

(53)

—0(k+r)

o C
—lem+C Y
I: ovgl Pv

As this relation is independent of m, all elements lying on
this parallel are equal, and they may be denoted by the same
symbol .

—0(k)]=9(k)—9(k+r)
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"Te=0(k)—0(k+r)

Similarly it holds for the elements on the kth parallel below the
main diagonal

rrk=ak+m,r+m_o'k+m, m==C min (k, V)+9(k)—0(|7‘—kl)

For the main diagonal k = 0.

Due to this property of matrix [o] it is possible to arrange
the numerical solution of matrix product (51) into a scheme
shown in Table 1 (a) which can be easily found by comparing
both methods of calculation. '

It remains yet to prove the validity of formulas (21), (22),
and (23) by which the former results are to be corrected, if errors
are being considered only after the first sampling period. By
substituting into matrix (50) for o;; (46) the terms 6,; (47) calcul-
ated for the weighting function g (£) = 1 (¢ — T), it can be seen
that only the first column has been altered. Obviously it holds that

(54

When calculating the term in the parentheses, it is necessary to
differentiate two cases: k> 0 and k = 0. By substituting
relations (46) and (47), we obtain in the first case the relation

. n C
k>0,6’k,,.—0'k',-—6'k,0+a'k,0=C0 Z A

v=1 v

v i - .
U= Uk+(0'k,r_°'k,r—°'k,o+‘7'k,o)A0

(1—ZV)=X

which is. independent of k. Similarly for £k = 0

A

D4
Go,r—00,r— 00,01 00,0

n

C
=-C
ngl P

With this denotation the relation (54) may be rewritten in the
form -

k>0,

- (l_zv)+ Z Cvzvg\!-l-co z CV
v v=1 v=1 Pv

—0(0)=x,

"U,="U,+xA,
. 55
k=0, rU0=rU0+KOA0 ( )

For the verification of formulas (21) and (22) it will suffice
to execute operations (51) and (49) with the relations (55), and
to denote ky — k = A.

. The checking formula (20) can be be verified by substituting
relations (44) and (45) and by using the relation

Oitr, j+r— 0y j=TC

that follows from eqn (46).

In Case (b), with the transfer function S (p) having one zero
pole, the continuously acting member of the system is astatic
[s (00) = o0], and integrals (42) are not converging. It is possible
to by-pass this difficulty, if the curve of the controlled variable
is not represented as the superposition of unit-step responses,
but as the superpostion of responses to rectangular pulses.
Otherwise the procedure of derivation is the same as in Case (a).

* Eqn (52) .

Go,r 00,05 0o,14r —09,1;
O, —01,05 O1,1f4r —01,1;
[el=102, ~020; 0214r —02,15

OntL,r~On+L,05 On+L,14r—On+1,15 On+L,24r " On+L, 25

\

0o,2+r 00,25 +-0g p+r —O0Op,n
O1,24r —01,25 01 pyyr —O0q, .
0'2, 2+r . 62,n+r (52)

—02,2; =03

On+Lon+r—On+L,n
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- The Dynamic Properties of Rectification Stations
with Plate Columns

J. ZAVORKA -

The control of rectification stations, as carried out at the
present time, is confined only to some control loops which are
designed without any thorough theoretical consideration. As far
as individual control diagrams are concerned, quite a number
of them have been designed; for instance, see Anizinov!. The
advantages and shortcomings of various connection schemes
have been published by the respective authors, however, and the
evaluation is mainly based on technical sense and experimental
results. Information on the general operational analysis of
rectification columns has been appearing only recently® 3 8 7, 11,

In most of these papers the pressure and hold-up of the plate
have been considered as constant quantities. Due to this, the
validity of results is limited to cases with slow changes in the
input quantities; for instance, changes in feed composition or
changes occurring during the starting of the column. For
rapidly changing input variables, for instance pressure, the
results are erroneous. In view of these facts, an operational
analysis was worked out by Voetter and Houtappel'® where the
pressure and hold-up of the plate were considered as variables.
Starting from linearized equations the authors demonstrated
that, nevertheless, the results hold for a rather wide range of
input quantities. The same authors extended their study to
ternary mixtures, and used digital computers for the calculation
of dynamic properties. It has been found that the solutions of
these problems are exceedingly time consuming with regard to
the computer, and Rose and Williams5 10 11| attempted the
modelling of the system on an analogue computer. However,
these authors designed the model of the dynamics of the vapour

phase as single-capacity members connected in series which

does not correspond with reality. This deficiency has been
eliminated by the work of Rijnsdorp and Maarleveld®, who
succeeded in modelling a 32-plate column on an analogue com-
puter built from passive elements especially for this purpose.
The Bode frequency characteristics are the result of this work.
As an example, one of these characteristics is shown in Figure 1.
Obviously it cannot be evaluated, as the curve has no distinct
straight sections to permit the determination of the respective
intersects. Apart from this, it is not possible to agree with the
assumption made by the authors in the equations describing
the system, namely that the heat of evaporation is merely a
function of pressure and independent of the composition of
the mixture.

The aim of the present paper is to derive generally valid
relationships for the computation of transfer functions for the

control loops and for the complex automation of rectification
stations. }

The task has been limited to rectification stations with plate
columns for the separation of binary mixtures.

The purpose of the work is to determine the transfer func-
tions of the system, which in turn determine the relationship
between the input variables (N: the flow rate of the feed ; X : the
composition of the feed; P;: the pressure in the condenser;
G, : the flow rate of the heating steam) and the output variables
(A: the flow rate of the product; X4: the composition of the
product; B: the flow rate of the residue; Xp: the composition
of the residue; P,: pressure at the first plate of the column) and
possibly between the concentration at some other plates.

The diagram of a rectification station with a plate column for
the continuous separation of binary mixtures is shown in
Figure 2.

For the investigation of dynamic properties let the rectifying
station be divided into three sections shown by the dash line in
the illustration. The first to be investigated is the independent
rectifying column, the second section consists of the bottom of .
the column with the still, while the third section contains the
top of the column, the condenser, the cooler and the condensate
tank.

The rectifying column consists of plates that are to be
considered as separate units with regard to function and con-
struction. The diagram of a plate is shown in Figure 3. It can
be seen that the plate may be acted upon by the following nine
input variables: -

N The feed flow rate
XN The feed composition

H;~ The enthalpy of the feed
Vnu-q  The flow rate of vapour from the plate below
Yn,—1  The concentration of this vapour

H, ,—; The enthalpy of this vapour
L,,; The reflux from the plate above
Xng1 The composition of this reflux
H, .., The enthalpy of this reflux

By these variables changes are produced in nine output
variables:
M; ,,  The liquid hold-up of the plate
M, , The vapour hold-up of the plate
P, The pressure on the plate
Vi The flow rate of vapour streaming from the plate
L, The reflux from the plate

individual input and output variables of the whole rectification H,, The enthalpy of vapour streaming from the plate
station, to create in this way the possibility of comparing and H;,  The enthalpy of the reflux from the plate
assessing the advantages and shortcomings of various control Y, The composition of vapour
diagrams, and to obtain the data necessary for the synthesis of X, The composition of the reflux

127/1

Declassified in Part - Sanitized Copy Approved for Release 2013/02/13 : CIA-RDP80T00246A023400480001-9



127/2

/

The plate is described thus by a system of nine simultaneous
equations which are now derived.
First, the material balance of the plate is set up.

dM dM, :

EL—"+7'[M=Ln+1_Ln+Vn—I_Vn+N (1)
By multiplying the individual terms by the corresponding con-
centrations the total material balance equation is transformed
into the material balance of the more volatile component:

d(Ml,n‘Xn)_*_d(Mv,n'Yn)
dz dz
= m+1Xn+1_Lm.Xn+I/n—1.er—l_I/rerl+N.XN (2)

In accordance with the material balance equation it is possible
to write the heat balance equation as follows:

d(Ml,n.Hl,n)_i_d(Mv,nHu,n)__ V*dPn
dr dz . dz

= n+1Ht,n+1anHt,n+ Vn_—1'Hu,n—1_Vn'Hv,n+N'HN 3

The last term on the left-hand side of the equation (which re-
presents the consideration given to the difference between the
enthalpy of the vapour phase and its internal energy for which
the equation holds) is neglected later with regard to the pressure
changes being of the order of millimetres of water gauge.

The vapour flow rate depends on the square root of the pres-
sure differential on two adjacent plates and on the density of the
vapour. In view of the fact that the difference in pressure on
two adjacent plates fluctuates within the range of 25-50 mm w.g.,
the influence of density may be neglected. The relationship be-
tween flow rate and pressure is then déscribed by the equation

Vn2=kq'(Pn_Pn+1) 4
The following relationship should be further investigated,

Ml,nle,n(Ln)

By the application of relation

-5, 2
sl=1o.<____1° KL )

1-773p-y
one obtains ’
S, {1077 uL \3 :

Now consider the relationship between the concentration of the
more volatile component in the vapours and the concentration
of the more volatile component in the liquid during the state of
equilibrium of both phases at the boiling point temperature of
the binary mixture.

L=Y(X) ©®)

The description of this relationship was attempted by a number
of equations (Wohl, Scatchard-Hammer, Van Laar, Margules,
symmetrict). However, they all contain constants that can be
determined only experimentally. Due to this, and also due to
their complexity, none of these equations has been accepted in
practice. The effect of the composition of the liquid upon the
composition of the vapours (established experimentally) is nor-
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mally represented by the X—Y equilibrium diagram. This method
of representation has been accepted for the following sections
of this paper. i

The remaining three equations are written in the form of
general relations:

ka,nth-),n(Pn) . (7)
Hl,n=Hl,n(Pm Xn) (8)
Hv,n=Hv,n(Pm Yn) (9)

The system of the above-stated nine simultaneous equations
describes one plate of the rectifying column. As interest here is
only in the non-steady states of pressure, composition of the
liquid phase and flow rate of the liquid phase, all other variables
will be eliminated. The transfer functions of pressure, composi-
tion of the liquid phase and flow rate for one plate are obtained

by the linearization of the equations or possibly by their trans-

formation into differential equations, followed by the LW trans-
formation and the arrangement of the equations. These transfer
functions are used for drawing the partial block diagrams of one
plate for the dynamic behaviour of the three variables. The block
diagrams are shown in Figure 4. The overall block diagram of
one plate is obtained by the interconnection of all three partial
diagrams. The complete block diagram of the whole rectifying
column is obtained by the interconnection of the block’ dia-
grams of the individual plates as shown in Figure 5. For the sake
of clarity the multiplication constants are not shown in Figure 5.
Now, it remains to conclude the block diagram of the column
by the connections of the condenser and of the still.

The block diagram of the bottom section of the column (the
first plate and still), and the block diagram of the top section of
the column (the highest plate, condenser, cooler of the conden-
sate, condensate tank and the piping) have been derived by a
similar method as used for the derivation of the block diagram
of the column proper. For the sake of brevity the respective
procedures are omitted, and only their results are given in
Figures 6 and 7.

The complete block diagrams of all sections of the rectifying
station have been obtained so far. The description may serve as
the source of some data for the modelling of the system. Owing
to the high complexity of the diagram, a large number of inte-
grating units will be required for the modelling and, therefore,
it should be possible to model only the simplest stations with a
small number of plates. For this reason the results of the preced-
ing chapters have been subjected to a further theoretical analysis.
The analysis follows the aim of simplifying the block diagram
of the column proper so that it is suited for modelling, or so that
it is possible to compute the transfer functions of the system.
First of all it was necessary to determine the zones within which
the values of individual design, physico-chemical and operational
parameters can vary. Further the relations were to be stated that
were required for the numerical solution of various terms occur-
ring in the formulae for the time and multiplying constants. A
quantitative analysis of the time and multiplying constants was
made on the basis of these values and relations. The results
obtained were used for certain simplifications of the formulae.
Further, it appears that the dynamics of pressure and composi-
tion in the whole column are represented by block diagrams of
the same structure (Figure 8). The diagram is formed by single-
capacity members connected in series with feedbacks by-passing
two members that follow behind. The output signals of this
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chain are formed by the algebraic sum of the signals of three ad-
jacent members and they link together the diagram of pressure
and the diagram of composition.

The general analysis of this block diagram was made; a
matrix calculation was used for deriving the matrices of the
transfer functions of this block diagram as the functions of the
number of the chain members (or of the member of the plates of
the column). A further analysis was used for establishing the
conditions at which the static value of the output signals of the
above chail} is equal to zerd (the conditions are related to the
magnitude of the multiplying constants), and the conditions at
which it is possible also to neglect the dynamic value of the out-
put signals (the conditions are related to the number of plates).
It was proved by a further general procedure that the above-
stated conditions are fulfilled by each column. Assume for an
instant that, during the investigation of the dynamic properties
of the distilling column, there is no interest in the non-steady
states of pressure. Under this assumption, and owing to the
former conclusions, it is possible to interrupt in the block dia-
gram the connections of the pressure changes between the indi-
vidual plates. This can be done because any disturbance entering
any plate lying below or above the plate under investigation can
influence neither the flow rate, nor the pressure, but only the
pressure values at different points of the block diagram, or of the
column, and these values are of no interest for the time being.

Now consider composition in the same way—supposing that
one is not interested in the non-steady states of composition.
Similarly, as in the case of pressures, the connections between
individual plates may be interrupted. The block diagram is then
transformed into the form shown in Figure 9. The values ¢,
and ¢, are the sums of the input signals of the individual nodes
of the block diagrams of the dynamics of pressure and composi-
tion respectively. Now the non-steady states of pressure and
composition, that were formerly excluded from discussion, are
considered. The partial block diagrams of pressure and composi-
tion respectively are easily attached to the diagram in Figure 9
by introducing the signals ¢, and ¢, into the individual nodes
of the block diagrams of pressure and composition respectively.
The result is shown in Figure 10. The section of the block dia-
gram bordered by the dot-and-dash lines corresponds with one
plate of the rectifying column. By the solution of the system of
equations written for all three nodes of the block diagram of one
plate (naturally after the introduction of all multiplying con-
stants) the transfer functions of all output variables of the plate
are obtained. Finally, in the application of the transfer functions,
it is possible to re-draw the block diagram shown in Figure 6
into the final form according to Figure 11. This block diagram
holds for a general column with any arbitrary parameters with
regard to design, physico-chemical conditions and operation.

The block diagram shown in Figure 11 together with the per-
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Further work!® contains the practical computation of several
transfer functions and step response curves of a concrete rectify-
ing station on the basis of the results obtained from a general °
analysis. The necessary measurements were also made on this
station in operation. After a comparison, the results of the com-
putation were in very good agreement with the results of the
measurements.

Nomenclature

Flow rate of the product (mol/sec)

Flow rate of the residue (mol/sec)
Multiplying constants )
Specific h=at of heating wall (kcal/kg °C)
Reflux ratio

Mass of the heating wall (kg)

Flow rate of the heating steam (kg/sec)

3

QQAmS O

[y

H; Enthalpy of the liquid (kcal/mol)

Hy Enthalpy of the feed (kcal/mol)

H, "Enthalpy of the vapour (kcal/mol)

H,, Enthalpy of the heating stzam (kcal/mol)
Hy, Enthalpy of the condensate from the still (kcal/mol)
i Number of plates

k Coustants

k Subscript of condenser

L Reflux (mol/sec)
+L;1;  Reflux to the top (mol/sec)

M, Molar hold-up of the condenser (mol)

M, Liquid hold-up of the plate (mol)

M, Vapour hold-up of the plate (mol)
N Feed flow rate (mol/sec)
N Subscript of feed plate
n Ordinal number of plate
O/ p/ Transfer function of the still
P Pressure (atm)
P, Pressure in the heating system of the still (atm)
P, Pressure in the condenser (atm)
0, Heat flow to the heating wall (kcal [sec)
Q. Heat flow from wall to substance (kcal/sec)
Q/ b/ Elementary transfer function of the still
¥ Latent heat (kcal/mol) .
5 Surface area of liquid hold-up (dm?)
5y Heating wall area on steam side (m?)
Sy Heating wall area on liquid side (m?)
Sy Height of liquid level on plate
above the vapour nozzle of the bubble-cap (dm)
T,st¢  Mean temperature of héating wall (°C) ,
T,sx Mean tempetature of heating wall on the steam side (°C)

T, Temperature of heating wall on the side of the
heated substache (°C)
U Free energy (kcal)
[ Free energy of the heating steam entering the still (kcal)
Upe Free energy of condensate leaving the still (kcal)
|4 Flow rate of vapour through column (mol/sec)
y* Volume (1) :

taining transfer functions and formulae for various constants ¥*,  Steam volume in the still heating system (1) . o
and transfer functions, is the final product of the theoretical X Concentration of the more volatile component in the liquid
. part of the work. These results make possible the computation (mol %). . in th d

of the transfer functions of a general rectifying station. During X4 Co(nceilt;‘)tlon of the more volatile component in the product
the soluti i impli- mot /o .

¢ sotion of concrete problems a number of p ‘0551ble SImp f X4 Concentration of the more volatile condensate component
fications appeared that followed from the numerical evaluation after the condenser (mol %)

. o . . . 0.
of 1gd1v1dual constants and plate. t.ransfer functlpns. _It is not X,  Concentration of the more volatile product component in the
possible to prove the general validity oi: thes? sxmphﬁgat]ons. cooler of condensate (mol %)
However, it may be assumed that they will be identical in most  x,,  Concentration of the more volatile component in the reflux
cases. : (mol %)
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XB Concentration of the more volatile component in the residue
(mol %)

Xn Concentration of the more volatile component in the liquid
on the feed plate (mol %)

Y Concentration of the more volatile component in the vapour

. (mol 77)

Yn Concentration of the more volatile component in the vapour
on the feed plate (mol %)

oy Heat transfer coefficient steam-heating wall (kcal/m*h°C)

&g Heat transfer coefficient heating wall-liquid (kcal/m2h°C)

Y Specific gravity of liquid (kg/l)

Vo Specific gravity of vapour (kg/l) )

A(P) Elementary transfer function of the flow rate ‘of the liquid

phase.

» Molecular weight

Z(P) Elementary transfer function of concentration molar volume
(dm?/mol)

I1 (P) Elementary transfer function of pressure

0 Circumference of down-take pipe (dm)

T . Time (sec)

74 Transport lag (sec) . -

7 Time constant of the elementary transfer function of the flow
rate of the liquid phase (sec)

Tp Time constant of the elementary transfer function of pressure
(sec)

Tpx Derivative time constant of the pressure-concentration link
(sec)

T, Time constant of the elementary transfer function of the still
(sec)

% Time constant of the transfer function of the condensate (sec)

Tky Derivative time constant of the transfer function of the con-
denser (sec)

T, Time constant of the elementary transfer function of the con-
centration (sec)

Tep Derivative time constant of the concentration—pressure link
(sec)

T, Time constant of the condensate tank (sec)
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Some Recent Results in the Computer Control of Energy Systems

T. VAMOS, S. BENEDIKT and M. UZSOKI

The results of automation in the Hungarian energy system
were reported in ealier papers': 2 .The most important equip-
ment realized is an automatic economic load dispatcher, based
on new principles, calculating the effect of the network losses
(differing from the usual solutions) from the actual network
configuration. The special analogue computer of Figures I and 2
calculates the matrix B using the well-known formula3 *
P, = P B P, according to the scheme of Figure 3. The poten-
tiometers k¢ in section G of the figure have the values

1—;%
kl=|—
U;

characterizing the generators, where Q,/P; is the active and
reactive power rate, U, the generator terminal voltage, while

kl_ Itf

e .

r=1

12

in section L characterizes the proportions of the loads on the
total loss, where I;; is the load current at the ith node; I, is the
power station current at the ith node; and N is the direct
current model of the actual network.

By a more detailed analysis it may be proved® that if the
voltages corresponding to the generator powers P,¢ (without
the network losses and formed similarly to the previous analogue
computer solutions) are the driving voltages of the scheme’s
input, the voltages ZB;;, P;, being proportional to the network
incremental losses, are obtained at the output, which provide
with a suitable feedback the optimum load distribution consider-
ing the network losses. The papers quoted prove that accuracy
of the method (considering the neglections) exceeds the practi-
cally reasonable limits.

