-	Approved For Release 2002/09/03 : CIA-RDP78B04747A002800020001-9	
_		
-		•
-		
ند	REPORT	STAT
-	MEASUREMENT OF PRESSURE DROPS	
	ACROSS STANDARD PIPE AND FITTINGS	
_		
-		
-		
-		
d		
		·
_		,
***	STATOTHR	

RM-133-65

February 1965

TABLE OF CONTENTS

Section		Page
1	Introduction	1-1
1. 1	Data Limitations	1-1
1, 2	Purpose and Objectives	1-1
2	Technical Discussion	2-1
2.1	Equipment and Instrumentation	2-1
2.2	Pressure Drop Experimentation	2-2
3	Conclusions	3-1
3.1	Pump Tests	3-1
3,2	Pressure Drop Tests	3-2
4	Recommendations	4-1
4.1	Continued Experimentation	4-1
References		
Appendices	·	

LIST OF ILLUSTRATIONS

Frontispiece		Page
Figure 2-1	Pressure Drop Test Apparatus	2-35
2-2	Test Rack - Pump, Gage, Manometer, and Flowmeter	2-37
2-3	Test Rack - Pump, Gage, Manometer, and Thermometers	2-38
2-4	Test Rack Apparatus and Inclined Manometer	2-39
2-5	Flowmeter Calibration Chart	2-41
2-6	Reynolds Numbers vs. Friction Coefficients	2-43
2-7	A p's for 90-Degree Elbows	2-45
2-8	∧ø's for 90-Degree Elbows	2-46
2-9	Λρ's for Tees	2-47
2-10	Ap for PVC Union	2-48
2-11	Ap for PVC Tee	2-49
2-12	p's for 90-Degree PVC Elbows	2-50
2-13	Dimensions of Sweep Elbows	2-51
2-14	↑p's for 45-Degree PVC Elbows	2-52
2-15	∆p for PVC Ball Valve	2-53
2-16	Ap for PVC "Y" Valve	2-54
2-17	∆p for PVC Plug Valve	2-55
2-18	∆p for PVC Coupling	2-56
2-19	∆p for PVC Pipe and Fittings	2-57
2-20	Fairing Tool	2-58

LIST OF TABLES

			Page
Table	2-1	Calibration Data and Reynolds Numbers	2-5
	2-2	Head Loss/100 Feet of Pipe (Unreamed)	2-7
	2-3	Head Loss/100 Feet of Pipe (Reamed)	2-7
	2-4	Head Loss for PVC Union (Unreamed)	2-9
	2-5	Head Loss for PVC Union (Reamed)	2-9
	2-6	Head Loss for PVC Tee - $\Delta p_1 p_2$ (Unreamed)	2-11
	2-7	Head Loss for PVC Tee - $\Delta p_1 p_3$ (Unreamed)	2-11
	2-8	Head Loss for PVC Tee - $\Delta p_1 p_2$ (Reamed)	2-13
	2-9	Head Loss for PVC Tee - Appp (Reamed)	2-13
	2-10	Head Loss for PVC 90-Degree Elbow (Unreamed)	2-15
	2-11	Head Loss for PVC 90-Degree Elbow (Reamed)	2-15
	2-12	Head Loss for PVC 90-Degree Flanged Elbow (Unreamed)	2-17
	2-13	Head Loss for PVC 90-Degree Flanged Elbow (Reamed)	2-17
	2-14	Head Loss for PVC 90-Degree Sweep Elbow (Reamed)	2-19
	2-15	Head Loss for PVC 45-Degree Sweep Elbow (Reamed)	2-19
	2-16	Head Loss for PVC 45-Degree Elbow (Unreamed)	2-21
	2-17	Head Loss for PVC 45-Degree Elbow (Reamed)	2-21
	2-18	Head Loss for PVC Ball Valve (Unreamed)	2-23
•	2-19	Head Loss for PVC Ball Valve (Reamed)	2-23
	2-20	Head Loss for PVC "Y" Valve (Unreamed)	2-25
	2-21	Head Loss for PVC "Y" Valve (Reamed)	2-25
	2-22	Head Loss for PVC Plug Valve (Unreamed)	2-27
	2-23	Head Loss for PVC Plug Valve (Reamed)	2-27
	2-24	Head Loss for PVC Coupling (Unreamed)	2-29
	2-25	Head Loss for PVC Coupling (Reamed)	2-29
	2-26	Head Loss for PVC Pipe and Fittings, Branch I (Unreamed)	2-31
	2-27	Head Loss for PVC Pipe and Fittings, Branch II (Unreamed)	2-31
	2-28	Head Loss for PVC Pipe and Fittings, Branch I (Reamed)	2-33
	2-29 Approve	Head Loss for PVC Pipe and Fittings, Branch II (Reamed) ed For Release 2002/09/03: CIA-RDP78B04747A002800020001-9	2-33

