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ABSTRACT

Optical transfer functions have been applied to both the
predlctlon and the analysis of image quality in photo-optical systems
with considerable success, but there are limitations. The optical
image quality depends on the wavefront shape, the object's apparent
'modulation; and image motion, for which optical transfer functions
‘can easily be applied. However, the film effect on the optical image
is non-linear and requires treatment by other techniques, Since
'aeriallﬁhotography is obtained in broad'wavelength regions,vthere is
a further requirement to consider chromatic effects, and for this,

- polychromatic optical transfer functions are now being applied. The
prediction Qf photographic image quality requires assumptions and a
probabilistic treatment is needed. The analysis of photographic image
quality for diagnosis of camera performance requires a comparison of
the actual image with the expected image. Examples will illustrate

- these points,
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I. INTRODUCTION

There are basically two different problems in considering photo-

graphic image quality. The first problem is prediction, that is, estimating
- how well a photo-optical system will perform. The second problem is analysis,

that is, deciding how well it did perform.

" In predicting photographic image quality, the concern is to seléct_
among candidate photo-optical systems, to permit intelligent design tradeoff,

or to create specifications for subsequent acceptance testing. In the process

- of making predictions, it is necessary to deal with unknowns which require

some assumptions, and it is generally desirable to recognize that the variabil-

ity of some aspects is best handled by a probabilistic treatment.

Analysis of photographic image quality is important for the con-

‘duct of acceptance tests and to provide diagnostic clues so that residual de-

fects may be located. Analysis for acceptance testing is quite straightforward,

being-eséentially a "go-no go" process, Analyzing photographic images to pro-

x _vide a clue to system imperfections is a difficult task but it can be success-
.‘fully accbmplished if the analyst has a thorough understanding of the photo-
. optical system so that he knows the orientation and plausible magnitude of image

_quality losses attributable to each subsystem,
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II. THE PHOTOGRAPHIC PROCESS:

In aerial photography a linear treatment can be applied between

‘the ground object and the aerial (or exposure) image, but a non-linear treat-

: A 1
ment is required between the aerial image and the photographic image. ’

The linear portion of the photographic process is concerned with

" the modulation (or contrast) of the object and its subsequent alteration by

non-image forming light received at the focal plane. The linear portion also
involves the optical transfer function of the imaging process, and here we
are concerned with a multiplication of two transfer functions, one due to the

optical wavefront and a second due to an image motion.

Optical wavefronts are rather like a mermaid. Everyone presumably
knows what they are but we have not actually got one that we can exhibit.

For our purposes now, the important characteristics are depicted in Figure 1.

- In Figure 1A, a point on the ground is shown emitting a spherical wavefront.

This passes through a homogeneous atmosphere and arrives at a perfect lens
where it is reshaped to a spherical wavefront convergent on the Gaussian image
point. This produces an intensity distribution with Airy rings as illustrated
at the top of the figure. In Figure 1B, the intervening atmospheric turbulence
ié shown to distort the perfectly spherical wavefront which then is still some-
what deformed after transmission through the lens, and this produces a somewhat
unsharp image. In Figure 1C, we illustrate a highly artificial atmospheric
distortion putting a notch in the wavefront. In Figure 1D the atmosphere is
perfect but the lens somewhat imperfect and the wavefront which results is
still imperfect, 1In Figure lE there is illustrated an imperfect wavefront and
imperfect lens with imperfections exactly compensating each other, and this
would produce a perfect wavefront imaging to a diffraction pattern. This
latter situation is highly improbable, of course, but does illustrate the point
that it does not matter where a wavefront becomes distorted, but it is only the
shape of the wavefront in the exit pupil of the lens which determines the in-

tensity distribution in the image.
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In Figure 2 the means by which an optical transfer function is

computed is shown.3 While the equations look imposing, it is a straight-

 forward computation and simply means that the shape of the wavefront in the

exit pupil contains all of the information about the optical behavior of the

lens.

. . 5
Image motion has been extensively treated elsewhere. »6 The
points to bear in mind now are that this transfer function is independent of
the wavefront transfer function and that it depends only on the relative

motion of the image and the film.,

The linear relétion is illustrated in Figure 3. An object is
imaged through the atmosphere, through the boundary layer (which is a locally
disturbed atmosphere near the photographic airplane), through the window in
the photographic airplane, through the camera lens, where there may be some

imperfections in focus and image motion, to produce an aerial image which im-

pinges on the film while the shutter is open., The three independent factors

which influence this imaging process are the reduction of the object's in-

herent modulation (MO) by scattered and added non-image forming 1ight,1’7¢,

~ and the two transfer functions which we have just discussed, the product of

which is T(k).