The analogue single-purpose machine for such a solution,
installed in the system control, takes into account, as compared
with the former solutions, the active-reactive power proportions
of the generator bus-bars, as well as variations in the load
proportions. ) :

With the part simulating the actual network (matrix V), one
obtains an adaptive system, resetting the economic load distribu-
tion by switching the elements of network H (that is, the actual
lines, by hand, or automatically with remote control).

The experiences with the automatic load dispatcher have
shown that the methods developed up to now for evaluating
the economy (the incremental heat rate curves, plotted on
statistical bases) are not satisfactory. In connection with this,
the following problems have arisen: ’

(@) Continuous evaluation of the economy characteristics
(efficiency, increment costs).

_ ltn

(b) Determination of the estimation periods for the data
processing and economic load distribution, permitting filtering
of the measurement uncertainties and other short cycle, transitory
disturbances, but giving information about the effect’ of the
system variations (e.g. fluctuations in connection with the
frequency and power control).

(¢) Measurement accuracy corresponding to better calcu-
lating and data processing possibilities and improvement of
the sensing elements.

(d) Calculation of the transient phenomena effect (e.g. un-
load, increase in load) in the automatic load distribution system.

(¢) Problems of availability, probability of breakdown,
objective judgement of the operation during partial disturb-
ances, or unfavourable service conditions for an automatic
dispatcher.

(f) The complex logical decision problems of the automatic
energy system dispatcher control for searching the most
favourable network cennction manipulations.

Among the above problems (a) is generally solved, and a
great number of power system data processers are operating.
It is worth mentioning, that as regards development, these
problems are not resolved. The endeavour for a practically
perfect service safety, the complications of practice in connection
with the electromechanical output equipment, the reasonable
combination of the analogue and digital elements, and the
development of a more reliable and cheaper annunciator system,
rendering the whole apparatus less expensive, justify numerous
new solutions.

Problem (b) must be regarded as the most open one. The
digital instruments have generally a class accuracy of 0:1 per
cent, while the digital computing technique is practically of
absolute accuracy. At the same time the power system measuring
and control instruments are of class 1-2 per cent, but in practice
instruments and sensing devices for a higher accuracy can be
reproduced, but these are accuracy limits under service con-
ditions. Determination of the most important quantities, such
as fluid and solid material flows, heat content, ash content, etc.,
leads to the greatest number of uncertainties, and here the
measurement accuracy is 2-5 per cent. The error is increased
with the data calculated from such uncertainly measured values,
e.g. with the quotient formation necessary for the efficiency. This
is the pivotal question and basic contradiction of:the whole
energetical optimization. We want to attain prospective efficiency
improvements of 0-5-1 per cent, the sum of which may be in one
country in an integrated average many millions, perhaps many
tens of millions, of dollars per year, based on a measurement
uncertainty of 1-5 per cent.

Up to now attention has been concentrated on the prob-
lem that has not yet been completely solved, i.e. continuous
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and more accurate control of the coal heat content value, this
being all the more justified in Hungary as the fuel quality varies
considerably, and most of the power stations are thermal ones
working with coal. Based on some former results 678,11 a definite
improvement has been attained in the field of coal analysis by
radioisotopes®: 1°. We have succeeded in deriving a method
permitting the continuous control of the heat content of the
coal, at least within the accuracy of the laboratory calometric
method, which is unacceptable from the statistical sampling
point of view. The main experiences were as follows:

(a) In the case of thorough sample preparation a correlation
of better than 0-9 may be reached with laboratory calorimetric
control, which covers the uncertainty range of the laboratory
method measurement accuracy.

(b) With mechanical sample preparatlon the measurement
accuracy is much influenced.

(c¢) In the case of considerably varying coal composition, a
multi-ray method of different discrete energies can be advised,
combined with a suitable, simple computer.

Generally it may be concluded that the next most important
step in process automatization will not so much concern the
automatic system itself, but rather the development of the
quality analysing and quantity measuring devices and sensing
elements.

In designing the process optimization a very important and

insufficiently considered viewpoint is the determination of the -

estimation period of the characteristic to be optimalized.

This view is especially clear when optimizing the efficiency,
as efficiency samples taken for too short a time may lead, for
example, to an efficiency value exceeding one after a former
storage period, while sampling periods which are too long eli-
minate the possibilities of estimation of system variations that
may be important for optimization. Determination of the ideal
sampling period is complicated by the fact that in a boiler the
transit and storage time constants of the single energy quantities
are extremely different, changing even during the operation.
The ideal accurate evaluation of the efficiency could be accepted
only for a complete start-operation-stop period. The criterion
of duration regarding the estimation period 7 is that the deviation
between the efficiency calculated from the efficiency taken for

the total operation time and from that taken for the partial

times should not exceed the error &, caused by the measurement
inaccuracy, i.e.

Te tr+y
xoutdt l n 1 n xoutdt
ib t;
= .+8=— -—————+
n="sr PNl W e +
' t

te

where x;,= power quantity supplied during the measurement;
Xout = power quantity taken out during the measurement;
t, = initial time of measurement; ¢, = final time of measure-

ment; 1 = process efficiency; 7; = efficiency of the ith partial
time, and n = number of samples taken during the whole
process.

The estimation period must be chosen as the shortest one
meeting this accuracy criterion.

There may be several practical solutions among which the

most simple is the working with a time 7 fixed by experience
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on the basis of the above criterion. With the boilers used in

. Hungary there is an interval of 10-15 min, taking values into

consideration only if deviation between the output and input
energy levels is less than 3-S5 per cent from the beginning to the
end of the estimation. The greater variations are, in any case,
to be processed separately. The other system adjusts adaptively

" the evaluation interval on the basis of the auto and cross correla-

tions of the output and input energy characteristic. The numeri-
cal results show also, in an apparently entirely identical mode
of operation and circumstances, efficiency changes of 2-6 per
cent. This is partly due to the considerable variations in the fuel
quality. A test made in Czechoslovakial? shows variations of
+ 10 per cent for coal quality fluctuations within a very short
time. The experiences in Hungary gave similar, or even worse,
results, and coal quality fluctuates sometimes by minutes. The
effect of the system power and frequency control on the change
of efficiency is also most interesting, the load fluctuations
having relatively rapid frequencies resulted in an efficiency
deterioration of 2-3 per cent in’'some cases, against the same
level steady state operation. The experience in Czechoslovakia
justifies the introduction of a corrective control working on the
basis of quick coal analysis, while that in Hungary demonstrates
the necessity of sensing the effect of the relatively faster changes
upon the efficiency.

From the foregoing it follows that the tormer view of the
static load distribution is not satisfactory for calculatingthe
economic load distribution, and the costs of the necessary
alterations (heating, unload switchover, etc.) must be con-
sidered.

The problem is clarified by the following example. A power ’

station is operating with four identical boilers, each being
loaded to 90 per cent. If the demand increases so that loading
of the boilers is to be raised to 100 per cent, the alternative may
be considered, i.e. starting a fifth boiler of similar capacity, as
a consequence of which the single boilers may operate with
80 per cent load, generally the optimum efficiency level. In this
case the expenses of the transients (start, possible later stop,
loss of life due to manifold start and stop) must be compared
with the savings of the more economical steady-state operation
for the expected interval. These circumstances are taken into
account already, though in a more simple way, in the present
load distribution practice.

The former static load distribution methods are to be gen-
eralized to an optimum energetical programming, taking into
consideration also the presumable changes. These methods
start, as a rule, from Lagrange’s method of constrained extrema
and are calculated on the basis of the equal incremental costs.
The generalized task is the typical case of the multi-step decision
problem. On the basis of the power demand given, the system
must be programmed in an pptimal way, considering afterwards
the transition to the power demand expected for subsequent
periods and the optimal mode of operation on the new levels.
Considering the calculating difficulties and practical demands,
the programme was realized for two steps, consequently,
besides the system performance level given, the search for the
optimum is realized for the next two levels. Consideration of
the second change provides information about the first alteration
being justified. (In our example the heating up of the new boiler
is made reasonable by the time elapsing until the next change
and by the direction of the next variation.)
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The optimum energetical programming must calculate the
availability of the system and its units also, and therefore the
probability factors must be considered not only when estimating
the power demand, but also when calculating the available
power . system capacities and network interconnections. In the
period to be planned, the system service conditions are charac-
terized by the prospective capacity distributions of the individual
units (power stations, machine units, etc.), that is, the probabili-
ties of the available capacities as a function of time, and further,
the probability cost values relative to these. These cost values
are probability variables not only in the sense that they belong
to probable power values, but they are also in themselves only
probable values, e. g. the efficiency of the condensation machines
is considerably dependent on the cooling water temperature,
and consequently on the probable factors of the weather. The
third important characteristic, from the optimization point of
view, as mentioned earlier, is the excess cost of the transient
states, this corresponding not to the expenses integral taken
along the static time diagram of the given capacities, but gene-
rally exceeding it.

Consequently, for the predictive characterization of the
availability, the following are needed. (1) Probability distribution
of the capacities depending on the time and direction of tran-
sients, (2) the probability cost distributions belonging to these
values, and (3) the time integrals of the expense distributions
along time tables to be considered.

That is, the availability A4 is a set:

A={P1 =f1(P,1); p2=f2 (K, P,1); p3=f3 (P,K,jKdt)}

where p,, py, ps are the probabilities discussed above.

Accordingly, the availability 4 at instant # is the set of the
possible power capacity values P, where to each value P belongs
a value X (the costs of the service in steady state conditions) and
to each curve P; = P; (¢) belongs an integral cost curve §{ K dz.

The task of optimization is as follows. The lines of constraint
of the possible power capacities P; = P; () are given, that is,
the boundary surfaces of a solution space of dimension n, the
lower and upper power limits belonging to the individual
units and changing in time. Given the probable system power
2 P;(f) = P (). The trajectory of the vector P of n dimensions
is to be determined (the vector characterizing the power output
condition of the system units), the vector being, under the above
conditions, '

n t
min 'Zl Ki [Pt opt (t)] dt
i= to .,

that is, providing the minimum of the cost integral taken along
the trajectory. The line integral taken along the trajectory in
the coordinate space P forms no conservative space, as the line
integral is not independent of the path and the integrals taken
along the closed curves (the cost of returning to the same power
distribution) is not zero. :

The probability influence of the availability and of the costs
have been derived according to the following considerations:

(a) One determines for all equipments the operation time
permitted on an experimental base, that may be considered—if
there is no special fault indication—as a time of practically
perfect safety. During this time the service costs of operating
the apparatus in steady-state conditions correspond to the
value calculated in general till now.

190/3

(b) At the beginning of operation (primary disorders) and
over the service time permitted, the probability of outage is
greater. Here a penalty tariff is stated, depending on the time
and calculating from the former outfall statistics and from the
probable economic consequences of the outfall.

(¢) Similar penalty tariff is stipulated in case of some error
signals (fault indications).

(d) For all important units the transient costs (the expenses

. of the transient conditions) obtained by experience or calculation

are stored, adding to this in some cases the penalty tariff cal-
culated from the disturbance danger relative to the transition.

The above data can be elaborated by the individual power
station data processers with a relatively small storage and time
requisition to data necessary for the load distribution. These
are the curves corresponding to the classical increment cost
curves, corrected by the penalty tariffs considering the avail-
ability, the possible time functions of the transients and the
integral cost curves of the transient conditions. For power
stations a relatively slow processing of about 10-20,000 data
is needed and the communication of about 300400 data with
the central load dispatcher, as a result of the above calculation.
The latter must be dispatched only in case of and to the degree
of change. The knowledge of these 300-400 data per power
station accomplishes the two-step optimalizing programme
mentioned earlier.

In this manner, with the aid of suitable power station data
processers, by the otherwise available telemetering channels and
by a central, medium size computer, energetical automatic
optimization may be realized, which takes into account the
economic consequences of the power system transient conditions
and of its availability, and also the changes in production costs
and efficienciés during operation.

The optimum system control referring to the whole power
system does not make superfluous the optimization of the indivi-
dual control circuits, which may be considered partly to be
autonomous. Reference is made here, for example, to the control
of coal pulverizers, which may be controlled directly by a
continuous analyser of ash, assuring the given fuel quantity as a
primary condition. As against the non-interacting control
systems suggested recently by many authors, installing fixed
matrix connections into the control circuits considered previ-
ously autonomous, we think to be rather practicable such semi-
autonomous adaptive circuits, as the rigid functional connec-
tions give suitable results only under perfectly steady-state
conditions (e.g. time constants), this condition being chiefly
realized with boilers.

In the course of the dispatcher control automization, the
question arose to what extent the dispatcher work may be
mechanized in addition to chart preparation and beyond the
tasks of the continuous economic load distribution. This idea
is supported by the fact that the switching, manipulating and
failure suppression activity of the dispatcher control is motivated
by subjective factors; extremely hazardous decisions must be
made in a short time, and the presence of mind, momentary
mood and luck of the dispatcher influence considerably his
activity in this field. Mechanization of the task is complicated
by the fact that the methods of judgement of the situations were
partly subjective ones, based on the experiences and intuitive

improvization capabilities of the dispatcher, as there is no’

possibility for accurate analysis in the case of rapid decisions.
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Accordingly, mechanization of the dispatcher control permits-

the application in practice of cybernetics in a narrow sense, and
the adoption of recognition and heuristic search.

In the course of elaborating the problem the method of
approximating the tasks step by step has been chosen, selecting
a single logical task of the dispatcher control. It is seen, taking
into account the present machine capacities, that the question
arises as to how this task can be elaborated and, after solving
this, the kind of further tasks that remain for the dispatcher to
solve. By this one can remove from the total dispatcher’s activity
the parts having not been exactly formulated up to now and
examine their weight in the total work and how to handle them.
In any case, as more tasks-are mechanized and separated from
the dispatcher’s control, the more time and possibility remain
for accomplishing the part demanding the most complicated
intellectual activity. ‘

As a first task, estimation of the possible circuit diagram was
examined from the overloading point of view. Similar calcula-
tions (load flow programmes in the network) have been made
regularly for more than a decade on digital machines, but this
was the first digital computer application in the power systems.
At the same time the methods complying with computer re-
quirements are not fully practicable for automatic control
purposes, due to their other demands. Here the analogy. of
differences between the measuring instruments and the sensing
elements of automatic control must be referred to. In sensing
systems, however, detecting identical quantities using identical
physical principles as measuring instruments the difference in
their field of application, demands different approaches. For
automatic control we have confined ourselves to a load flow
computing method of an accuracy of 5-8 per cent, but being
most rapid, providing the results for a 40 node network on a
medium size machine in less than 1 sec. The storage capacity
demanded is about 1,000 words over the programme. Otherwise
the method was a generalization of the well-known method of
current distribution factors and imaginary loads, reducing the
evaluation of a network of n nodes to the solution of a complex,
linear equation system of about i unknowns, if the calculated
network differs from a basic configuration with / lines.

The next step was the determination of the optimum connec-
tion configuration of the connection manipulations (main-
tenance, disturbance) tested from a safety point of view. When
elaborating the programme, the theory of games has been
adopted, interpreting the dispatcher’s work as a two-step game
of two persons, a game against nature. The pure strategiés of
one of the players, i.e. the dispatcher, are the available connec-
tion manipulations, while those of the other player, that is,
the nature, are the disturbances imaginable in the system. The
game is two-stepped, first a favourable main network connection
diagram is selected by the dispatcher, not knowing yet what kind
of disturbances may arise during the validity of this circuit
diagram. After this the nature ‘moves’, a possible disturbance
ensues, and as a last step, a changeover strategy is chosen by the
dispatcher which reduces the power limitation produced by the
disturbance to the minimum. To adopt the minimax principle,
a suitable pay-off criterion had to be found by which the elements
of the game matrix may be filled and the optimal strategy may
be evaluated. This criterion is established on the basis of the
damage caused by the possible power outage and the weight
functions formed by the outage probability. On the basis of
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several considerations, the outage probability p is not directly
applied for weighting, but this is done, however, with the
relation

k==

so the criterion of the optimal game is:

. 1
min{ max W; K, ; ———
: (j ! ”1—mn)
where W,; is the power outage caused by the ith dispatcher’s
strategy and the jth disturbance possibility (kWh), K;; is the
specific damage due to the above disturbance (S/kWh), and
p; is the probability of the jth disturbance.

The machine time for analysing a complete situation in the
case of a medium size machine and of a starting position deviating
not from the normal one but at most with the state of the four
lines is about 4-5 min for a 40 node network, its storage demand
being without programme about 800-1,000 words.

The availability of the network, and that of the power
stations, may be considered along similar lines making use of
the suggestions mentioned earlier, thus extending further the
possibility of the objective evaluation of the network configura-
tion. The programme evaluating the manipulations may include
the data referring also to the stability. As examination of the
stability conditions of a single situation demands considerable
time even by a computer, the application of the pre-calcu-
lated, stored stability data, as well as the continuous proce-
ssing of the data of the stability reserve indicators, are referred
to here.

Control of the dispatcher by computers would not make
superfluous the application of less complicated network auto-
matics, such as protections, overswitch and backswitch auto-
matics, etc.

It must be emphasized that in the field of the present sum-
marizing report on the authors’ developments and ideas, these
are up to now mainly theoretical achievements calculated for a
mathematical model, prepared for simulation on a digital com-
puter. Their expediency and adaptability must be decided, how-
ever, by practice, for many technological and other realization
difficulties must be overcome.
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The Problems, Operation and Calculation of a New Coinponent
to be Applied in Certain Control Circuits

0. BENEDIKT —~f/”M/

Introduction

The object of the paper is to describe the physical operation of
a new component for the stabilization of oscillatory processes
arising in certain control circuits, as well as to give account of a
new practical method for calculating the parameters of this
component. The component inspires a lively scientific interest,
not merely because it can stabilize most effectively an otherwise
entirely unstable control circuit in certain cases, but also from
a theoretical respect, since there is no need to connect it to the
external circuit of the machine. Moreover, without increasing
the size of the machine to be stabilized, an effect is realized which
up to now could be attained only by a relatively large set con-
sisting of auxiliary devices, with an increase in machine size.

The circuits to be stabilized by the component in question
are control circuits, in which the newly developed electrical
amplifier ‘autodyne’ is applied to maintain the load current at a
constant value (e.g. for the automatic charging of accumulator
batteries, for automatic welding, for supplying motors in
series, etc.).

In his paper ‘The New Electrical Amplifier’, presented at
the 1st IFAC Congress the author gave a general report on the
theoretical bases, the main application field and control circuit
connections of the autodyne, mentioning the autodyne for the
above purpose only in short. Csaki, Fekete and Borka, however,
referred to the experimental test of another kind of autodyne,
namely an autodyne maintaining the output voltage constant.

The following shows in detail the characteristics of the
transient phenomena in the autodyne maintaining the load
current, as the task and problems of the new stabilizing com-
ponent of the control circuit of this machine may be understood
only in this relation.

Comparison of the Stability Criteria of the Autodynes Controlling
Voltage and Current

The operation of all autodynes working as amplifiers is based,
independently of their concrete connection, upon the physical
phenomenon that the spatial fundamental harmonic ¢, s of the
main flux of a converter (Figure 1) may theoretically take up
any spatial position (in a different state of equilibrium) with
a suitable arrangement of the split poles and a synchronous
speed n, of the rotor. At the same time, this flux is produced by
a magnetizing excitation, the direction of which is set auto-
matically to the flux direction. (Regarding the problems dealt
with below, this magnetizing excitation is of no practical
importance and therefore is not shown in the figures.) In con-
sequence, with the appearance of a small positive, or negative
excitation of + A AW’ in the control winding W, the control

torque F A M produced by this excitation and the main flux,
and also the small rotor lag or lead caused by the main flux,
change considerably the spatial position of the flux (;res. At .
the same time, the internal phase voltage U, being in
equilibrium with the terminal voltage vector E,. can be
displaced between the limits of f# = 0 and § = 180°, while the
output voltage U is varying continuously between the limits
+ Umax. If the output voltage U of the amplifier realized, or
another control circuit parameter depending on U, is fed back
negatively, then the parameter may be maintained automatically
at a constant value. For example in Figure 1 an autodyne is
shown stabilizing the output voltage U to the value of the con-
trol voltage U,.