	Approved For Release 2002/09	/03 : CIA-RDP78B04747A002800020001-9
	_	ODENIADO
		OREWORD
	STATOTHR	
•	submits this re	port in compliance with Item 3.4 of the
STAT	Development Objectives of	This report should be read
STAT	in conjunction with Report	of which it forms part.
=		·

		•
ing i		
		
•		OTATOTI ID
		STATOTHR
	Approved:	
_		
-		

STAT

ABSTRACT

Pressure drops were measured and recorded, tabularly and graphically, for various polyvinyl chloride fittings and straight pipe, both before and after reaming and fairing all internal protrusions. All mensuration equipment was described in detail and calibration data were included. Numerous tests and calculations were performed on the pump to check its operation. Recommendations for further research, in the light of present findings, are appended.

Approved For Release 2002/09	/03 : CIA-RDP78	8B04747A00280	0020001-9
------------------------------	-----------------	---------------	-----------

SIAI	нАТ
------	-----

SECTION 1

INTRODUCTION

1. 1 DATA LIMITATIONS

	When the liquid bearing concept was first considered, the state-
	of-the-art in processor design required only the movement of film through
	the various steps of developing and fixing by means of rollers or sprockets.
•	Hydrodynamic and fluid mechanic complexities introduced by the new STATOTHR
, 	bearing, in which the film was supported on a liquid cushion, required
STATOTHR	engineers to depend heavily on available technical data - pump
	capacities, pipe and fitting losses, pressure drops through filters, and
	frictional coefficient buildup with photochemical deposits. Inadequacies
	in the published data parameters quickly became apparent when pump ca-
	pacities had to be virtually doubled to compensate for line losses, even
	though supposedly ample design safety factors had been incorporated.

1. 2 PURPOSE AND OBJECTIVES

One of the foremost objectives of the assignment was to satisfy the need for these missing parameters and provide, generally, a more complete technical documentation of fundamental engineering data germane to processor design. One important byproduct of the research program, then, was to eliminate rule-of-thumb calculations in which the pressure drop in a 45-degree elbow was assumed to be one-half of that for a 90-degree elbow, or that in a valve four times a 90-degree elbow, with a safety factor of 20 percent or better.

With the shortcomings of technical literature in mind, the objectives of the research project were formulated. The following list comprises the most important research objectives for this part of the program:

- 1) Check as many different fittings (including straight pipe) as feasible in the light of time and budget.
- 2) Begin experimentation on 1-1/4-inch rigid polyvinyl chloride (PVC) pipe and threaded fittings. Measure Δp with unburred fittings and pipe. Repeat tests with burred fittings and internal taper.
 - 3) Repeat tests outlined in objective (2) with socket-type fittings.
- 4) Repeat the series of tests with polished, sanitary stainless steel dairy pipe and fittings.
 - 5) Determine the effect of pump inlet pipe size.
 - 6) Determine the effect of restricted inlet pipe size.
- 7) Study input of pump, mechanical efficiency, losses, and the effect of a dropping head on pump output.
- 8) Make a long run breakdown test of pump, using actual photographic chemical solutions.
 - 9) Check the interrelationship of pump outlet angle on delivered gpm.
- 10) Make effectivity comparisons among various types of flowmeters rotameter, orifices, venturi, and newer types.