The film is non-linear so a sinusoidal intensity distribution is
not transmitted as a sinusoid.8 In addition, film is grainy and effectively
adds noise to an otherwise generally smooth intensity dist:ribution.z"g-11
The most satisfactory way to treat this difficulty depends on the consideration
at hand. 1In predicting resolution, for instance, modulation detectability

12,1
curves have proven quite satisfactory. 2,13

Other treatments are possible,
but, essentially, the prediction of the transmittance of the film depends on
knowing ﬁhe aerial image intensity distribution impinging on the film, and
secondly the exposure of this with respect to the characteristic curve. With
this information it is possible to predict the mean transmittance of the film,

and then noise may be added to this statistically.
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III. POLYCHROMATIC OPTICAL TRANSFER FUNCTIONS:

Lenses are generally designed to give a good image in a single
monochromatic line, typically the sodium (nD) line in the middle of the
photographic region. Then, as illustrated in Figure 4, the design is changed
to provide good color correction at two other wavelengths, typically the
mercury (ne) and hydrogen (nC) lines, The designer will very often examine
the modulation transfer functions at each of these wavelengths, and, in effect,
the phase transfer function by examination of the lateral color. But, in
aerial photography, lenses work over a continuous spectral region with a rel-
ative intensity that is determined by the scene illumination, the spectral
reflectance of the scene, the spectral transmittance of the lens-filter com-
bination, and the spectral sensitivity of the film. Because of this it is
desirable to compute an optical transfer function which is descriptive of the

behavior of the optical system in this entire spectral region.

To provide an example, we will report on a study of J. G. Baker's
Geocon lens,14 Figure 5. As shown in Figure 6 the modulation transfer function
varies considerably with wavelength. This lens is a severe example of chro-
matic dependence because it has so many glass types to achieve a very wide

field, flat focal plane, large relative aperture and low distortion.

As shown in Figure 7, we use four steps in computing polychromatic
15
)

The first three are the same steps which are necessary to compute the mono~

transfer functions. (An alternative technique has also been discussed.

chromatic transfer functions while the last step provides an approximate
polychromatic transfer function. To investigate the approximation, we apply
Simpson's Rule at 3, 5, 7, 9, 11 and 13 wavélengths distributed in the oper=-
ational spectrum, as shown in Figure 8. For this lens, the on-axis results
are shown in Figure 9, and some off-axis results in Figure 10. 1In this
particular instance, the polychromatic transfer functions computed with nine

wavelengths would be satisfactory for most purposes,
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Another problem which arises in testing of lenses is that the
laboratory tests are sometimes carried out using spectral regions which are
different- than the operational spectrum. For instance, as shown in Figure 11,
using a tungsten source and a photoelectric detector produces a relatively
blue spectrum as opposed to the operational spectrum for which the previous
computations were made. In such a laboratory situation the polychromatic
transfer function of the lens may be quite different than the operational

case as shown in Figure 12,
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- IV, PREDICTION:

In making a prediction of camera performance, the analytical
-technique must be carried out in some straightforward method. The use of
polychromatic transfer functions (Section III) within the framework of the
- model of the photographic process (Section II) is a rational way to make
these predictions. However, there are two very important considerations
which must be properly understood. The first is that assumptions have to be
made. Second, performance prediction must be done probabilistically because
of inherent variability in the aerial photographic process, and, for this

large computers appear to be necessary.

In predicting performance to select among candidate systems or
make design choices, assumptions must be made principally about the magnitude
of residual image motion, and the magnitude of focus imperfections. For
instance, in a camera just being designed, the actual performance of final

mechanisms is unknown and must be estimated based on assumed design success,

The basis for probabilistic treatment has been described pre-
iriously.16 In recent yearsg, we have done considerable work to further evolve
the prediction technique, but it still requires critical testing before a new
repdrtvis justified., What is worth remembering is that the atmosphere, the
magnitude and direction of image motion and the optical transfer function are
all variables from one photograph to the next and in some cases from place

within a photograph. The variable behavior of film can be important.

Figure 13 distinguishes the differing requirements among the
 three main prediction purposes. Since acceptance tests may be carried out
under known conditions, assumptions may not be needed, but the real variance

of the measurement technique is crucial.17
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V. ANALYSIS

When photographic images are measured for resolution, there will
be a variation as illustrated in Figure 14, If the analysis is for the
purpose of acceptance tesﬁing, standard statistical techniques can be applied
to decide if the system is acceptable with respect to the predicted resolution

spread.

In the case of camera fault diagnosis in flight testing, the
situation is more imvolved because there is generally a larger variation in
- resolution and even more of this variation is not due to the camera. This is

summarized. in Figure 15 for both edge gradient analysisls’19

and resolution
targets. Statistical treatment by Student's t-test can be applied to determine
if the actual performance is significantly different from prediction., If the
difference is significant, the cause may be deduced by the clues catalogued

in Figﬁre 16, but it is also important to verify that the magnitude ié
plausible. It is not apparent that most diagnostic analysis is done this

carefully today, so we have the prospect of further advances in this area.
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