In the publications of the USSR Academy of Sciences
Technical Section, Energetics and Automatics, No. 2., 1962, the
author examined the transient phenomenon taking place in the
autodyne controlling voltage (Figure 1), using a different
simplifying supposition and neglecting the relatively small rotor

. resistances.

The characteristic equation of the control circuit, using the
operator calculus, yields

A +pB' +p*C'+p*D'=0 6))

As a stability criterion, the following relation is obtained:

WC4(C C2n0+x¢)
ar,CyC, As

Wy CaCo

1= arC1C2

2

The quantities 4, B’, C’', D', G, Cy, C, and C6 are constants
depending on the machine dimensions.

The physical meaning of these two formulas may be illustrated
briefly as follows. Suppose the synchronous speed #, of the rotor
is decreased to a value » hardly deviating from n, (Figure 2), as
a consequence of which the vectors @, and Ej rotate by
a small angle 4 § anticlockwise. Meanwhile U is increased by
4 U, and a control current 4 I, arises, producing an excitation
A A W' downwards. The resulting accelerating torque 4 M is
greatest when the vectors @, and Ejpe reach their dotted
upper limit position. At the central position of the two vectors
shown by the full line 4 § = 0. Evidently, 4 A’ W’ causes the
vectors to oscillate freely around their central position, and
such oscillations would appear if the values B’ and D’ in eqn (1)
were equal to zero.

Nevertheless, in addition to the voltage 4 U, the control
winding is effected also by the voltage induced by the increment
of the direct axis component 4 ¢," of the flux ¢, (resulting
from the rotation of @ res), which lags the increment 4 ¢, by 90°.
The additional control current being formed evidently establishes
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an excitation upwards when ¢, has returned to its central
position, thus the excitation has a damping effect. This effect is
represented in eqn (1) by the damping term p B’. The unit of
the stabilizing flux 4 ¢," corresponds to the left-hand side of
eqn (2) (the right-hand side is, for the time being, zero).

The voltages induced in the control winding by the fluxes
proportional to the current A I, must now be considered.

The excitation 4 A W' produced by 4 I,, being proportional
to it and arising-in the rotor winding, is short-circuited by the
a.c. network, since according to the converter theory, all
excitation arising in-addition to the magnetizing excitation is
cancelled out almost completely as a consequence of the com-
pensating current 4 ,'. Nevertheless, because of the leakage
reactance x of the phase winding, the excitation of the current
A1 is smaller by few per cent than 4 4 W', and consequently
a small flux difference 4 ¢, appears. As this, compared with the
flux 4 ¢,’, is of opposite direction, it induces a current in the
control winding, which reduces the damping effect of the current
induced by the flux 4 ¢,’. At the right-hand side of egn (2) the
second term, propqrtional to x4, corresponds to the flux A ¢,

In addition to this, the leakage flux 4 ¢, must also be con-
sidered. This is caused by the current 4 I, which passes through
the control winding. To this corresponds the first term, propor-
tional to the leakage factor s, at the right-hand side of eqn (2),
which proves that the stability degree is now even lower. The
effect of fluxes 4 ¢, and 4 ¢, is represented in eqn (1) by the
term D' p®

The right-hand side of eqn (2) is proportional to the expres-
sion W,/a - r,; where W, is the number of turns of the control
winding, @ is the number of parallel branches of the control

winding, and r, is the resistance of this circuit. This expression

is obviously proportional to the cross section of one turn of the
control winding. The greater this is the greater is the increment
of the current 4 I, corresponding to the angle A B, as well as
the value of 4 A W and, evidently, the steady-state control
accuracy, also. On the other hand, the value 4 ¢, + 4 ¢, is
increasing together with 4 I,. However, owing to the fact that
at a given value of 4 B, 4 ¢, remains constant, it may be con-
cluded physically—as shown mathematically by eqn (2)—that
as the cross section increases, the stability is reduced. If the sum
A ¢, + A ¢, were equal to A¢,’, then obviously no voltage
would be induced in the control winding and free oscillations
would again arise, while the two sides of eqn (2) would be equal.

In practice this never occurs, as a satisfactory control accur-
acy may be realized by small values of W,/a-r,, at which the
stability limit is very great.

The case is quite different with an autodyne used for control-
ling the load current to a constant value, e.g. in spite of the
variation in the internal voltage E4 of an accumulator (Figure 3).
To demonstrate this question theoretically in a more simple way,
compare Figure 3 with Figure 1.

At first sight the difference is great. Actually, to the winding
W’ (working in this case instead of W,) the loading current / is
fed back, not the voltage U. Further, in this winding, not two
voltages (U and U,), but two excitations are compared, that is,
the excitation I W’ with the excitation i, W,, of the continuously
controllable regulating current i,,. Consequently, instead of the
law U = U, the law I = i, W,/W’ is valid here

However, examining the problem of the transient phenomena,
an important analogy of principle may be observed between the
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two connections at once, as in this question the magnitude of the
current 7, is practically of no importance and it may be made
equal to zero. In this case, however, the connection of Figure 3
does not differ in any respect from that of Figure 1, as E4 may be
regarded as the given control voltage, while the control winding
is connected to E4 and to the voltage U. In consequence the
factors illustrated in Figure 2, affecting the stability, may be
distinguished also in the autodyne shown in Figure 3 and if
A¢) = A¢, + A¢,, free oscillations also arise here. Moreover,
it may be seen that in this case the presence of winding W, may
not practically cause any deviation either, as the fluxes mentioned
pass also through this winding and so to the latter, and if the
fluxes balance each other mutually, no voltage is induced.
Accordingly under the same conditions as have produced eqn (2),
a stability criterion corresponding theoretically to eqn (2) must
also be obtained. From this, however, follows the interesting
fact mentioned below.

While, in the case of Figure 2, the control winding forms a
shunt winding, and consequently the cross section of its turns is
very small; with an autodyne maintaining its load current at a
constant value, the cross section is very large, because the W’ is
series connected. This means, however, that the right-hand side
of eqn (2) is, in this case, incomparably greater, i.e., there is an
actual danger of oscillations arising. This has in fact occurred
in practice at an early stage in the development of the autodynes.

1t is to be considered that (compared with Figure 2) in the
case of Figure 3 the resistance of the rotor may not be neglected
with respect to the actually small resistance of winding W',
As the current 4 I must now overcome the resistance of winding
W', in addition to series-connected resistance X R, the effect of
W,la - r, will be somewhat smaller. It is clear, however, that if
this term is replaced by W'/X R, being physically analogous,
the latter will still be incomparably greater, than W,/a - r, in
the case of the autodyne controlling its output voltage to a
constant value. So it is proved that the autodyne shown in
Figure 3 can perform its task only if provision is made for its
stability by some supplementary means.

Problems Concerning the Development of a Suitable Stabilizing
Device and the Way Leading to the Solution

The auxiliary devices for stabilizing circuits, in which the
loading current is to be maintained at a constant value, are
theoretically known. This is obtained as follows (Figure 4).

Assume the autodyne operates just at the limit of lability,
as a consequence of which sinusoidal currents 4 I are super-
posed on the current I. These would induce sinusoidal voltages
in the transformer 7, the primary coil of which is series connected
with the load circuit. If the capacity of this voltage is increased
by the amplifier 4 and the stabilizing winding W, is joined to
windings W, and W’ of Figure 3, with a suitable connection
there arises in W’ an excitation leading in time with regard to the
excitation 4 I W' and proportional to it. In this way effect of
fluxes 4 ¢, -+ 4 ¢, could be theoretically reduced by well-known
means.

Nevertheless, this arrangement has several great disadvant-
ages. The additional winding increases the machine dimensions.
Further, through the application of auxiliary devices, the service
safety is reduced. Tt must also be taken into account that the-
dimensions of the transformer T are considerably increased,
because its primary coil must be dimensioned for the total
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load current I and saturation of the iron core of the transformer

by the load current I must be avoided. The other stabilizing
devices of the classical control technique to be adopted here
have similar disadvantages.

Accordingly, it has become essential to seek a novel device
for additional stabilization, permitting elimination of the
disadvantages mentioned above.

Actually, it has been proved that the physical processes
corresponding to Figure 4 may be realized without the applica-
tion of a transformer or amplifier, while the required additional
winding may be placed in the machine in a way which does not
reduce the useful winding area.

This problem is to be solved step by step as follows. (1) In
order to spare the primary coil and flux of the transformer 7,
instead of this flux another existing flux, already in theé autodyne
and being proportional to the current 4 I, is applied to produce
a current in the winding to be placed in the autodyne, playing
the role of the secondary coil. This current must lag behind 4 I.
(2) To amplify the effect of this current, a generated voltage
proportional to it is established in the autodyne. (3) To eliminate
also winding W,, this generated voltage is established in the
winding W’ itself, that is, between the main brushes.

Meanwhile, two difficult problems arise. First, (3) obviously
necessitates that the winding sought should operate in the direct
axis of the autodyne. But then it is inductively coupled with the
winding W’, which eliminates the effect wanted, i.e. only a single
suitable additional generated voltage should affect this winding.
On the other hand, the following problem arises. If the new
winding is placed in the direct axis, then the fluxes 4 ¢,, 4 ¢,,
being proportional to current 4 I, will pass through it, and also
the flux 4 ¢,’. ‘

It is already known, that free oscillations arise, when the
sum of these fluxes is zero, in which case no current is induced
in the winding, and therefore the desired effect does not arise at
the occurrence of the free oscillations. From this it follows that
the tested winding should fulfil the following, apparently con-
tradictory conditions: on the one hand, the magnetic effect of
the current arising in it should fall into the direct axis of the
machine, but, on the other hand, the direct axis flux 4 ¢,
should not be enclosed by the winding, consequently, the flux
enclosed by it and being proportional to the current 4 I must
not exercise any effect in the direction of the direct axis.

This problem may be solved by a special shape of the tested
winding and also by the winding having a particular physical
function.

Physical Operation and Method of Calculation of the
Stabilizing Winding

In view of the fact that the autodynes as Figures I and 3 have
a practically analogous behaviour regarding the transient
phenomena, the following consideration should be valid also
in the case shown in Figure 1. Therefore, instead of 4 I and W',
the physically similar symbols A 7, and W, shall be applied.

The stabilizing winding, as shown in Figure 5, has the shape
of a figure eight and is placed, according to Figure 6, to the pole
shoes of the half-pole I and II belonging to the pole pitch.
Thus the condition that they should not be inductively coupled
with the winding W,, is fulfilled. The condition, that the flux,
proportional to the current 4 I, and enclosed by the winding,
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does not exert any effect in the direct axis of the machine, may
be fulfilled on the basis of the following consideration.

As is known, the compensation current 4 I,’, corresponding
to the excitation 4 I, W,, is proportional to the current 4 I,.
In the airgaps below the half-poles the induction of the flux
produced by A I’ corresponds evidently, within a pole pitch z,,
to the ordinates of curve 1-2-3-4-5-6-7-8-9-10 in Figure 7.

If, everywhere, constant inductions of the flux of the same
magnitude are represented with the aid of line 1-11-12-13—5-
6-14-15-16-10, it becomes apparent that the area 12-3-4-13-12
is equal to the difference of areas 2-11-17-2 and 17-3-12-17.
As a result of this, the part of the area 3-4-13-12-3 of the flux
proportional to A I, as shown in Figure 5, enters the half-pole
through one half of the stabilizing winding and leaves on the
side of its other half, that is, it is twofold inductively coupled
with this coil. Obviously, the situation is just the same in the
other half-poles. If the total flux being established is denoted by
A ¢4 and the ordinates of curves 2-4, 7-9 by 4 B(x), then,
adopting the above symbols

T

x=-L(1+a)
4 Cs-AI}
Adpg=K 2szB(@dx——i§—i (3)-
x=Tp
3
x=15(1+a)
4 Cs- Al :
and lj'AB(x)dx=—52—1 4
x=%(1fa)

where [ is the active length, C; 4 I’ is the flux produced by
A I, and K is the factor considering the saturation. (The cause
of C; being constant in spite of the saturation is explained in the
paper mentioned previously.)

It follows from eqn (3) and (4) that

1 o
Ay TG caar )
8 AL 2
s1nT
On the other hand
A=K, AW, (6)

where, as is known, K is a constant depending on x,. The flux
A ¢g induces a current of '

_ 1 ddgs
Trg  dt

Al Q)

in the stabilizing winding, where ry is the resistance of the winding.
For the sake of simplicity, the inducing effect of the stray
magnetic field of the winding is neglected here. As shown by
theory and practice, this is permissible, because the frequency of
the free oscillations is insignificant.

Thus, up to now the secondary coil of the transformer T
has been replaced by a winding corresponding to Figure 5,
while the transformer primary coil and its iron core become
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superfluous. The production of the generated voltage mentioned.

in (3) between the main brushes of the rotor, will be attempted
with the aid of current 4 I,

At first sight this seems to be impossible. Namely, the
excitation 4 6, produced by current 4 I is obviously

46,= A1, (8)

that is, of the same magnitude but of opposite direction in the
two half-parts of the figure-of-eight winding. Thus, the excita-
tion is divided on one pole pitch according to the line 15-1-2-3-
4-5-6-7-8-9-10-11-12-13-14-17 of Figure 8. As the induction
4 ng established by 4 6, is distributed practically in a similar
way, and as a result of this the total flux arising on one pole
pitch yields

A¢g=f 7 46,dx=0 ©)

x=0

it may be concluded that the flux produced by the current 4 Iy
of the winding cannot produce the generated voltage required
in the d.c. winding of the rotor.

The problem can be solved if it is considered that the excita-
tion 4 6, must have a positive fundamental harmonic in the
case of the distribution in Figure 8, because the positive areas
4-5-6-7 and 8-9-10-11 are closer to the central line than the
negative areas 1-2-3-4 and 11-12-13-14. The harmonic analysis
proves that the amplitude value of the fundamental harmonic

40, is
40,, = 46, \/2(1 cos =% “)

Accordingly, this excitation has an inducing effect on the phase
winding of the rotor and consequently is practically eliminated
by a compensating current 4 I,,, because 4 I, is proportional
to the excitation, 4 6,, having produced it, i.e.

AIgl =K2A0g1

(10)

(11)

where K, is another constant depending on the value of x,. The
induction produced by the excitation of sinusoidal distribution
of this current 4 I, is evidently distributed in the same way as
the induction produced by the excitation of the current 4 L',
but in the opposite direction. Consequently, the integral of this
induction taken within the section 7, establishes the flux formed
by the current 4 I,, which ‘produces the generated voltage
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wanted between the main brushes, the latter operating opposite
to the voltage induced by 4 ¢,, and 4 ¢, in W,,. Considering the
fact that this voltage is proportional to 4 I, as well as eqgn (6),
(5), (N, 8), (10) and (11), the generated voltage may be made
equal to
: Ky 41,(p)
p o s
g

where Kj is constant. On the other hand, the voltage produced
by the fluxes 4 ¢, and 4 ¢, is obtained as p D+ A Iy(p), where D
is constant. Performing the substitution

Ks=Kg(Cy ngo (12)

where w is the angular frequency of the rotor, 0 is the moment
of inertia of the rotor, and p,, is the number of pairs of poles, the
characteristic equaton is, after all

A’+pB’+p2‘C'+p3-(D’—£f—§)=0 13)
8
The stability criterion:
C4 (C C2n0 + x¢) . C4C6 K’g’ 9
1 ry[ 5 C C2 4 C1C2 —rs_ (14)

where K"’ is a constant, in which W, does not figure. It is recog-
nized that the stabilizing winding is actually in possession of the
effect demanded, as for instance the term comprising p3,
reducing the stability and, in an analogous way, the right-hand
side of eqn (14) may be decreased most effectively, if the cross
section of the winding, i.e. 1/rg, is suitably inCreased. With
extremely high values of W), the first term of the right-hand side
is increased and there is no place in the machine for giving a
cross section so large to the stabilizing winding that would
suffice for a sensible decrease of the first term. Therefore, in the
cases illustrated in Figure 1, that is, in the autodyne controlling
the voltage to a constant value, this winding has not been
applied. Nevertheless, in the cases of Figure 3, where the value W'
taking the place of W, is small, calculation shows that the right-
hand side of eqn (14) will be zero with such small cross sections,
which (with the stabilizing winding set on the pole shoes) has
practically no effect upon the machine dimensions.

The autodyne of serial production, provided with such a
winding and maintaining the load current at a constant value,
would operate without the above- mentioned winding far within
the unstable range and prove itself entirely stable in practice.
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Optimalization of Non-linear Random Control Processes

R. KULIKOWSKI*

Introduction

In the theory of optimum control systems it is usually as-
sumed that the plant differential or operator equations are
completely known to the controller. In such cases, through the
application of known optimalization techniques, the optimum
control signal can be derived by an analogue or digital computer
and applied to the plant during any time interval. However,
there are known systems such as chemical plants and aircraft
whose differential equations are not known completely to the
controller because of environmental changes, ageing, etc. In
many systems of this kind the best that can be accomplished is to
construct a multistage optimalizing process which converges to
the optimum control. All the necessary information for the
construction of such a process can be obtained by observing
outputs of the plant at every stage for known inputs. Applying
this approach to non-linear, zero-memory plants, the gradient
of the performance measure can be determined and known
iteration methods, based on the gradient concept (such as
steepest descent, non-linear programming, contracting iterations,
Newton method, etc.) can be applied?.

If it is desired to extend these methods for the case of non-
linear and random plants having memory (i.e., possessing
inertial elements), with the object of obtaining a stable opti-
malizing process, one should first define and determine ex-
perimentally the generalized gradient of the performance measure
and then construct the convergent iteration process. It will be
shown that these problems can be solved successfully, at least in
the case of certain classes of non-linear, inertial, random plants,
by using some concepts of non-linear and probabilistic functional
analysis. However, since the writer realizes that one of the main
purposes of a short technical paper is to present the arguments
and results in a form which is understandable for the majority
of engineers, an attempt has been made to avoid abstract
formulations. The more delicate, formal questions are therefore
explained in Remarks I, II, III which can be omitted during the
first reading.

. Assumptions

(1) It will be assumed that the controller generates signals
x (f) which may be subject to certain constraints, such as
volume or energy constraints, i. €.

T
J |x (1)j” d1< L=const. where p=1,2 6))
0
or amplitude constraints, i.e.

max |x (1)] <M =const.etc. " . @)

* This research was partially supported by the National Science -

Foundation under Grant NSFG-14514.

The controller can observe the output-y (¢) of the plant for
every x (¢) applied to the input by the feedback loop (see
Figure I).

(2) We shall also assume that the form of the output-input
relation of the controlled system can be described with sufficient

accuracy by a non-linear, twice differentiable, integral operator.
This operator for example, may be of the polynomial type:. -

y=A(x)=A, (1)

+ i fT...JTki(t;tl ety x(ty) ... x(r)dr, ...dr;  (3)

i=1

where the kernels k; and the function A, (f) are generally un-
known to the controller. .

The differential dA4 (x, k) of the operator A (x), which is an
extension of the usual concept of the differential of a function,
can be defined as

44 G ) =lim (AT )+ (0] AT 0]
y=0

=C%A[x (t)+yh(t)]y=§ C))

where # (f) is an arbitrary function subject to the same constraints
as x (). We assume also that it is possible to determine the
approximate value of (4) experimentally by observing the
outputs of the plant for x () and x (¥) + yk () and computing3

ABORO]-ABOD AR O

where y is a sufficiently small number.
(3) It is assumed that a performance measure F (x) is given

T
FCx):J‘O G[x,y, ,Va] dt (6)

where G [x, y, y;] is a known, twice differentiable function of the
arguments x, y.

As an example, consider a chemical plant (for.instance, a
reactor, distillation column, etc.) described by the positive
operator A4 (x) [which is non-negative for any x (#)]. The amount
of steam, fuel or electrical energy delivered to the plant within the
time interval [0, T'] will be equal to jg |x (| ? dt, where p =1
or 2. The output product obtained in time 7 from the plant will
be jOT A (x) di. Then as the cost of running the plant in the time
T, we can take the performance expression

Fx)=1, J :Ix(t)l"dt—l; LTA(x)dt 0
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where 4,, A, = positive coefficients which express the cost in the
accepted currency.

As the next example consideration can be given to an
autopilot-controller, which minimizes the integral error between
the desired y,; (Y) and the actual y = A4 (x) path angle of an
aircraft:

+T '
F(>€)=/1f0 w(t)|y.(H)— A(x)" dt (®)
where w (f) = the given weighting function and x () is subject
to the amplitude or integral constraints (2) or (1).

In the case where we want to minimize the final deflection
e(T) = y4(T) — y (T) and its derivatives ¢ (9|, r, i.e., when

©)

F(x)=/1i=io/1i ad—:—is(t)

the weighting function

t=T

w(t)= '=io (=16 (T—1t) and p=1

should be substituted into (8). The problem becomes more
complicated when one wants to minimize the time 7T subject to
the constraints ¢® (T) = 0, and (1) or (2).

(4) In the general case A4 (x) may be a random operator, i.e.,
for the same x (¢) it may be the case that y () = A(x) is a
random function. Therefore, in the performance measures (7),
(8), (9) the expected values will be assumed, i.e. E {4 (x)}
instead of A4 (x).

In many cases y; (¢) is not known a priori and the transient
term A, () caused by the non-zero initial conditions of 4 (x) is
not known as well. Therefore in the case of (8), (9) it will be
assumed that the function yg (f) — A4, (f) can be predicted so
that it will be known, at least approximately, in the interval
[0, T]1 and A4 (x) will not depend on the initial conditions. In the
case of (7) the output y (¢) is the sum of the processes due to
x (f) acting within [0, 7] and x (¢) acting in the past, and this
last term contributes to the output. :

Now the goal can be formulated, and it is necessary to find a
control signal x (z) which will minimize the performance
measure F(x). In order to solve this problem one has to de-
termine the conditions of optimality and construct the opti-
malizing process which will converge to the best x (r).

. Remark I. Speaking more precisely, one wants to minimize
the twice-weakly differentiable functional F (x), determined on
the open or closed sphere of L? [0, T'] space

T Up
Ieli={] o e "<r. 12
0

The norm |[x|| in the space L should be defined as the
so-called ‘essential maximum’ or

Hx||=inf{ sup ]x{t)l}, mes E=0

E (te[0,T1-E
which is, roughly, equivalent to. (2). The functional (9) should
be regarded as the so-called Schwartz distribution or generalized

!
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function. The 6® (¥) functions can then be defined as the limits-

of weakly converging linear functionals.

The concept of a random operator is based on the notion of
the so-called generalized random variable?. Usually, in control
theory, random phenomena are described by random numbers
or stochastic processes, which are, roughly, random numbers for
any fixed time moments. It is known that the random numbers
can be defined in the axiomatic way as the mapping of the space
of events into the space of real numbers. It is possible to extend
the notion' of random numbers to the generalized random
variable, which is a Borel measurable mapping of the space of
events into some topological or metric space (in our case only,
a sphere of L? [0, T] space). More precisely?, let (£2, S) be a
measurable space and X a non-empty metric space with the
g-algebra Z of all Borel subsets of the space X. Then the mapping
V of the space {2 into X is called a generalized random variable
if the inverse image under the mapping ¥ of each Borel set B
belongs to the c-algebra S, or in symbols, if {[w: V (w) € B]
:BeZ} c S.

The random operator, which can be denoted by 4 (w, x),
w € £, can be defined as the operator which for every fixed x
is a generalized random variable. .

The expected value of 4 (w, x) can be defined as the Bochner
integral over the space £2:

E {A(x)} A=f A(w, x)du(w)

where u is the probability measure, i.e. a non-negative, count-
able, additive, real set function with the property u (£2) = 1. It
is assumed that E {4} exists and the expectation sign will be
treated as a linear operator acting from the random variable
space into the output signal space Y.

Conditions of Optimality

When x (#) is optimum, any variation vk (£) of x () should
not decrease F (x). For example, taking G [x, y, y4] = Ax® (¢)
— g [y, y4] one can express this condition in the form:

dF(x,h)=d%F[x+yh]|y=o
T o Tdg d ‘
_2/1f0 x(t)n(t)dt—f0 @[y,ya]d—yfl[xwh] |,=o0dt

=2szx(t)h(z)d:—‘JTg'[y,y,,]dA(x,h)dt=0. (10)
0 0

assuming that the second differential d?/dy? F [x + yhl|,—, is
positive for all 7 (¢).

It is more convenient to formulate this condition in a form
which does not depend upon the arbitrary function 4 (¢). If an
example is taken of the operator

A(x)=jrk1(t~r)[ka2(‘c—’cl)x(rl)dtl]ndr (11)
0 0

which has the following differential

dA(x, h)=nka1(t—r)[frkz(‘r—‘cl)x(‘cl)drl]l_lJrkz(t—rl)h(rl)d‘cldt : 12)
0 0

0
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one can substitute (12) into (10) and by interchanging the
integration order there is obtained

dF (x, h) =J ' h(f)dt{2x()—dA* (x,g)}=0

[ Em(13) "
Then it can be observed that dF (x, &) = 0 for every A (¢) if
S(x)=22x()—dA*(x,g)=0 (14)

where

The operator f(x) will be called the gradient of F(x),
[ f(x) = grad F (x)] because it can be regarded as a generaliza-
tion of the notion of gradient as commonly thought of in
analytic geometry.

When the gradient f (x) of F(x) in the neighbourhood of a
certain x (f) = x4 (¢) is known, it is possible t0 express the
decrease of F(x) along the trajectory x, (f) + « [x () — xo (1]
(where « is changing from « = 0 up to &« = 1) by the mean
value

f’(xo,X)=L daf {xo (1) + [x (1) — o ()]}

of the gradient along this trajectory. Indeed, one obtains (see
Remark II) the following inequality :

[F (x0)—F ()|

T _ ) e T 1/p
SU [f(xo,x)lth} U ]xo(t)—x(t)|"dt}
o

which becomes an equality when the two arguments f (x5 X)
and x, (£) — x (f) are adjuncts, i.e.

%0 () —x (1)]? = const. | £ (xo, ¥)|?,

Then from (15) it follows that the best change or variation of the
control signal should be subordinate to the mean gradient of
performance measure.

(15)

pi+gTi=1

Remark II. 1t is assumed that the weak differential dF (x, #)

of F(x) is a linear functional with respect to 4 and therefore it
can be written in the scalar product form dF (x, &) = [ f(x), 4],
where h, x € L [0, T, f(x) € L* [0, T].

To prove inequality (15) let us observe that for every number
« € [0, 1] we have .

d -
d_“F[xo‘*'“(x—xo)]=dF[xo+°‘(x_x_o)aX—'xo]

={f[xo+0(x—x0)], x~xo}

Integrating this relation we obtain:

F(x) ——F(xo)=Jv0 {dof[xo+a(x—x0)], (xo—x)}

283/3

written in the form grad F(x) = 0, where ||0]| = 0,% and for the
sufficient condition the following formula is obtained.

. d2F (x, b, )=y (||A|) ||A]|

where y(z) is a non-negative functlon having the property
lim y () =

z—>w
In the case of conditional minimums it must be assumed that

the functionals are strongly differentiable or, what is equivalent,
that the weak differentials are continuous with respect to x%.
When, for instance, it is required to minimize a certain F, (x)
subject to the condition F,(x) = ¢ = const., then, for the
necessary condition, the following equation is obtained?.

grad F, (x)=2Agrad F, (x)

where 1 is a mimber and, in addition, at point x one has
[lgrad F, (x)|| > 0.

In the case when the time T should be minimized subJect to
the constraints &é® (T) =0,i =0, 1, ..., n, in a closed sphere of
L7 10, T space ||x|| < R, the problem,can be solved in two
independent steps:

(1) Fix T and solve the conditional optimalization problem
in an open sphere of L? [0, T'], by mmlmlzmg the functional

F(x) = |[x]| + Z 2:£9 (T), where 4, = constant multipliers

determined by the constraints: @ (T) = 0.

(2) Assuming that the norm of the solution of (1) depends
monotonically on 7, the minimum 7 which satisfies the condition
[|x}| < R is found. -

Optimalizing Processes

When A4 (x) is unknown one cannot solve equation (14) and
find the best x (¢) in the first interval {0, 7’]. But it is sometimes
possible to construct an optimalizing process x,, (¢), n =0, 1,
2, ... in the consecutive intervals [#T, (n + 1) T], which con-
verges to the best control signal. Consider, for example, the
problem of minimizing (8) which is equivalent to the solution of’
the equation y,; (£) — 4 (x) = 0, or the equivalent equation

x=x+k[y,()~AX)]=T(x) (16)
where K isa number This equation can be solved by the iteration
X0 1(O=TIx,], n=0,1,.. a7n

where x,(¢) is an arbitrary function, provided the process
converges, i.e. the integral distance between x,., and x, is
smaller than the distance between x,, and x,,_,

T 1/p
{ . Ixm(t)—xn(t)l"dt}

T ' 1/p
={ |T(xn)—T(xn—1)ipdt}
JO .

. " . . . .. . rT i/p :
Applying the Holder inequality, the ‘maximum principle’ is p
expressed by formula (15). =8 Jo [ (0= (O dt (18).
The necessary condition for a minimum of F(x) can be where f < 1.
¥ Egn (13): . T T o -1 (T . :
: dA™(x,g)=n| k,(t=9[ | ky(x=7)x(zy)dr, ki(ty—7) g (ry)dr de (13)
0 0 0
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Assuming that condition (18) is satisfied for every x (which
sometimes can be accomplished by choosing the proper value of
x) one can construct the sequence of functions x,, (¢) by applying
xo (?) to the plant, observing 4 (x;), and computing x; (£) = x, (¢)
+ x [ys— A (xy)], etc. The smaller § is, the faster this process
converges to the best x (#). Of course, a faster converging
optimalizing process can be constructed if one has more in-
formation about the plant. When the plant changes slowly in
time this information can be collected by observing the outputs
y; = A (x;) for known inputs x; and interpolating the plant
operator by the polynomial operator (3), or equalizing the
differentials of (3) to the differentials of the plant, determined
experimentally. However, one cannot apply this approach in the
case when the plant characteristics vary fast in time, because all
the information collected in the past becomes obsolete in the
future. Therefore it is usually better to use such iteration pro-
cesses which require a minimum amount of information at every
stage of optimalization.

In the case when 4 (x) is a random operator and it is neces-
sary to find the best x (¢) with respect to the expected value, i.e.,
if one wants to solve the equation x = E {T (x)} = S (x), use
can be made of an iteration scheme similar to (17) provided
T (x) satisfies certain additional conditions.

Remark III. Namely?, let y be a separable Banach space and
Ty, T, ... a sequence of weakly independent, weakly equally
distributed continuous random operators mapping the Cartesian
product £2 x x into the space y, i.e.,

{r\ [o: T(w, x)eB]} f[ plo: Ti(w,x)eB;], B;eB,

plo: T (o, x)e B]l=pu[w: T,(w, x)€ B]

and satisfying the conditions:
(a) for every x € y there exists the Bochner integral:

S(x)= L;ﬂ (o, x)dp(w)

(b) there exists a number § < 1 such that for every x;, x, €
andn=1,2...

plo:||T (@, x)~T,(@,x)|| <Bllx —xlI=1 (19

Choosing the generalized random variable ¥, arbitrarily and
defining the mapping V,,, (n = 1, 2, ...) of the space 2 into y
for every we 2 by the formula V, ., (w) =S, [0, V, (®)],
where the mapping S,, of the Cartesian product 2 x y into x is
defined by the formula
n
5,9 = 3 Ti(@.) (20)

Then there exists a unique point x € ¥, such that $ (x) = x and
the sequence of generalized random variables converges strongly,
almost surely (with probability one), to the fixed point Xx.

The assumption (19) of this theorem can be relaxed, as was
shown by Han32, by assuming '

plo:||T,(w,x)— T, (o, %)]| <B|x—x|[]=1
or

Is ()=l <Bllx—x| POV
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The equation (20) can also be substituted by:

kn

‘S (a) x)_ k Z Jn+1(a) x)

where ky, ks ... jy, jo, ... are two sequences of positive integers:

n o
jlzl!jn+1 = Z ki+1’ n=1,2, ciey Z [J./k"]< 0 .
i=1 i=1
Then each realization of the process can be used only once and
the control x is changed less frequently the further one proceeds.
Now check whether a similar iterative approach can be
applied in the more general case of the solution of (14). Assum-
ing that d4* (x, g") satisfies condition (18), one can observe
that this can be accomplished if we can determine experimen-
tally the functions dA* [x,, g’ (x,)], for every function x, (¢)
and g’ (x,). As an example consider the plant described by (11)
forn =1and k, () = ky () = Ofor ¢ < 0. The dlfferentlals 12)
and (13) become linear subordinate operators, i.e.,

dA (x, g')=f k(t—1)g' (r)dr,-
0

T
d4*(x, g) =J k(t—tg' (r)dr
t
where ,
t
k(t)———f ki (t—1)k,(r)dr, k(=0 for t<0
0
Then it is easy to determine the function f* (f) = d4* [x,
g’ ()] from f (f) = d4 [x, g’ (T — 7)], which can be determined

experimentally by reversing in time the input g’ (T'— 7) and
output £ (T — ¢). Indeed,

f*(t)=J k(z—1)g'(r)de

=F_tk(T—z—r)g'(T—t)df=f(T_t)

0

21)

In the case of non-linear operators, e.g. (11) for n > 1, a simi-
lar relation holds only for certain types of non-linear operators.
Assuming, . for example, k; (f) =k, (t) = k(1) = k(—f) and
X0 =d4* [x (), @), f(O) =d4[x (T—71),g (T—7)] it
can be proved that the gradient f* (¥) can be obtained from the
differential dA4 [x, g'] by reversing in time the inputs and
outputs; i.e. f* (f) = f(T — t). In the case when & (¢) is sym-
metrical rather with respect to a certain time instant ¢ = T,
than ¢ = 0, which can be regarded as the delay (or the slope of
phase characteristics of the linear parts of the non-linear oper-
ator) one can find /* (f) in an analogous way from the relation
¥ = f(T + Ty— ). The same approach can also be applied
to plants described by the sum of:

(1) Linear, delayed by T;, operator:

t—=To
j k(t—To—1)x(r)dr, k()=0, t<0

0

(2) Non-linear, delayed by T,, operator: ¢ [x (—T, + 1)1,
where ¢ (x) is a non-linear function.

(3) Non-linear operator of the general type (3) which does

283/4
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not change when substituting t =7+ Ty, —1, 7, =T — 1
and interchanging the integration order.

When not sure whether a particular plant belongs to the
class for which the gradient can be determined by reversing
inputs and outputs, one can test the required property experi-
mentally for every input x (¢), using the following criterion:

fThAOdA[xﬁlhz&ﬂdt
(1]

T
=f h,(HdA4 [x(T—r),hl(T—r)] dt (22)
0
where d4 [x, 4] denotes the reversed in time dA [x, k] operator
and £, (?), hy (f) are arbitrary functions.

It can be proved that for plants which satisfy equation (22)
and for which the operator d4 [x, g’lor 1/y {A [x +yg'1—A4 (x)}
satisfies (18) (which can be tested experimentally) the operator
d*A4 [x, g'] (which is equal to the input-output reversed in
time d4 [x, g']) will also satisfy (18), thus assuring that iteration
processes of the type (17) will converge to the best x (f) when
y — 0 for n — 00.

A more general method of identification of d4* [x, g'] can
be constructed using the relation’

T T
f g ()dA[x, h]de =j h(t)dA*[x, g']dt
0 0

which connects d4 [x, 4] and d4* [x, g'].
Indeed, the numbers

T
m:%f hi()dA* [x,, g']dt, k,i=1,2,...
0

where h; (f) are orthogonal, i.e.

1 {7 =0,i#j
Tfo hy () hy (f)ydt Ry

can be regarded as coefficients of the expansion of the function
dA* [x;, g'] into the series

dA*[x,, g']= 'Zl a; hy(1)

Every coefficient a; can be written as

T .
ai=i‘f g (O dA[xy, h;]de
Tjo

=%J‘T gl (t) lim {A [xk'l' yhl] -4 [xk]} dt

Y

where dA [xy, #;] can be determined experimentally.

By assuming h;t = T (t—1¢;) it is possible to identify
dA* [x;, '] at any desired time moment z,. .

This method, generally speaking, requires infinite time for
complete determination of dA* [x;, g'], k = 1, 2, ... However,
when the orthogonal functions 4; (¢) are properly chosen a few
terms of a; h; (f) can provide a good approximation to d4* [x;,g'].

When the output noise is present a; are random variables.
However it is possible to minimize the corresponding, R.M.S.
error or the so-called average risk using Bayes estimates of a;.
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In this case it is also possible to improve the performance
of the controller by collecting and utilizing all the past informa-
tion about the plant characteristics: d4* [x;, g'].

It should be noted that when the gradient of the performance
measure is determined experimentally many other methods,
such as steepest descent or Newton generalized process, can
also be constructed and applied for the plant optimalization.

Example

For the sake of simplicity consider the non- random plant
described by the operator

t
A(x):j k(t—1)x(t)ydr—e[x()]* (23)
0
and the controller which minimizes the cost (7) for p = 2. The
optimal iteration process corresponding to (14) is

,.+1(t)— 744% [x. (1), 2 (xn)]—-dA* [x, (), 1(1]
1 T

=37 k(t——

1 (7) dr—%xn OrA=1)2, Q4
It can be shown that the plant satisfies (22) and that the process

converges if § = [¢/A] < 1.
T

<d2F(x, h,h)=2(1, +¢ek,) f R (t)dt>0 if )»1+£AZ>0>
]

Substituting x, () = 0 into (24) one gets x; () = 1/24
dA* [0, 1 (H)]. This function can be determined by applying the
step function y 1 (#) to the plant and reversing in time the re-
sponse of the plant, which is multiplied by (24y) 1.

For the succeeding iterations we get

X, ()=x, (t)[l —%+(%>2 - <%>_1]

x; (1)
1+

an
x (1) = lim x, (t) = (25)

n—>w

If & were known the best x () could be found for the first
interval by (25). When it is not known, or is changing, one can
still observe the jumps &/4 - x,,_4 (0), at the beginning of every
interval, and determine the value of . This optimalizing process
is shown in Figure 2 for the case k (f) = xe™™, o = 3/T,
A =1/2, ¢ = 1/4. 1t is interesting to observe that the optimalizing
process assumes the scanning form similar to the scanning in the
so-called extremum controllers. In the general case one cannot
use (25) and in order to find x, (¢) should reverse in time.1/21
dA [x; (T — €), 1 ()]; a procedure which is shown in Figures 3(a) .
and (b). One applies x, (T— ¢) to the plant in the first interval
and x; (T— ) +91(z) in the third interval; then finds [see
Figure 3(b)] 1/2 %y {A; [x, (T — 7) + y1 ()] — Am [x, (T—)]}.
and reverses it in time to obtain x, (¢) etc. In order to utilize all
the infervals we can also apply the same x, (T — 7) in the even
intervals as shown by dotted line in Figure 3(a). When it is
observed that the initial conditions of A (x) at the beginning
of the adjacent intervals are the same (i.e. when the steady-

283/5

Declassified in Part - Sanitized Copy Approved for Release 2013/02/13 : CIA-RDP80T00246A023400480001-9



283 /6

state process is obtained) [see Figure 3(c)] the step signal y1 (¢)
can be applied and the differential d4 [x, (T — ), 1 (z)] can
be determined.

It should be noticed that the number of intervals which are
necessary for the determination of the differentials can be
reduced in the case when one has two identical plants or a
model of the plant, e.g. two chemical reactors or two or more
cylinders of the same combustion engine which are subject to
the same physical conditions. In this case the differential
dA [x,, 1] for every x,, can be determined without the equaliza-
tion of initial conditions. The scanning period T should be as
short as possible, but not shorter than the settling time of the
plant because it would not be possible to determine all the
information contained in the transient process. It should be
observed that in the general case of performance measure (6)

Summary ‘

There are known controlled systems such as chemical plants or aero-
planes whose differential equations are not known completely to the
controller because of environmental changes, ageing, etc. In many
systems of this kind the best which can be accomplished is to construct
a multistage optimalizing process which converges to the optimum
control. In the case of zero-memory, non-linear plants processes of this
kind can be constructed if the gradient of the performance measure
is known or can be determined experimentally. In this paper an exten-
sion of this method is considered for the case of non-linear plants
having memory and changing randomly in time. In the two introductory

Declassified in Part - Sanitized Copy Approved for Release 2013/02/13 : CIA-RDP80T00246A023400480001-9

the determination of the gradient is more complicated because
one must reverse in time also g’ (x,) and in many cases should
predict the desired state y,.
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parts of the paper the assumptions and the riecessary and sufficient
conditions of optimality are formulated. It is shown that at any stage
of optimalization the best change of the input signal should be adjoint
to the mean value of the gradient of the performance measure. Then
an optimalizing process, based on the so-called fixed point theorem,
is constructed. It is shown that for certain classes of non-linear,
random plants all the necessary information about the generalized gra-
dient can be obtained experimentally. As an example an optimalizing
process which minimizes the ‘cost of input energy and maximizes the
output gain of a non-linear plant has been constructed and discussed.
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x(t)
. X
(a) -0 ' Xo
osf T\ — % | X 3
X+ y1(h 3 4
— . t
T ) T 27 3T aT 5T
A(x)
-0}

(b) |
05

Alxo+y1]

:
-7 ) T 2T
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Adaptive Control for a System with a Finite
number of States

S. PASHKOVSKII _ Q&/Q

Introduction

In this article a system with incomplete information concerning
the medium is considered. Problems of this kind are encountered
in engineering, economics, and in systems of mass maintenance.
In the systems of control with incomplete information regarding
the behaviour of the medium, irregular and inaccurate con-
trolling solutions may be adopted, which results in great losses.
In connection with this the development of such an algorithm
for controlling solutions, which would rapidly reduce the number
of inaccurate and costly solutions, represents an important prob-
lem. The system, which will realize this algorithm, may be called
the automatic system of control.

Formulation of Problem

Let U = (uy, uy, ..., u,) be the set of actions at one’s disposal.
These actions can occur only at a certain interval of time. On
each step only one action, u(n) € U, can occur.

Let X* = (xf, x§, ..., x¥) be the set of events, which can be
received by receivers R. The event occurring on the nth step
will be denoted by x*(n).

“Let X = (x;, Xo, ..., x,) be the set of events, which can be
received by receivers L. The event occurring on the nth step will
be denoted by x (7).

In addition there is: the criterion function S (x* (), x(n + 1))
which determines for each step the occurring events. This func-
tion is represented in the form of Table 1.

From Table 1 it follows that events x*(n) = x(n+1) are
the events desired. For any other event the ‘penalty’ represented
by number r must be paid.

Event x* may be regarded as the request received on the
given step, and event x, as the realization of that request. When

Table 1
_ XD
x* (n) X X ceas x,
x,* 0 r r
xp* . ¥ 0 r
X, r r 0

the realization is identical with the request there are no losses.
Otherwise losses r occur.

Receivers R receive events x* from medium A. The pro-
cesses in medium A which have an effect on received events x*
may be described only in the form of a probability. In this par-
ticular problem it was assumed that P (x* =x%) = p* = 1/z
when i = 1,2, 3, ..., z. This means that at each stage any event
x* e X* may occur with an equal probability.

Receivers L receive events x from medium B. The processes
of medium B may be influenced by permissible actions u € U.
Nothing is known about the mechanism of the effect of pro-
cesses of medium B and of adopted action on events x, except
that such an effect does exist. The structure of the mathematical
model which will be used for the finding of a connection be-
tween the adopted action and the receibed event x(n) is re-
presented by the matrix for the probabilities of transition

(P?j)

where pf = P (x;(m)— x;(n+1)) is the probability of occur-
rence of the event x (n+1) = x; when x(n) = x;; u(n) = uy,.
In the problem considered pf are slowly changing unknown
numbers.

i jk=1,2,3,0,z 0

The aim is that, under the above-defined conditions, the
losses obtained should be at a minimum. This is the general aim
of action of an organized system. In this system a stochastic
process takes place and, therefore, the mentioned aim should
be regarded as the realization of a minimum of mean expected
losses. In connection with this the problem of automatic control
is to produce on each step such actions for which the mean ex-
pected losses will be at a minimum.

The block diagram of an organized system is shown in
Figure 1. It may be assumed that in the given system there exists
a series of actions, which solves the basic problem. This series of
actions, for which a minimum of mean expected losses is ob-
tained, will be called the ‘decisive (determinative) strategy’. In
the given system there may be several decisive strategies. With
the change in the operating conditions of the system there is a
change in the decisive strategy.

The information regarding the behaviour of the medium is
incomplete in the system. Therefore it is impossible to determine
directly the decisive stratégy. In connection with this a new, ad-
ditional problem for the automatic control is created. It is, thus,
necessary to control the actions in such a way that the decisive
strategy is obtained with the minimum of additional losses. This
additional problem is reduced to the finding of the decisive
strategy.
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The Solution of the Problem for Known Probabilities pj5

First of all, automatic control for the known probabilities
pz’; will be considered. For this, the algorithm for the working
out of the decisive strategy will be determined.

The mean expected losses will be determined as the losses
- on the Nth step of the path, where N can be as large a number
as desired.

For the determination of the corresponding algorithm the
method of dynamic programming will be used. First, the losses
over one step will be calculated for the following conditions.

(a) The initial condition for the approaching step is known.

x*(n)=x}
x(n)=x;

Under these conditions the mathematical expectation for losses
over a single step is determined by the formula:

v (xp X1 uk)=.21 pEStx;n+)=(1—p)r (2
j=
(b) The initial condition is given in the form:

x(n)=x;

p*¥ =L is the probability of occurrence of any x} € X*. Under
these conditions the mathematical expectation for the losses
over a given step is determined by the formula: .

= ¥ - =" )

From (3) it is seen that for the unknown initial condition, the
mathematical expectation for losses over a step does not depend
on the probabilities of transition p” :

On the basis of the method of dynamic programmmg it is
possible to write down the following equation:

Vn+N (xi (n)a xl* (n)) = min {U (xi» xl*’ uk)

uelU

z z
+ ) 2 > Pi‘chn+N—1 [x;(n+1), xy (n+1)]} @
h=1  j=1
In this equation the events x* (n 4+ 1), x* (n+-2), ..., x* (n +N)
are given only in the form of probability p* = J. Therefore, the

second portion of the right-hand side of eqn (4) may be re-
presented in the form:

ZPh Z

Under these conditions

o1 Gy D, X D) =22 (N =D (9)

Voen(x:(n), x; (")) min {

weelU

From this it is evident that the optimum solution is that
solution which gives the minimum value for the mathematical
expectation of losses over a step and this is clear instinctively.
For the same probability of occurrence of event x;° € U satisfied
over each step, there is no point in planning the actions over
N steps.

} ©)
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On the basis of the given reasoning, the following algorithm
for the operation of the decisive strategy is adopted. For each
step such actions are adopted, for which the mathematical ex-
pectation for step losses is at a minimum.

Solution of Problem for Unknown Values of 5

For unknown probabilities pi-’g- it is impossible to apply the
algorithm determined above. It is necessary to develop a new
algorithm in order to find a decisive strategy. One of the methods
for finding this is to use the information regarding the medium
obtained during the time of operation of the system, and the
gradual approach to the unknown strategy.

The results, obtained during the time of operation of auto-
matic control, will be represented in the form:

",
<-% i jk=1,2,3, ...,z Q)

m;

where mf is the number of adopted actions u;, for the initial
condltlon x; and o5 is the number of obtained transitions from
x;(n) to x; (n+1), for m” experiments.

These results will be used for the determination of unknown
probabilities pi’,‘-. The determination of the the unknown values
of p,, will be made by means of reliable intervals. For each value
of v%/m it is possible to calculate the reliable interval (P ; Pyfy),
where Pk, is the lower limit, and P;% the upper limit, of the
interval.

The limits of intervals may be calculated from known ex-
pressions or they can be obtained from tables?.

The reliable interval determines the set of the hypothetically
possible actual values of p{;?. With a high degree of reliability
it can be assumed that the actual value of probability p{? will be
found in the above-defined interval.

Let the initial condition for the approaching step be:

x*(m)=x
x(n)=x;
. ®).
% (P ilH> P} ilB.
mi

The working out of the decisive strategy represents the general
problem of the system which consists in the control of actions.
From this it follows that for a given initial condition it is neces-
sary to choose action u,€ U for which p} is at a maximum.
However, since one knows only the reliable intervals, it is not
possible to make a direct choice. In connection with this the
following algorithm for the choice of action u; € U, is adopted:
to choose such u;, € U actions for which, for a given initial con-
dition, there is. a hope that probability pj has the maximum
value. This is identical with the method based on the choice of
an action, for which there is a hope that the expected losses
over a single step will be at a minimum.

It should be pointed out that the upper limit of the reliable
interval P when k =1,2,3, ........ , z represents the basis for
the choice of the action. From this it follows that it is necessary to
choose such values of u,, for which the upper limit of the
reliable interval has the maximum value. The result of the action
will either confirm the correctness of choice or, in the case of a
negative result, decrease the upper limit of the interval, which in
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" the following intervals gives the possibility for the choice of

another value for u,. This method guarantees a sufficiently
quick convergence of the actions being chosen towards the
decisive strategy.

Example I—In the given example the set of events X* con-
sists of three events (x', x¥, x¥). Medium B is described by
means of graphs, shown in Figure 2. The results of actions of

- the system are shown on the graph (Figure 3). On this graph the
deviations of the actual actions from the decisive strategy are
seen. This system was investigated.

The results obtained indicate a rapid convergence of the
actions towards the decisive strategy.

5

u(n)

Controlling
medium

Figure 1

y Deviation uy from
decisive strategy

2+ L3

1|4 .
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Example 2—In this example the behaviour.of medium B has
changed. ‘Medium B is represented by the graph of Figure 4.
The results obtained are shown in Figure 5. In this case also, a
rapid convergence towards the sought strategy is obtained,

References

1 FELDBAUM, A. A. Information storage in closed systems of ‘auto-
matic control. Izv. Akad. Nauk SSSR, OTN, Energ. i Avt. 4 (1961)

% YANKO, YA. Mathematical-statistical Tables, 1961 §illl
3 BELLMANN, R. Dynamic Programming. 1957. New York; il
4 Busk, R. and MosTeLLER, F. Stochastic Models for Learning.

1955. §IN

Figure 2

LA

1 2 3 4

5.6 7 8 9101112 3 1% ‘ n

Figure 3

284/3

Declassified in Part - Sanitized Copy Approved for Release 2013/02/13 : CIA-RDP80T00246A023400480001-9



Declassified in Part - Sanitized Copy Approved for Release 2013/02/13 : CIA-RDP80T00246A023400480001-9
284/4

Figure 4
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The Inverse Problem of Integral Square Estimation
of Transient Responses

W. JAROMINEK W

Introduction

This paper is a continuation of the author’s work devoted to the
investigation of automatic control systems by means of deter-
minant indices of stability margin'. One of the principal prob-
blems considered in that reference is the inverse stability
problem of linear systems; that is, the problem of obtaining
expressions enabling the characteristic equation for prescribed
values of the indices of stability margin to be established.

The paper is devoted to the inverse of integral square
estimation of transient responses. The inverse integral square
estimation may be considered to constitute the inverse problem
of quality of a transient process in a linear system. The solution
of this problem is obtained by introducing the notion of spectrum
of the integral square estimation. The expressions obtained
enables the determination, in a unique form, of the transfer
functions corresponding to a prescribed qualitative evalution
according to the integral square estimation of transient responses,
thus being particularly useful for the synthesis of one- and
multi-loop systems.

This work was done under the direction of the Academician
B.N. Petrov to whom the author wishes to express his gratitude
for many valuable remarks and suggestions.

1. The Inverse Stability Problem of Linear Systems

The starting point of the present paper is the inverse stability
problem of linear systems. The integral square estimation
expressed in the form proposed by A.Krasovskii and called, in
what follows, the Krasovskii integral criterion or the Krasovskii
evaluation® 3, is the assumed estimation of quality. For the sake
of comparability of results the normalized Krasovskii evalua-
tions J,,(™ are considered. One has

L =T [F(p)] M

B(p)_bop"+b:p" '+ ... + by 1p+1
A(p) p+ap" '+ .. +a,_p+1

where F(p) is the normalized transfer function and n > m > 0.
The consideration of normalized Krasovskii evaluation and
normalized transfer functions F (p) does not affect the generality
of the assumptions.
It has been shown®s % 3 that the Markov stability criterion
enables a solution of the inverse stability problem of linear
systems to be obtained. The generalized notion of determinant

F(p)= (2)

indices of stability margin has also been introduced!s % 3; the

indices will be denoted by SMI (Stability Margin Indices).

The determination of the values of the coefficients of the
characteristic equation corresponding to arbitrary values of the
SMI is obtained according to the developed method® by inter-
mediate determination of the Markov parameters. To omit the
intermediate stage (the determination and calculation of Markov.
parameters), which is specially convenient in the case of syn-
thesis of linear systems based on the qualitative Krasovskii’s
integral criterion, a new method has been developed for establish-
ing characteristic equations, corresponding to any prescribed
conditions concerning the SMI% 7. It presents a new and
independent solution of the inverse stability problem.

2. Expansion of the Coefficients of the Characteristic Equation
in Terms of SM1

The new solution .of the inverse stability problem consists
in expansion of the coefficients of the characteristic equation
in terms of determinant indices of stability margin and, in par-
ticular cases, in terms of the Hurwitz or Markov determinants
or Routh parameters. As an example of the expansion of the
coefficients of the normalized characteristic equation in terms
of Hurwitz determinants, mention should be made of Table 2,
Reference 1. To generalize the results obtained there to the case
of any degree ‘n’ write the characteristic equation 4, (p) = 0 in
the following form?:

A, (p)=p"+a;, ,p" '+a, ,p"?
o+, P+ tay,, (3)

By considering the sequence of Routh’s matrices correspond-
ing to successive values of the degree n and the equivalent
sequence of Hurwitz matrices, it can be shown that the coefficients
ayn, (k=1,2,...,,n) of the characteristic polynomial (3) can
be expressed in a unique form in terms of Hurwitz determinants’.
In particular, the following expansions of the coefficients a; ,
are obtained in terms of Hurwitz determinants A, = A,

A
al,n=A_0
A, "PACy Aiys
az’"—E+i=Zl Ai Ai+1 (4)
- AT Ay Avrs
3’"_A1 Ao A Ay
Azk—.l Ay " Ayioy Ayioy
P + : : l >
k—1,2k A2k_2 Azk—l izlAzi—z AZi ()

287/1

Declassified in Part - Sanitized Copy Approved for Release 2013/02/13 : CIA-RDP80T00246A023400480001-9



287/2
PP TIRE. TRR. YRS £ Y YRR VT RO
2o ERFLTA Aok \Ar 51 A1 Agiyy
A
a’l "= . 7
i @

Table 1 has been prepared on the basis of eqns (4)—(7).

In the general case the expansion of the coefficients in terms
~ of Hurwitz determinants is expressed by the following algorithm?:

A, 3A, )
ak,n=_ak,n—1+'———A g3, n-2 ®
n 25n—1

where a;;, =1 inthecaseof i=0and0<s <n
a,,= 1 inthecaseof o =0,—1,—2,...
a;; =0 inthecaseof i< Oori> s

»

The expressions for the expansion of the coefficients .
can be most easily obtained by means of the recurrence equations

A, ;A
A(p)=p4; 4 (P)'f'A—kZ“‘k—Ak~2 (» )]
k-20k-1

where A;(p) is a polynomial of degree k¥ and A, = 1 for
I=0,—1,—2,... The recurrence equation (9) holds for
1 < k < n (Reference 7). In particular, inthe case of k = 1,2
one-obtains 4y (p) = A, (p) =

Analogous expressions may be derived for the remaining
forms of the SMI°.

Equations (4)-(9) enable the inverse stability problem of
linear systems to be easily solved. The selection of appropriate
values of the SMI should be done on the basis of a suitable
qualitative criterion of transient responses.

3. The Transformed Krasovskii Integral Criterion

As an estimation of quality of transient responses assume
the Krasovskii integral criterion J,,™. It has been shown®: 5 8
that as a result of a suitable transformation the integral square
estimation J,,(® can be expressed in a simple manner in terms
of the indices of stability margin. The transformed evaluation
J 9 takes, when Hurwitz determinants are used, the form

- 1fay—q  ag AN, AA, . A A
J(°)=_<__22+_0+ 292 484 - D2y 2(k—1)>
M2\ ay ay AjA; Ashs Ark-3 Ayiey
(10
=1<M+A;!+idz<i-1>.42<i—n> 19
2 4y S5 Aoy Ay
J2k+1
=i< G BBy AsAy | AsAs +A2k—1.A2k—1>
, 2 a2k+1 A0A2 A2A4 A4A6 AZk—Z AZk
L[ _as & Agioy A2i—1> :
=5 + : < (11
2<“2k+1 i;AZi—z Ay ‘ (1

In order to obtain a complete transformation of the evaluation
J,® make use of the relations (5)—(7) and express the ratios
a, — 1/a, fo the coefficients of the characteristic equation
A, (p) in terms of Hurwitz determinants. It is found that
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k
dak-1 Ayioq Mgy

== . 12
Az iS182i-2 Ay (12)
) =ﬁ & Ay Ay (13)'
dak+1 Ay i;1A2i-1 Azive

Observe that the evaluations (10) and (11) have different
forms in case of even (n = 2 k) and odd (n = 2 k + 1) degrees n
of the characteristic equation. Substituting in (10) the expression
(12) and in (11) the expression (13) and performing an appro-
priate change of summation indices one obtains a single general
expression

n
ORI (14)
where A, = A_, = 1 is arbitrarily assumed.

The expression (14) is the transformed Krasovskii evaluation
expressed exclusively in terms of indices of stability margin*.
It holds for both even and odd degrees; that is, for any degree n
of the characteristic equation.

The above transformation of the Krasovskii evaluation may
be considered as a transition from one set of independent
variables to another. The independent variables of the first set
are the coefﬁcien"(s_ of transfer function; those of the other, the
SMI. Further investigations show that this transformation is of
essential importance chiefly because the SMI furnish much more
necessary information on the control system than the transfer
function coefficients. It is also of importance that the new
expressions of the integral square estimation take a much simpler
analytical form, which is essential for the synthesis of control
systems.

To generalize the results obtained to systems of the non-zero
class (im# 0; n> m > 0) consider some of the relations
between the Krasovskii determinants and the SMI.

4. Expansion of the Krasovskii Determinants in Terms of SMI

In the general case the normalizedt integral square estima-
tion takes the form

- 12 AP
(m)y _ (m) Lmea 15
Jn Z: An bm 1 ( )
where
B;(r’x")a_b2 _2bm—a+1bm—a-—1+2bm—a+2bm—a—2
o F2(= "D b 5 (16)
for « =0,1,2,...,m and b,,=1; b, =0 (k< 0; k> m).

The expression of the normalized evaluation (15) in terms of
SMI requires, above all, the expansion of the Krasovskii
determinants A®™,,_ /A, in terms of SMI" 8. The elements of
these determinants are exclusively the coefficients of the charac-
teristic equation, therefore the unique expansion A®™,_ /A,
in terms of SMI may be done on the basis of eqns (4)-(9). Asan
example a few of the relations obtained are quoted:

* Other forms of the transformed Krasovskii evaluation may be
found in Reference 7.

 The normalized evaluation J,,™ corresponds to the normalized
transfer function (I':) p, for which one has ¢y = a,, = b = 1.

287/2

Declassified in Part - Sanitized Copy Approved for Release 2013/02/13 : CIA-RDP80T00246A023400480001-9



Declassified in Part - Sanitized Copy Approved for Release 2013/02/13 : CIA-RDP80T00246A023400480001-9

287/3

‘(Anireniqre pawnsse) [ = %y (€)

‘uorjenba onsireoRIRYD OY) JO 92130p Ay SI ¥ (T)

-
T = =< = ¥p 31mInsqns Pinoys auo WOTIeNb3 JOIISLI)OLIBYD PIZI[EWIOU JO 9sed oy} U ([) :sa10N ’
\%
1 2vELvAS o T (4 9.
e
VvV Vv VIV
QNQ Nq eq mq Anq ~< Aq V w< A m< «q wq n< n< m< v «4 * w< «4 «4 nq m< N<
+ - T +5=]= "t + + — + + + +
4@4 ~<n< eq aq Nq e< m< m< n< m<m< uvqﬁq ﬁq wq nq m< NQ «Q .nq
mk"eu H”mu Hnu«h INNH«.Q AR H|<”N3 e|<”§ T
w< nq wQ nq n< ¢< N< H<
81T T ¥ Yt €% 0 o € £ 0
V'V Vi’V V'V V'V 'V V'V V'V
+ llv -— + A + v —+ + =+
o Awiq vV viv Wiy Vv W'y
¥ € [ e T T 0
Imm.”mn ¢|<”q€ m|<”nu n<e<+|mm.”ua ~|<|”§ I
v \Y \% V'V v v
€ e 8 0. 2 €% S L. T 0.
4|<.”qc «di H|<+a|<”mu «<H<+n<o4+ﬂmnmc ~|<”§ 1
v vv v v vv \2Y v \Y
3 S T T 0
nlﬂ”mu m<o<+a|<”u~» ~|<“§ I
\Y Vv \% \%
T 0.
NIQ., =72 ﬁ|< = | 1
A% v
0.
. ~|< =" 1
v
% ‘v ¥ 2 *p 7 9
uoyvnba 211514210040Y2 2yj fo sjua1dYf20)
‘T219v1

(2502 [paaua3 2y1) | dnoud ayi fo ursivws A11j1quis fo $a21pul fo SULid] Ul UOIIDNDS D1ISIIIIVIVYD Y] \w Sjua11ff200 2y3 fo uorsuvdxy

287/3

Declassified in Part - Sanitized Copy Approved for Release 2013/02/13 : CIA-RDP80T00246A023400480001-9



287/4

AP ZOA A :
m_o_ i s} 17
A A, A (an
Af:)—1 An—2 .
An —An—l (18)
AS:)—Z An—3 !

An —An—l (19)
Af:lé) An—4 An—3 An—3 ' y
A, A AL A (20)

can be represented in a similar manner. Consider the sequence

A,
A

of these expressions:

Agr’:)‘ Al(:)— 1. Al(:)—Z . Ar(rlll) o, A:(:) m (21)
An: A,, s An P An Seees A”

It can be shown that the structure of the equation obtained for
the expansion of each particular expression
A(")

Sm-a,

A,

in terms of the SMI is independent of the degrees n and m of
the transfer function polynomials and depends only the ordinal
number « in the sequence

AD
A,

This property is very useful for the generalization of the con-
sidered problem for the case of m> 0.

n

5. The Optimum Integral Estimation J,™ in the Sense of SMI

The value of the evaluation (15) depends on the distribution
of poles and zeros of the transfer function (2). Assume that in
the general case the distribution of the zeros is independent of
that of the poles. Then, the coefficients B, are also inde-
pendent of the coefficients of the characteristic equation and
cannot, in general, be expressed in terms of SMIJ. For any
assigned distribution of transfer function poles there exists only
one distribution of zeros of the polynom1a1 B (p) in the numer-
ator of the transfer function, which, for the given assumptions,
corresponds to the minimum value of the evaluation J,0™.
Such a distribution of zeros will be called, in what follows,
optimum in relation to the SMI. The determination of the cor-
responding optimum polynomial B (p) = B (plopt will be
called the optimization of the integral square estimation J,™
in the sense of SMI”.
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The determination of the values of the coefficients of the
optimum polynomial B (p),pt reduces to that of the extremum
(minimum) value of a function of many independent variables.
To do this one must equal to zero the partial derivatives of the
evaluation J,™ with respect to the coefficients of the poly-
nomial B (p). One has

SNy
dby  0b,

aJ(nr)

F(m)
. =0;...; o/,
ab,

’abm—l

=0 (22)

Solving successive]y for each m the system of m equations
3, ™Mb, =0 (k=0,1,2,...,m~ 1) the values of the
coefficients of the polynomial B (p)opt will be obtained, i.e., the
optimum in the sense of SMI. Thus, for instance, in the case of
m = 3 one has:

An 1

An—3, _An 2.,
An-4,bl_An 3 bz—An 2+

Ay A
A4 A,

bo= no3. b3 =1 (23)

Table 2 contains expressions for the coefficients of optimum
polynomials B (p)opt, Obtained as a result of solution of the set
of eqns (22) for a few successive values of the degree m of the
polynomial B (p).

The integral evaluation J,™, that satisfies the set of con-
ditions (22), will be called optimum in the sense of stability
margin and denoted by J,,,. Optimum evaluations in the
sense of SMI, have a number of valuable properties. Some of
them will be considered below. Of particular importance is the
fact that for full analytical description of the evaluation J,,™
the SMI are required only.

6. The Two Equivalent Forms of the Integral Evaluation J,(™

In the general case the integral evaluation J.™ does not
satisfy the optimum conditions (22), and therefore it cannot be
expressed in terms of the SMI only. This follows directly from
the assumption, that the coefficients of the polynomial B (p) are
independent of the coefficients of the characteristic equation
A(p) In this connection try to separate in the integral evalua-
tion J,,™ a component depending exclusively on the SMI from
another component in which the influence of the polynomial
B(p) is taken into account. The introduction of the SMI and
the notion of optimum conditions in the sense of SMI enables
two new equivalent forms of the integral evaluation J,(™ to
be established, that is:

JW=JO+M™ (249
and : .
T =T+ AM (25)
A detailed analysis of expressions (24) and (25) will be shown
later. Now one is satisfied with the statement that for the
determination of the first components, that is J, and J,™op,
only SMI are needed. To find the remaining components, that
is M,™ and AM,™, the knowledge of the polynomial B (p)
is also needed. In particular, the component M,(™ expresses
the increase of the evaluation J,™ due to the fact that the
polynomial increase B(p) = B(p) — b,, has been taken into
consideration, and the component AM (m js the increase due
to the introduction of the polynomial AB(p) = B(p) — B (Plopt
in the numerator of the transfer function F(p). For further
investigation form (25) will be of particular use.

287/4
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= B(p)op, satisfying the optimum conditions in the sense of the indices of

it1

A

Coefficients of the polynomial B(p) = byp™ + b, p™ * + ... + by P + by, = B(P)gpt
m
‘ by by b, by b4 ’ b5

1 qn—2 1
2 In-3 In—2 1

q,
3| dnes Gus | Gnot 1

In—3

In—s In—s In—y
4 -5 9n—4 — “Gp—2 Ip—p + 1

In-3 In-a In—3

Gnes . Gn- . Gy - G G
5 In—s In—5 s+~ g ol “dp— 2+ “Gn—3| Gn—st ns’f‘.n—s"hwz Gn—z + e e !

In—3 An-4 qn—s In-3 In—a In—3 In—s
Notes: (1) n is the degree of the characteristic equation 4 (p) = 0
. (2) m is the degree of the polynomial B(p); 0 = m < n
(3) B(p) is the polynomial in the numerator of the normalized
- A
t transfer function F(p) = 3 g:
7. The Primary Spectrum of the Integral Evaluation J (™ Markov determinants S;.*; (S;* = 1)
Under the term of primary spectrum of the integral evalua- i k=1 k—2 k P !
tion J,(™ one will understand the expression SF- T2 T3 o= }:IZ Fa for k=2,3,...,n (30)

Rn=R”(r1,r2, FayeeesFy) (26)
The elements of the spectrum R, are ry, ry, ..., r,. They are
related to the SMI by the formulae
Gi—z Ai-1Aiy :—151—1 :
r= = = N l=1,2,...,n 27
S ey Ayt A St,St ( ) @)

where g, are the Routh parameters, A; the Hurw1tz determmants

and S;* the Markov determinants (A = a,’* §;*).
Example: ,
y _A,, AA AA, An—1‘An—1
YSACTET AL, PTAL, A,_3-A,

Knowing the values of the elements ry, r,, ..., 7, the values of
the corresponding indices of stability margin can easily be
determined:

Routh parameters ¢,

The primary spectrum R, determines uniquely the first
components of the forms (24) and (25) of the integral evaluation
J.(™_ In particular, by virtue of egns (14) and (27), one can
write at once

¢ - 1 1

J,(,O)=§~(r1+r2+ A= T

M=

i (31)

1

i
It can also be shown? that when the optimum conditions (22)

are satisfied, the expression of the evaluation J,(™,,. takes
the following exceptionally simple form

J(m) —

nopt—

(r1.+r2+ +rn—m)_? i (32)

where 0 < m < n.

From (32) it follows that evaluation J,,™,,, depends only on
the first n — m elements of the spectrum R, and is invariant in
relation to the remaining ones. Thus, the elements ry, 7y, ...,
rn—m Will be called weight (influence) elements and the remaining

1 k ones, that is #,—(u—1)s Fn—(m—e)s - - -» Fn, independent or free ones*.

Tt =T s = iUl Ti (k=1,2,....,n) (28) Observe that although the independent elements of the spectrum

. ) R, show no influence on the value of the evaluation J,(™qpy,

Hurwitz determinants A,

) . * In the case of normalized transfer function the condition

X — 2 _ . n
= T = H 1% for k=1,2,...,n  (29)° 1 r = 1 should be satisfied.
k a= i=1
287/5
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they influence the character of the transient response. This is a
separate problem and is not dealt with in this paper.

On the basis of eqns (27)-(30) the stability of a control
system can easily be analysed. From this analysis it follows
that if a control system is stable, all the elements of the spectrum
R, are positive. If, in addition, the system is physically real,
these elements are bounded. The spectrum R,,, of which all the
elements are different from zero and positive will be called
‘essentially positive’.

Another interesting property of the spectrum R, is now
shown. It is known that the stability margin of the system is
greater for greater values of SMI®** Hurwitz determinants,
for instance. This means that the stability margin is greater for
smaller values of elements of the spectrum R,.

On the basis of the above results and considerations the
following cardinal properties ‘of the spectrum R, can be for-
mulated:

Property I: In order that a linear control system with the
characteristic equation A(p) =p" + a;p" 1+ ... +a, =0 is
stable and physically real it is necessary and sufficient that the
primary spectrum R, = R, (ry,7s,..., 1) of the evaluation J,(™
of this system is essentially positive and bounded, that is
O<rn<owfori=12,...,n

Property II: The primary spectrum R,, characterizes the
transient performance in a linear control system of the order »
and class m, because the sum of its weight elements r; (i = 1,
2....,n— m) determines the value of the evaluation J, ™y
satisfying the optimum conditions in the sense of stability
margin (SMI), that is .

J(m)

n—m
nopt— 2 Z ¥
i=1
form=20,1,2,...,n—1.

8. The Secondary Spectrum of the Integral Evaluation J,(™

The components M, and AM,,™ in expressions (24) and
(25) for the evaluations J,(™ depend in the general case on the
spectrum R, and the polynomial B(p) = by p™ + by p™ ! + ...
+ by~ p + by, or the equivalent polynomial C(p) = B(p),
where

C(P)=cup" +Cp-1P

. +eipteo=B(p);(co=b,=1)

" (33)
The task now is to find a set of m parameters such that their
structure contains as much information as possible on the
transient performance in a control system and would enable
the determination, in a unique form, of the values of the coeffi-
cients ¢, = b,,—, and the easy computation of the component
. M,™ or AM,™ of J,(™. To this aim consider the partial
derivatives

m—1+
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where 1 </ < E[m—1/2]. One finds, for even i:

,A<4>, =2 D
=+ Y (=D

i=1 n

Wy =(=1)" (36)

(n)
m—(i+1)
2iTTA
for 1 £I£k=E[m/2].

The expressions (35) constitute a set of equations for the odd
coefficients ¢, of the polynomial (33) and the expressions (36)
are a set of equations for even coefficients ¢, of that polynomial.
The principal determinants of these systems will be denoted by
W, and W, ® respectively, where

Owy Owy Wi Wiz Wis...
: dc, dc; '
Wrﬁl)‘ awl3 6w33 = | W31 W3z W3s... (37
dcy Ocy Wsy Ws3 Wss ...
%a_wg Wiz Waq Wie .-
dc, Oc
Wyt = 8W24 av:4 = | Waz Wag Wae --- (38)
Oc, Ocy Wea Wea Wee -
or
W(1)=6(w1,w3,...,w“_l,...)= 1 .
" 6(01,C3,...,02k_1,...) qn—24n—31"':Qn—k’
1+m
k= 2E|: 5 ]
' (39
W(z)za(wz,w4,...,w2k,...) _ 1 .
" 8(02,04,...,C2k,...) An—29n—35 > qn—1 ’
24+ m
asf22e]

From eqns (37)-(39) it follows that the determinants W,
and W,® are the Jacobians of the transformation. The elements
W,; of these Jacobians are Krasovskii determinants

A,
A,
with appropriate signs and
ow;, oM™
Wl.l acj aciaCj (19 J [t 3 m) ( )

6 M(m) m Assume that the system is stable and its spectrum R,, is in-
Z M. fori=1,2,...,m (34) variable (constant); then, assume also that the Jacobians W,
a=i and W, have, in agreement with (39), constant values different
One has, in the case of odd i: from zero and positive. From the analysis it follows!! that in
Erm+1 this case all the necessary and sufficient conditions are satisfied
[_2—] i1 A® for the transformation considered to be homeomorphic. It
w=—1+ Z (=1 repimye Am : follows that the representation of the set of parameters w; (=1,
‘ =1 " 2, ..., m) in an m-dimensional space L™ on the set of para-
and E ["‘z_ﬂ] ] meters ¢; i = 1,2, ..., m) in an m-dimensional space D™ is
Wa o= Z (_1)(i+z+ Dog . 'Am—(i+1) (35) one-to-one, and that the homeomorphic representation of a
zitt =1 zi-1 A, space region is a space region and the representation of an arc
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is an arc. The set of the parameters w; (i = 1,2, ..., m) will be
called the secondary spectrum of the integral evaluation J,(™
and denoted by

Wm=wm(wla Wa, "'3Wm) (41)

If the values of the elements w; of the spectrum w,, are known,
it is easy to calculate all the coefficients ¢, of the polynomial
(33). To do this it suffices to solve in relation to ¢, the matrix
equations*:

WO ICPN =V and (W) ICPI= V21 (42)

The spectrum w,, is called positive, zero or negative if all
its elements w; (i = 1,2, ..., m) are, respectively, positive or
Zero or negative. A spectrum w,, may also be of a mixed type.
In particular, from the solution of eqns (42) it follows that if
the spectrum w,, is zero, the set of eqns (22) is satisfied. This
impotant feature of the spectrum w,, concerning the optimum
evaluation J,™ in the sense of SMI can be expressed in the
form of the following.

Property of the spectrum w,,: In order that the Krasovskii
integral evaluation J,(™ should satisfy the optimum conditions
in the sense of stability margin (SMI) it is necessary and suffi-
cient, that its secondary spectrum w,, is zero; that is, w; = 0
i=1,2,...,m.

Now pass to another form of the spectrum w,, connected
with the increment AM,(™ of the evaluation J,™. For this
purpose the coefficients of the polynomial C(p) should first be
represented in the form '

CG=Ciopth (i=1,2,...,m) (43)
. where ¢; o, satisfy the optimum conditions in the sense of SMI
and expand M, ™ in Taylor’s series for functions of more than
one independent variable

Mflln)(clopt—*_hl’clopt-l_hb"':cmopt+hm)
dM(m) dZM(m) dk— lM(m)
=1\4(m) n n n R
= Muopt 71—+ =D TR (g

In the general case the derivatives d*M, (™ and the rest R,
of the expansion (44) are

o gemy_ (OMT MM 6M('"). v
d Mfl )—< a hl a h2+ acn hm (45)
and : " '
&M ,
R,= o (46)

where the derivatives d” M,,(™ for » < k should be determined at
the point Q opt = Q opt (€1 0pts Caopts - - -» Cmopt) and the rest Ry at
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where o2 Mf,"’)
W..=
Y Bc0c;
The expansion of the function M, in Taylor’s series, taking
into account eqns (47) and (48), will now be written

M =M +dM + R,
or (49)
AM{P =M - M7 =dM{” +R,

In agreement with the optimum theorem of the evaluation
J ™ the point Q opt (€1 opts Copts - - +» Cmopt) COITESPONAS tO @ ZETO
spectrum w,,. In other words the derivative (47) is at this point
equal to zero, i.e.

M(m) (Qcpt) 0 (50)
It can easily be shown that the second partial derivatives w;;
do not depend on the choice of the intermediate point. There-
fore the expression of the component AM,,(™ of the evaluation
J,.(™ takes the following very simple form

1 & :
AME."')=R2=2_.Z wihi + Z wijhi; - (Wi,141=0) (31)

i=1,j=2

@<
The partial derivatives w;; and w;; are Krasovskii determi-
nants taken with an appropriate sign, therefore they depend on
the spectrum R, only. Analogous considerations show that the
representation of the set of parameters w; into the set of para-
meters h; (( = 1, 2, ..., m) is also homoemorphic; that is, one-
to-one. In this connection the parameters /; will be taken as
elements of the second, equivalent form of the secondary spec-

trum w,,; that is,

wm(hltha-~'ahm)=wm(wlvwzs""Wm) (52)

If the spectrum w,, is zero; thatis, ,=0(@G =1, 2, ..., m);
then AM,™ = 0 and J,,(™ =J,(™ .

The secondary spectrum w,, has a number of properties
facilitating the qualitative analysis of the influence of distribu-
tion of zeros of the transfer function on the transient per-
formance”> 12, Thus, for instance, a positive or negative spec-
trum w,, shows that the corresponding fluctuations of transient
responses are greater or less than the same fluctuations for the
evaluation J,,™ o

9. The Inversion of the Integral Evaluation J,(™ by means of
the Spectra R, and w,,

To estimate the transient performance in a control system
various integral criteria have found broad application. This is
done most often by a comparative method. The less is the value

ac.;lhqlsfe;?:rd;aote <pcémi (lcl(%p; e—i—ol:?tglll’lscz opt + Ol -, Cnopt +- of thg integral evaluatiog chosen, t.he higl'ler is the quality of the
transient response. In this connection various methods have been
m_ " oM™ m developed for investigation of the relation between a change of
dM, Z . h;= Z w;h; (47)  values of selected transfer function parameters and the corre-
i=1 ! =1 sponding change of the value of the integral evaluation. Of the
L/ ™ amm \2 m best known and most widely used, mention should be made of
R,=R,= 7( 3 n i) 2 Z wh? + Z w;hih; methods of minimizing the integral evaluation in relation to one
i=1 06 i=1 i=z; J =) 2 (48) or a few parameters: graphoanalytic methods of determining
’ the minimum evaluation and the method of successive trials
* The solution of eqn (42) are given in Table. and approximations.
287/7
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The aim is to obtain analytically a new solution.of this pro-
blem using the integral square criterion of transient performance
which was called the inverse problem of the integral square
estimation J,,(™ and which could also be called the inverse prob-
lem of transient performance. This is a problem encountered
particularly in the synthesis of linear system.

Under the name of inversion of the integral square estimation
J.'™ one will understand the determination of the normalized
transfer function for a prescribed value of the normalized
Krasovskii integral evaluationJ,,(™. The solution of the inversion
problem of the integral criterion J,™ has been obtained by
introducing the notions of the spectra R, and w,, defined above.
It should be explained that in the general case the evaluation
J.™ is a multivalued function. For any assigned value of the
evaluation J,™ an infinite number of various linear transfer
functions can be made to correspond. A different case is that
where the evaluation J (™ is expressed in terms of the spectra R,
and w,, the correspondence between a transfer function and
these spectra being now one-to-one. In this connection, if the
inverse evaluation J,,(™ is spoken of one always means the in-
verse evaluation J,(™ expressed in terms of definite spectra
R, and w,,.

Assume that the spectra of the Krasovskii evaluation J,,(™,
primary R, =R, (ry, ¥g ..., rn) and secondary wy, = wp
(hy, Ao, - .., hy), are known. They contain full information on the
transfer function F(p) = C(p)/A(p) of the control channel
ander consideration and much information on the transient
performance in this control channel.

The transfer function will be determined by inversion of the
evaluation J,,(™ expressed in terms of the spectra R,, and w,,;
that is, by inverse transformation of the spectra R, and w,,.
For this purpose determine first the characteristic equation
corresponding to the spectrum R,.

The method of determining the characteristic equation
(polynomial) A(p) = p® + ayp** + ... + a4 p +a, is an
elementary one. The values of all the elements ry, r, ..., ¥, Of
the spectrum R,, being known, it is easy, on the basis of (29),
to determine, for instance, the values of all the Hurwitz determi-
nants and then to make use of Table I which enables the values
of the coefficients of the characteristic polynomial 4(p) to be
found directly.

In order to avoid the intermediate stage of computing the
Hurwitz determinants, Table 3 has been prepared, containing
expansions of the coefficients of the characteristic equation
directly in terms of the elements #; ( =1,2,...,n) of the
primary spectrum R,,. In this case the coefficients a;, , may be
determined by means of the algorithm

Ay, n =0 yy—l'f'a—k_i"—__2 (53)

’ ’ —l.rn

or by means of the recurrence equations
A(P)=pAi-1 (D) + A Zm (k=1,2,..,n) (54)

Fp—1"

The expressions (53) and (54) are equivalent to eqns (8) and (9)".
In the case of low degrees n on the characteristic polynomial it
is more convenient to use Table 3. In the case of high degrees n
eqns (53) or (54) are better suited for computation.

The method for finding the polynomial ¢(p) in the numerator
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of the transfer function F(p) = C(p)/A(p) is also elementary; it
consists in representing the polynomial C(p) as a sum of two
polynomials

m—1

CP)=cpp"+Cp1P" '+ ... +c1p+1=C(p)op +AC (D)

(55)
where
C(p)op'.=cmoptpm'}'Cm—1optpm_1 . +CI nplp+1
_ 56
AC(p)=hyp" + hy_ 1 p" ' oo 1y p (6)

The coefficients ¢, opt (x = 1,2, ..., m) of the polynomial C(p)opt
can easily be obtained from Table 2 and the spectrum R,. One
has only to take into consideration the relation ¢, opt = bp—gopt
between the coefficients of the equivalent polynomial C{(p)opt
and B(p)opt- The coefficients h; (i = 1, 2, ..., m) are known if
the spectrum w,, is known. As a consequence the transfer func-
tion F(p) = C(p)/A(p) is uniquely determined. The spectra R,
and w,, enable one to estimate simultaneously the stability of
a system and the transient performance in agreement with the
principles studied in Sections 6-8.

The method based on the inverse integral criterion J,, and
the spectra of the evaluation J,,t™ may be used successfully for
analysis and synthesis of linear systems of automatic control.
In the first case the transfer function is known, therefore the
corresponding spectra of the evaluation J.m™ can be found
easily; in particular, the primary spectrum R, can rapidly
be determined by using, for instance, the Markov criterion or
finding, by successive elimination, the elements r; (i =1, 2,

., n) directly from the expansion of the characteristic equation
in terms of these elements. The next stage is that of correction
of the spectra obtained.

In the case of synthesis it is neessary to know the general
structure of the transfer function (that is n and m must be
known) and the requirements concerning the evaluation
T = J,tm o + AM,™.  Correct choice of the weight
elements r, (i = 1,2,...,n — m) and the elements h; of the
spectrum w,, is of particular importance. It follows that the
problem of correct choice of the spectra R, and w,, is essential
for the synthesis of linear systems and the necessary correction

of such system.

10. Minimization of the Integral Evaluation J,,(™

Some additional data on the primary spectrum R, may be
obtained by minimizing the integral evaluation J,™. The
minimization of the evaluation J,™ =J, ™ + AM,™,
expressed in terms of the SMI may be divided into two stages.
The first consists in obtaining the optimum integral estimation
J.™ in the sense of SMI, discussed in Section 5. As result the
component AM,,(™ vanishes. ’

The next stage consists in minimizing the component J,,(™,
in relation to a selected group of SMI, for instance

H=H (A, A, ..., A)
R=R(4o,q1s->qn-1)
M=M(50a61: --'aan—l)

where H, R, M are groups of determinant indices of stability
margin in the sense of the criterion of Hurwitz, Routh and

(57)
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Markov, respectively. Of course, the result of the minimization
process depends on the choice of the group of independent
variables H, R or M.

As a result of investigations a new property of the spectrum
has been found, characteristic of the conditional minimum of
the evaluation J,,™. This is as follows:

Property III: An integral evaluation J,™ minimized with
respect to an appropriate group of SMI reaches a conditional
minimum if its secondary spectrum w,, is zero and the weight
elements of the primary spectrum R, constitute an arithmetic
progression of which the difference isAr;and Ar; = x/(n — m)Ay;
ra=r+Ar(i=12..,n—mm>0).

The conditional minimum of the evaluation J,™ (m > 0)
is expressed by the equation (Jarominek?),

2(n—m)+1c(n—m—l)>

jftm) (K)min = 4A
1

0 (58)

In the particular case of

K= —lonehasjf,m) (H)min=j:(1m)(K= —1)1.!11“=n—;rz+1
1

(59
and
n—m

KZO one has ijM) (R)min =‘751M) (KZO)min =T
1

(60)

_11. The Problem of Correct Distribution of Zeros of the Transfer
Function

The secondary spectrum w,, characterizes indirectly the
distribution of zeros of the transfer function, which has a strong
influence on the value of the evaluation J,™. As a criterion
of correct distribution of the zeros of the transfer function in
relation to the distribution of the poles, the value of the com-
ponent AM, ™ > 0of the evaluation J,,™ =J,t® . + AM, (™
is taken. The component AM,(™ depends on both spectra R,
and w,,. The spectrum w,,, which is non-zero in general, will
be correctly chosen to fit the spectrum R, if the component
AM, ™ does not exceed a certain fixed value.

The upper bound of the value of the component AM,,™
can be determined assuming as a princiﬁle the maximum
utilization of the polynomial C (p) of degree m. For this will

be used the first equivalent form of the integral criterion J, ™, -

that in

T = JOL M and JO0, =T+ Mo, (61)

On the basis of appropriate considerations the following can
be written:
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On the other hand it is easy to show that

M(m-l)_M(m) _ 1

nopt nopt"?rn—m+l (64)
It is inferred that AM, ™ should be contained between the
limits

0SAMI <1, iy (65)

The secondary spectrum w,, is therefore correctly chosen if
condition (65) is satisfied.

The above method, based on the solution of the inverse
stability problem and the inverse transformation of the integral
square estimation J,™ may also be successfully used for the
analysis and synthesis of multi-loop linear systems of automatic
control. In the case of synthesis it enables the parameters
following the requirements concerning the static and dynamic
characteristics of the system to be chosen”. It may also be helpful
for the investigation of non-linear systems in the applicability
limits of the Liapunov theorems!?, and for the investigation
of some adaptive systems.
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Axiomatization of the Theory of Simplification
of Combinational Automata

GR.C.MOTSIL [

It is intened to derive a calculus which the axioms have to satisfy
in order that the simplifying method, given by Quine for the
Il-dipoles with contacts and relays, should be valid. Quine’s
method has been thoroughly investigated by many researchers
whose contributions are important, especially J. McCluskey
and J. Paul Roth. The axioms given here show that this method
may be used in many other instances, such as that of circuits
with triodes, transistors, cryotrons, or with three positional
relays (as in the case of polarized relays or of real operating of
ordinary relays) and with multipositional contacts (as in the case
of selectors and codified relays).

I. The researches of Quine and of his successors are related
to the two expansions in Boole series

f(xl’ "':xn)= Uf(al! ""‘xn)La;(xl)’ --.,La,,(xn) . (1)
f(xl’ -“’xn)’_‘ H[f(&l’v“'a&n)ULal (Xl) U...u La,.(xn)](z)

where
Ly(2)=z%,

The formulae are of the following type:

FGrs oo X) =@y, 0Ly () 0..0L, ()] (@)

where 0 and @ represent two operations: with any number
whatever of variables and where expressions such as

r

Q z;=2,0... 0z,

i=1

B ' (5)
0 z;=z,0...0z,
i=1
with r > 1 have a meaning, namely eqns (1) and (2) are eqn (4) if
@ 9 cal, veey An
I> Y f(O(l,.‘.,O(n) (6)
II . v f@Ey,...,a8,)

It has already been shown that six other expansion formulae
of the eqn (4) type are Yalidv:

w 0 caj,...,an
m o T  f(a,...,dq,
v 11 L flegy...,a,)
Vv L v f@,...a,)
vi T I f(og,...,a, ' (7)
Vil L L f(oy,...,o,)
viar T T f (8, ..., 8,)

Li(2)=z ©)

The functions T and 1 are Sheffer’s functions of several
variables

zy V.. Tz,=2,...Z,

®)

zy L. lz=z,0..0UZ

The interpolation formula of Lagrange in GF.(2) is of the
same type; as a matter of fact there are here two Lagrange
interpolation formulae for GF (2) (IX and its dual X):

o) 0 ¢

0Ly uuy Oy
IX + f(‘xla ce OC,,) (9)
X :F o f(&b-”:&n)
The functions + and I of several variables are defined recur-
rently
Zi+ ooz, =(zy+ ... +2Z,- )+ 2,
~ ~ o~ ~ (10)
¥ Fo=F .. Fz,-)F 2
while
a+pf=afuap
aFp=af uap (D

In all these cases, f (&, ..., &,) is O or 1 and eqn (4) reduces

itself to the function generated by an expression

f(xl,...,x,,):f(o@(xl,.‘.,x,,) (12)

where & is an expression, yielding the definition:

1. The expressions are sequences of letters of the following
form

" Q (2440...0z,,) (13)
h=1

i r r .
If r> 1, Q is defined by eqn (@). If r =1, Q1 is ¢t if w is
h=1 h=1

U, +, X and is 7if w is T or L; in (13), ;ij will be sub-
stituted by L, (x4) and therefore by x; or X;.

I1. Between the expressions, a relation of equivalence = may
take place, satisfying the following conditions if

A =9,
then Qt,=09,

Os,=09,

Evidently, U, ..., I satisfy condition 1I.
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II. The application of Quine’s method is based on the
formulae

xuXx=1
14
Ix=x as
Therefore
Z0Z1 . Z, U ZgZy .. Z, Ut UL U
=(zpUZg)Zy...2, Ut U... UL
=1z{...2,Ut; U... UL, 15)

=2Zy...2, VUt U...U!

S

In order to apply this method, the terms z4z; ... z,,Zg 2y ... 2,
must be brought to be neighbours and the variables must be
arranged in a definite order. Therefore, it will be assumed that.

III. 2 and @ are commutative; that is to say if = is a per-
mutation of the indexes 1, ..., r, then
)

Ze iyl o 0z iy =240... 0z,
(16)
Za (1) v OZy () =210 ... BZ,
This property allows the expression to take the form
(200z40...02,) 0 (202,00 ... 0z,) 0t 0 ... Wt

The commutativity is valid for all the operations given as
examples: U,*, T, L, +, ¥. Yet, in order to make the sim-
plification, it is not necessary that all the steps in egn (15)
could be made. It is sufficient that

IV. The following equality be true

(2g0240...0z,) 0 (2,02,0 ... 0z) 0t 0 ... 0t

=(z.0...0z,) 0t|0 ... 0t

(17)

It is important to emphasize that for all the pairs of opera-
tions w, 0, from eqns (6), (7) and (9), eqn (14) remains true.
That is so much more remarkable, since the various steps made
in eqn (15), such as the associativity of U, the distributivity of -,
with regard to U, etc. are not valid for some of these pairs
(I-X) of w, 6 operations.

III. This first stage of simplification is valid for:

(a) the dipoles Il with contacts, as well in the normally
disjunctive form (w =, 6 = ) as in the normally conjunctive
form (w = -, 6 = V); ‘

(b) the diode circuits, in the same cases;

(c) the triode circuits, of the two following forms

0=T (form III)
0=T (form VIII)

(d) the transistor circuits of the eight forms 1-VIII;
(e) the transistor circuits of the form IX, X;
(f) the cryotron circuits of the following forms

(form VII)
(form VIII)

w=u,

w=T,

0=1
0=T

w=.1,

w=T,

.,
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IV. In the classical case, the following simplification is made
XYyzZUXyzuUXyzuXxyz
=XYZUXYZUXYZUXPZ UXYZ U XYZ

=(xuX)yzu(yuy)xzu(zuz)xy

=yzUXZUXy (18)
by virtue of the idempotence law
zUuzZ=z -(19)

To indulge in this type of computation, it is necessary to
assume that

V. The following equality is true
A oA 0 (0 ... 0,
= 0l 10...0L,

This property is valid for the operations U, -, T, .., but it
is not valid for + and F.

V. It is known that in the classical case, there can be the
following type of simplification

ny)'/zuxz=xyuizuxyzuxfz
=(xy uxy.z) v (Jz v xyz)

(1)

The problems arising from this type of. simplication con-

=Xy jyz

stitute the originality of Quine’s method.

A start is made with an expression such as eqn (13) where the
z;, have been replaced by L, (x;) as in the expressions provided
by eqn (4).

An expression of the form

A =L, (x,)0...0L,, (5%,) (22) ‘
is called a simple expression.
If &, & are simple expressions
LD (23)

provided that

{Lyy (Xa,)s -+ Lo (x, )} 2 {Lg, (X3 ), ..o, Ly, (%)} (24)

where the inclusion is considered in the sense of the set theory.
It is obvious that, on the basis of principles 1-V, it can be
deduced from eqn (23), that*

Ly, (x0)0... 0L, (x,) 0Ly, (x,)0 ... 0L, (x,)

=L, (x,)0... 6L, (x,) 25)

Since eqn (23) is equivalent to eqn (24), it is esay to deduce
that the relation oc between the simple expressions is a relation
of partial order, i.e.

* It can be seen that this equality cannot be written as
A0D =

since 6 is not associative (in particular T and T are not associative).
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o ocA
if ocD and Doc P, then o o ¥
if ocPD and DocA, then o =D

The relation of contiguity will be defined between two
simple expressions of the form

%=La7('x1)9 v eLasl—l(xsl—l) 9La51+1(xs1+1)0
6Ld7—1(xsr—l) 6Ld7+1(xst+‘1)9"' eLa,. (xn)
D=Ly (x,)0... 0Ly, (x;,—1) 0Ly, (x5, +1)0
“'Lﬂ7-10(x§:—1) 0Lﬁ7+r (x5¢+1)0 GLﬂ,,(xn)

(the missing letters x,,, ..., x,, are the same in 2/ and &) by

(26)

g =Byl + oo Fla,— Bl =1 (27
VI. It is proposed to simplify methodically the expression
E=Mo.. oM, (28)

where .4 ; are simple expressions with » letters x.

If the simple expressions #; and . ; are compared in
case they are contiguous, if the letters x (third principle) are
re-ordered, and if use is made of eqn (17) (fourth principle);
a simple expression . (;;) is formed with n — 1 letters. One thus
obtains several simple expressions o (s, - .., M (i), Withn — 1
letters. By virtue of the fifth principle :

é()=ﬂ1w aes U)ﬂtw%(ﬁ)lw een w’/”(ij)a

Compare the simple expressions #(;), and .#(;;), with n
letters; if two of them are contiguous, simplify a letter according
. to the fourth principle and obtain expressions (s -- -

M (in1)e; With n — 2 letters. The operation is reiterated as many.

times as possible and it will yield & in the following form:

E=M0... 0OMOM ;5,0 .. OM iy OM (; 1y, ©® (29)

Among all these //Z the name of prime. 1mphcant is -given

to ., if, from
M o M
can be deduced 4, = M. Let
By, ..., B,
be the totality of the prime implicants.
It is obvious that if, in the process of going from eqn (28)

to (29), the fifth principle is not used, except when strictly
necessary

(30)

304/3

&=Bw...0B, (31)

but the example of eqn.(29) shows that even this expression can
be simplified to

&=B,w...0B, (32)
1 "

which contains only some of the prime implicants.

For this end perform again the simplification process
described at the beginning of this paragraph. Starting from
eqn (28) and considering each .#;; let By, ..., B;; be those
prime implicants for which

M ;cB;

There is at least one among the B; which satisfies this condition.
Consider the propositions p; = the prime implicant B; appears
in eqn (32). Since the simple expression .#; appears in eqn (28),
the proposition

q;=p;,v... 0D}, (33)
must be true.
Forming the proposition
P=g &...&q,. (34)
By expanding eqn (34)
P=R,v...vR, (35
where R; are propositions of the form
: Po & ... &g, (36)
which means that
&=B,w...0B,, 37

However, B,,, ..., B,, may be non-different, and therefore the

application of the ﬁfth principle will lead to a simplified form
of &.
Such a form corresponds at each R;.

VII. The s1mp11ﬁcat10n problem may be stated not only
for the canonical forms

[L,,(x)0...0L,, (x)]0..0 [L,,, (x1)0...0L, (x,)]

but also for other normal forms, such as
[L¢7 (xﬂx 1) 0 v 9La1p7 (xﬁl;w)] @
@ [Larr (xﬁ.-r) ... oLarIn (xlfrw)]

since, by applying eqn(4), the missing variables can be introduced
into every simple expression.

A parallel is drawn between the classical example exposed
at the beginning of section V and another similar one.

Classic example

E=xyujzuxz=XxyzUXYZU Jz U Xz
=XyzUXYzZUXyzUXyzUXxz
=XYZUXYZUXPZzUXPZ U XYz U XYz

=XyzZ\UXYZUXyzuUXyz

New example
E=(xLy)LFLz)l(xLlz=(xLylz)
LxLlyls)l(FLlz)l(xlz)
—(xlylz)l(xLlylz)L(xLylz)
1(xLlylz)l(xlz)
T=(xlylz)l(xLlylf)l(xLylz)l(xLlylz)
l(xLlylz)l(x1lylz)
=(xLylz)l(xlyl?)l(xLlylz)l(x1lylz)

304/3
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The expression considered is of the form

E=MiOMyoMyoM,

with
M=xyz
M y=xyZ
j/3=x_}_12
Mo=%Xjz

Declassified in Part - Sanitized Copy Approved for Release 2013/02/13 : CIA-RDP80T00246A023400480001-9

% E
EX =M OMEOMEOME

Mi=x1lylz .
Mi=x1ylz
Mi=x1jlz
Mi=%15 Lz

According to the fifth principle (A, M), (M, M), (M y M o) are introduced

ﬂ(lz):xy
%(13)=x2
%(34)—_-?2

The prime implicants are

B1=</%(12)
Bz'—“ﬂ(m)
B3=%(34)

&=B, U B, U Bj; is eqn (29)

M B,
M B,
M HocB,
M 3B,
M 0B,
M 4oc B,

(pyvp,) & p; & (p,ups) & py=p,&p; is true

‘§=B, U B,
=Xyuyz

./%flz):x Ly
%
an=xlz
* -

M=y Lz

* *
B1 = (12)
* *
By =AM 13
£ 3
By =AM 34,

/1 oc BY
M ocB;
3 oc BY
M ¥ o B
5ocB3
4ocB3

&* =B} LB}
=(xL1ly)L(GLl2)

To sum up, in order to apply Quine’s method, it is necessary
that the first to the fifth principles be valid.

VIII. On other occasions, the another has drawn attention to:
the fact that the multiplicational elements occur in circuits w1th
contacts and relays. A few examples follow.

(a) In real operating conditions, the armature with contacts
does not change suddenly from the attracted or the repulsed
position. There exists also an intermediate position, in which
the normally open contacts as well as the normally closed ones
are open (the ‘break before make’ relays) (Figure 1) or else the
normally open contacts as well as the normally closed ones are
closed (the ‘make before break’ relay) (Figure 2).

(b) The polarized relays whose armatures possess three
possible positions, namely, resting, attraction and repulsion
positions.

(©) The codified relays: examples (Figures 3, 4, 5) of codified
four-positional relays, taken from the book of Keister-Ritchie-
Washburn, and the example given by Ivanin (Figure 6).

(d) The ‘step by step’ searcher or selector.

To each element a number of contacts can be associated,
namely: .

(i) Inreal operation of the relays X of the ‘break before make’
type, there exist normally open contacts ¢ (X) and normally
closed contacts ¢ (X); in real operation of the ‘make before
break’ relays X there are also normally open contacts o; (X)
and normally closed contacts @f (X).

(i) The polarized relays X have contacts for the attraction
position ¢, (X) and contacts for the repulsion position @y (X);
some of the polarized relays also have, contacts for the resting
position ¢, (X), but some others, with an unstable neuter, lack
such contacts.

(7ii) The codified relays X possess several types of contacts.

(iv) The selector § with v steps has the brush contacts
©g (S); -, @y (S).

IX. To each n-positional element, two sets of # elements
are associated:

(a) The ring of residue classes modulo #

Flm)y=(,1,...,n—1) (38)
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with two operations: the addition and multiplication modulo »
denoted by + and -.

(b) The n-valent Lukasievicz algebra

L,,=<O, _1_1, Z:f 1) (39)
with the natural order relation and with the operations
a v b=max(a, b)
an b=min(a,b) (40)
The Lagrange functions are denoted by L, (x)
L,(0)=1
L,(})=0,a+p 1

with x € 7 /(n) respectively « € L,.. The dual functions L, (x)
are introduced with

L, (2)=0
L(B)=1,a+p “2)
There is a Lagrange interpolation formula in .7 /()
6 X )= f @y @) Ly (%) o L, (%) (43)
and two interpolation formulae in L,
J g nx)=u[f (o, ...,oc,,)‘r\Lo‘l (x)n e OV Ly, ()]
* (449
S G x)=0lf (0, ..., o) ULy (x) U ... UL, (x)]
¢ (45)
Giving [L.()]*=L,(x) (46)
| L.() L ()=0, a4 @)
L,(x)nLy(x)=0,0%f (48)
Li)+ .. +L,(x)=1 (49)
Li(x)u..uL,(x)=1 (50)

To w and 6 in eqn (13), the following values can be given

o 0
XI +
XII v N (51)
XIII v

In 7 /(n) respectively in L,, principles I 11, II1, and V are
satisfied for the substitutions X1, XII, XIII of w, 6.
To the fourth principle, must be substituted

IV*, The following equality is true
[Lo(2)0y,0...0y,]w[L,(2)0y,0...0y,]
@ [L,_;(2)0y,6

=(y10...0p,)ot,0 ...00t,

L0y Joto... ot

304/5

Principles I, II, III, IV*, V allow application of Quine’s
method to multipositional elements.

In order to have a better understanding of the method one
should introduce also the notions of formula of structure,-
function of work and functional equivalence in these general
cases.
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modern technique. The logics with several values and the circuits Automat. Telemech., Moscow 19 (1958) 855
with contacts and relays). Probleme filosofice ale stiintelor naturii. 17 Sur un type de probléme concernant les schémas a sélecteurs. Acta
1960. ISRS Acad. Rep. populaire Romine Logica, Bucharest (1958) 187

For circuits with selectors, see 1 and Gh. Ivanin’s works

15 ] ogica matematicd si tehnica moderna. Logicele cu mai multe
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Outline of a Control Theory of Prosthetics

R.TOMOVIC

Introduction

Prosthetics has been treated, until recently, mainly as a branch
of medicine; its relations with engineering were limited to
. mechanical and some electrical studies. The progress of auto-
matic control has brought up the question of its application to
prosthetics!—3, First achievements in this direction are very
promising yet they were limited in scope. The intention here is
to examine, on a much broader basis, the role in prosthetics

to be played by automatic control theory. Instead of studying:

a definite prosthetic device, attention is directed at general
scientific principles involved in the design of prosthetics. Tt is
shown that automatic control can contribute in an important
way to laying down a sound basis for improved design of
prosthetic devices; prosthetic devices here being defined as
applied to human extremities.

There is no doubt that many aspects of hand and foot
prosthetics are different; but, looking from a deeper point of
view, there are also important aspects in common. These common
problems become specially evident when using control theory
approach. In addition, the common ties relating the prosthetics
of human extremities and remotely controlled manipulators or
vehicles come clearly to the foreground in this way. A deeper
insight into the common problems of all these fields has hardly
existed. However, the task of handling materials in hostile
environment is currently getting more and more important so
that the solution of this problem, in itself, is of considerable
interest. Thus, in many instances where a prosthetic device is
mentioned in this paper it should be extended to remotely
controlled manipulators as well.

The Control Problem

The problem of controlling a prosthetic device can be
treated in a general way. However, to make the understanding
easier, consider the hand and arm control. Being even more
specific, the process of lifting an object of arbitrary shape will
be analysed. A closer examination shows that in the above
- action three different levels of control can be found. The first
loop involves visual feedback and takes care of hand positioning
with relation to the object. Since the arm consists of several
mechanically independent units (upper arm, elbow, lower arm,
wrist joint) which have their own degrees of freedom, the need
arises to coordinate the movements of individual arm parts to
perform the positioning action as a whole. Finally, when the
hand has been brought into touch with the object, the grasping
action can start.

From the control point of view, the grasping action can be
divided into the following phases: (@) hand adjustment to the
arbitrary shape of the object, (b) locking of the hand in the hold
position, and (c) adjustment of the pressure to keep the object
in the hand.

-

Again, it should be remembered that this is not the explana-
tion of the biological control system, which must be treated by
other means. At best, only intuitive ideas of how to look for a
better explanation of biological phenomena may be gathered
in this way.

Consider first problem (a), i.e., automatic hand adjustment
to the shape of an object. It is well known that this problem has
hardly been solved in the existing prostheses or remotely
controlled manipulators. Some thought has been given to the
use of electronic computers for this purpose. In certain auto-
matic production lines the objects of strictly limited shapes must
be handled. In such a case a stored programme computer direc-
ting the manipulator may represent the solution, but it is clear
that this solution becomes easily obsolete if shapes are varied to
a larger extent or if they are not known in advance. Using this
example it will be shown that by treating the problem from a
completely different point of view the general case of objects
of arbitrary shapes can be solved in a simple way. The basis for
this solution will be found in communication and control theory.

When studying a control system one usually begins with
the block diagram explaining its structural set-up. Thus a servo-
mechanism may be considered as having the following elements:
input, amplifier, stage, actuator. This is represented in Figure 1.
Assuming that the artificial hand with its fingers represents
a positioning servo-mechanism! one can ask what is the basic
difference compared with the diagram of Figure 1. In Figure 2
the diagram of prosthesis control is shown. In contrast to
Figure 1 it is seen that now the control signal source is linked
via the communication channel to the actuator. In addition to
remotely sent control signals, there is also a local feedback
loop with input signals produced on the spot. With the existing
engineering knowledge it is not difficult to reproduce mechanic-
ally the form and movements of the hand, but the real problem
is how to supply adequate control signals. As is known, the
supply of control signals by muscular movements and by
bio-electrical means was not very successful. With all the
improvements in prosthesis design only a few elementary hand
movements could therefore be reproduced. The adequate
supply of control signals for prostheses and manipulators is
still a very important problem to be solved.

A closer study of the role of skin sensitivity to pressure;
temperature and other stimuli may give a hint for the solution.
Returning to Figure 2 one can easily understand that it is
highly desirable to obtain maximum hand flexibility with
minimum signals supplied by the remote source. In the case of
long communication channels, this will mean a reduced channel
capacity if remote handling of materials is in question, or
a reduced burden on the part of the amputee if prosthesis
control is concerned. In order to discuss the question in a more
precise manner, consider the set of signals S; which must be
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provided by the control source in order to position the fingers.
Taking each finger as a separate automatic positioning system,
the source must provide five continuously varying signals

es=fs(x), s=1,2,...,5

where x is the parameter defining finger position. For simplicity
reasons the finger is considered as a dynamic system with one
degree of freedom, i.¢., as a rigid body with no lateral movements
and phalanges. Even in this case the set of control signals

Si={e1, e €3, 04,65} 1)
is quite complex. Since the word complexity of the set S is of
intuitive nature it needs additional explanation. Remembering
that the control of the prosthesis is also a communication
problem, the complexity of S; will be measured by the informa-
tion content of signals e, Designate the information content
of e, by i,, so that the information content I, corresponding
to Sy is '

i

S

Mo

I=

i

1

An explicit value of 1 is not needed here. Remember only that
human hand control consists of 24 different muscle groups.

It is clear that the prosthesis -control problem cannot be
solved in a satisfactory manner by conscious control signals.
Such control is in evident contrast with the basic design con-
dition for prostheses, and manipulators to keep I; as low as
possible. The solution of keeping I, low by reducing hand
flexibility is naturally not acceptable since it-badly limits the
performances of the prosthesis. In the absence of a better
solution this has been done in the existing models. Thus a new
approach is needed. The first results, taking into account the
requirement that I, = I, can be found in previous papers?.
The fundamental idea is to keep /; low without affecting hand
performances. The problem has been solved by dividing the
contro} signals into two sets: S; and S,. The signals S; are
centrally or remotely produced and transmitted via the com-
munication channel, while signals S, are locally generated, i.e.,
at the receiver end. The information content of S, is I, and the
total information available

I=I,+1, @)

The simple fact of dividing control signals in S, and S, allows
for a great reduction of channel capacity, and consequently
keeps the ‘burden’ on the central control source low without
affecting hand performance.

Eqn (2) needs explanation, namely, the control signals S,
should be generated in such a way that the required adaptation
to the shape of objects is obtained. In order to understand how
this can be done two new concepts must be introduced. In the
first place a topologically equiralent mechanical system of hand
and finger movements is needed The aim is to obtain a
simple and symmetric mechanical structure equivalent to the
human hand with regard to its capacity to handle objects of
various shapes. Figure 3 shows such an equivalent and sym-
metric model, consisting of five elastic segments which can be
rotated around the central ring. An elastic segment is required
for holding objects against a rigid segment, with two or more
sections rotating around individual joints. Each _segment is
provided with a fixed cable along which a central force P can
be applied. Actually all five cables may represent five branches
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of a central cable so that the model is activated by the applica-
tion of just one force P: ‘

‘P,=5P

The force P, is directed perpendicularly to the plane of the
drawing. It is further supposed for simplicity reasons that the
joints of all segments lay on the perimeter of the circle with
radius R.

The elastic mechanical model of Figure 3 is, for study -
purposes, equivalent to the human hand, and it is easy to see
that objects of arbitrary shape can be grasped by this system
if one first assumes that a ball, of radius r, is placed in the
centre Of the mechanical model. The only condition which
should be satisfied in order that the object remains in the ‘hand’ is

r<R - 3

If the friction between surfaces is assumed, the condition (3)
becomes less strict.

The problem of holding the object of arbitrary shape with
the model of Figure 3 can always be reduced topologically to
condition (3). In the case of irregular shape the radius r in (3)
means the radius of the smallest sphere described around the
object. It should be remarked that the uneven disposition of
segments along the perimeter of the central ring allows for
holding of objects of elongated shapes like pencils, for instance.

Another new concept, which in grasping actions helps to
reduce 1, in eqn (2), is the sensitivity of the actuator to external
stimuli. For instance, the instant of touching an object with hand
prosthesis must be recorded not only by visual signals but also
by pressure sensitive elements. The application of pressure-
sensitive elements to prostheses is quite simple3. However, this
new concept facilitates greatly the control problem by reducing

-the information content of the central control unit. The applica-

tion of sensory elements to prostheses and remotely controlled
manipulators adds actually a new local information source
which can be used for object identification or local motor
control. The information content of signal source I, is thus
increased while 7, is kept low. This redistribution of the informa-
tion content of control signals I, and I, is not affecting hand
performance but saves channel capacity -and reduces the need
for frequent intervention of the central control unit. The hand
being demonstrated at this conference handles, therefore, objects
of completely arbitrary shapes requiring, however, only one
bit of information being produced by the amputee.

Object Identification

In the previous paragraph it has been explained how the
special mechanical structure of the actuator of the positioning
servo-mechanism simplifies the remote control of the prosthetic
device or manipulator. The coverage of the control part of the
servo-mechanism by sensory elements served the same purpose.
The considerations here will be limited to pressure sensitive
elements, although the basic conclusions apply to temperature,
radioactive or other type of sensory transducers.

The difference between a sensory element and an ordinary
transducer should be clearly defined. The basic characteristic
of a transducer is to establish a one-to-one correspondence
between two different physical quantities. In most cases, and
this will be understood here, the output of the transducer is
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electrical quantity, voltage or current. The equation of the
transducer may be written in the following form

e=f(p) @

where e is the voltage, and p the pressure in our case. A sensory
element or surface as understood here, differs in some important
aspects from the above definition of the transducer. The sym-
bolic representation of the pressure sensitive surface is seen
in Figure 4. The surface represented in Figure 4 should be
understood as a piece of the ‘skin’ with pressure sensitive cells.
Each cell, upon touch, gives a voltage output proportional to
e.s/; = f(p). Itis not important that all functions f (p) be strictly
identical. A practical version of such a sensory surface can be
realized in different ways.

The difference between the conventional transducer and
sensory surface can best be grasped by establishing the equation
of the sensory surface

e=f(p,x,y) (5)

When compared with eqn (4), one sees immediately that the
sensory elements provide, in addition to intensity of the stimulus,
information about the spot of its application. Thus, from tha
point of view of information content, new dimensions are added
when a set of transducers is geometrically ordered in space.
Eqn (5) needs a refinement which is quite important. Namely,
the set of transducers is discrete so that the equation of the
sensory surface corresponds exactly to the following form:

0<r<n

e=f(p,rdx,sAy) O<s<m

6)
An important conclusion obtained from eqn (6) is that the
resolution rate in x and y is finite. This fact corresponds with
the actual situation in biological systems where resolution rates
of sensory elements are always finite. How this fact allows
extraction of important informations about the object held in
the hand, is now explained; only informations flowing directly
through the communication channel of Figure 2 are in mind,
and not those which can be obtained, for instance, by direct or
remote visual examination of the object.

The first kind of object identification made possible by
sensory elements eqn (6) regards the shape. When the artificial
hand, covered with the pressure sensitive surface, is closed
around an object, a one-to-one correspondence between the
electrical waveform and the shape of the object is established.
This fact can best ‘be understood by taking two characteristic
geometric forms. It is assumed that objects to be identified
by the artificial hand have circular and rectangular cross-
sections as represented in Figure 5(a) and (b). Associated
waveforms for the two types of shapes are seen in Figure 6.
It hasalso been assumed that 7 is variable but s = sy, is fixed. The
restriction is not important. If different y sections of the hand
are taken then the waveforms of Figure 6 become functions of s
as well. They may or may not be identical, depending on the
fact if the object keeps cross section unchanged along y axis.
The correspondence of electrical waveforms in Figure 6 with
object shapes in Figure 5 is evident from eqn (6). Namely, in the
case of the circular cross section more or less the whole surface
is equally exposed to pressure. Thus, e = const. for all . The
constant voltage output for circular cross section requires an
even hand surface, but a slightly uneven hand surface will not
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affect the object identification. In this case the parts of the hand
which are not in contact with the object will provide for a gap
in Figure 6(a). Since there is a large amount of redundancy in
this identification process, the general information obtained
will be adequate even if an ideally flat sensory surface is not
assumed. In the case of cross section with the edges, however,
there will be, ideally, two subsets of »

Ry=r,
Ry=7r; s=5 @)
Ri+Ry=R={r,rs}
The location of r, corresponds geometrically to _the spots of
hand contacts with the edges of the object, and rp is the com-

plementary set of R with respect to R;. Now, the equation of the
characteristic waveform reads

if reR,
ifreR, e=0

5=5,

e=1

Examination shows how this information regarding object
shape can be sent back to the central control place by the com-
munication channel of Figure 2. The problem is technically trivial
since one needs a two-dimensional scanning system. To make it
clear, refer to the sensitive hand surface in Figure 4. Since for the
purpose of pure shape identification only the distinction between
activated and non-activated spots is important, the output of
the artificial hand surface is a binary matrix e, =1 or 0,
according to eqn (7). The transmission to the remote control
place is simply solved, for instance, by a magnetic core selection
matrix. )

A further interesting tactile information may be obtained
from the pressure sensitive surface. That is, if the number of
object edges is increased the distinction between circular and
polygonal shapes will be lost. If the resolution rate is correspond-
ingly increased, i.e., 4x — 0, one will be able to map into the
electrical form the roughness of the surface with which the hand
is in contact. Thus, the waveform of Figure 6(b) contains both the
information about shape or roughness of the object depending
on the resolution of the sensory surface, i.e., the magnitude
of Ax. Although these two tactile effects are distinct from the
sensory point of view, mathematically they are equivalent;
the only difference being the order of magnitude of Ax. Actually
both effects are the consequence of the discrete structure of the
sensory surface. An important condition for practical realization
of such a discrete pressure sensitive surface is a high resolution
rate of individual transducer elements. This implies the mechan-
ical isolation of the adjacent elements so that they can react in
a distinct way, although being geometrically close. One is led
therefore to the design of very thin elastic surfaces.

At the beginning of the paper it was outlined that the
principles exposed here have general significance. Besides their
theoretical value of giving mathematical insight into the problem
of remote object identification without visual feedback, there
are other fields of application. Namely, in the existing foot and
leg prostheses the role of the shape identification of the
ground for control purposes has been completely neglected.
However, the application of the pressure sensitive discrete
surface of Figure 4 allows easily the coordination of different
phases of human gait according to which part (front or back)
of the foot is in touch with the ground; further, hitting of

390/3

Declassified in Part - Sanitized Copy Approved for Release 2013/02/13 : CIA-RDP80T00246A023400480001-9



390/4

obstacles can easily be detected in the electrical form and used
for control purposes as well. The idea of object identification
by sensory elements exposed here can therefore be exploited for
variety of control purposes.

In the design of hand prostheses evidently there is no need
for object identification by tactile feedback since it is more
simple to use visual information for this purpose. However,
in the remote handling problems, due to the fact that communica-
tion capacities may become critical, the relative importance of
tactile and visual feedback may change. It is hard to give a
precise evaluation since all the existing designs have relied
exclusively on visual feedback (television). A general selection
criterion is not possible since the application conditions must
be taken into account. However, for simple remote identification
problems (size, shape, weight) sensitive surfaces may serve the
purpose. It should be remembered that according to Figure 6
the tactile feedback needs just a few y.lines to be sent over
communication channel. Thus a great reduction of channel
capacity .is possible in certain instances. In other instances it
may occur that a combined identification system represents
the best solution. As has been written, it is not the intention to
discuss the absolute merits of visual or tactile information
feedback, but to stress the fact that more general identification
methods when designing remote handling control systems
should be used.

Conclusions

In this paper several questions have been raised. First of all,
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the importance of improving the actuators used in servo-
mechanisms has been shown. It is proposed to solve this pro-
‘blem in an unconventional way by using special mechanical
shapes of the actuator covered with sensitive surface. Such an
approach has the merit of showing the transition phases of a
conventional positioning servo-mechanism to an artificial hand.

In addition, the identification problem of automatic control
theory is presented in a new way. The notion of the transfer
function for linear systems, or other methods of identification
for non-linear systems are in current use. However, in the future
development .of automatic control systems many situations
may arise where the identification problem cannot be solved
satisfactorily by the existing methods. Object identification by
shape, surface characteristics and other ways such as those
occurring in biological systems will also be needed in engineering -
systems.

Looking at the identification problem in engineering from
a broader point of view allows the synthesis of new cybernetic
control systems which can duplicate functions of biological
structures in a very efficient way.
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