SECTION 2 TECHNICAL DISCUSSION

2. 1 EQUIPMENT AND INSTRUMENTATION

The pressure drop test apparatus is illustrated in Figures 2-1,

STATOTHR²⁻², 2-3, and 2-4. All instrumentation and fittings are described in detail

in Appendix F. A stainless-steel hold tank, on loan from

formed the core of the circulatory setup. From its center bottom outlet,

a 2-inch ID PVC pipe fed a 2-horsepower centrifugal pump.

On both the inlet and outlet sides of the pump, thermometer wells were provided for measuring T_1 and T_2 respectively. Unions were installed on both sides to enable easy removal of the unit without disturbing the rest of the apparatus. On the downstream side, a valved tee for drainage and a pressure gage to read P_1 were provided. The piping then led directly to a 1-1/4-inch ball throttling valve and the flowmeter, and from the latter to the remaining test apparatus. The test piping and fittings were all 1-1/4-inch PVC, with the exceptions noted (Appendix F). They were supported on two tiers by wooden racks.

The lower level was a straight run of pipe over 10 feet long; a riser led to the upper level and to a union leading to a tee. The left branch of the tee was arbitrarily designated Branch I and the right, Branch II. Each of these two branches returned to the hold tank. Branch I embodied three test fittings and Branch II, four. The wooden supporting racks were carefully leveled so that both the upper and lower stages were precisely horizontal. Each fitting was provided with an upstream and downstream pressure tap for Δp measurement. These consisted of holes drilled and tapped for 1/8-inch standard pipe thread. The tapping depth was controlled so that when the flanged brass tubing adapters were screwed in, their bottoms would be flush with the inside of the pipe in accordance with Hydraulic

Institute Standards (Ref: 11). The test apparatus was completely assembled from a scale drawing by two shop plumbers. The only specific instruction given them was to use standard shop practice in cutting, fitting, and threading pipe and to use "Proseal" (flexible two-component epoxy mixture) in making up the joints. The completed test rack closely approximated the STATOTHR assembly technique incorporated in any standard gear.

All pressure drops were measured with either a vertical U-tube manometer or a sensitive inclined mercury manometer. The tank temperature, $T_{\rm q}$, was measured with an accurate Centigrade thermometer.

2.2 PRESSURE DROP EXPERIMENTATION

The first step in the research project was the calibration of the flowmeter. This was done by accurately timing, with a stopwatch, the filling of a standard bucket whose exact capacity had been measured. Enough runs were made at each 2 gpm flow increment on the rotameter scale to assure an accurate mean average. The data are presented graphically in Figure 2-5 and tabularly in Table 2-1. Based on the same data, the Reynolds numbers were calculated and plotted against friction coefficients (both are dimensionless) for PVC pipe (Figure 2-6). The data for various commercial pipes and tubes were obtained from the literature (References 1 and 2). It is interesting to note how much less the coefficients of friction are for plastic than for glass, supposedly the epitome of smoothness.

The pressure drops and Reynolds numbers were measured on the horizontal 10.020-foot section of the 1-1/4-inch PVC pipe (lower level). So that the total pressure drop for the section could be measured simultaneously, a long 1/4-inch diameter copper tube was connected to the upstream pressure tap and brought to the downstream end. When all lines were bled free of air, the readings were taken on the inclined mercury manometer.

Time, rate of flow, temperature, inlet pressure, and pressure drop were recorded in a typical series of tests. The flow was changed from maximum to minimum rotameter readings in 5 gpm increments. Enough rechecks were made to assure reproducibility of readings. As the tests progressed, it was found better practice to proceed from the lowest to the highest flow reading. Use of this technique resulted in less overall temperature variation (since the tank was nonadiabatic) for a series which might take as long as 26 minutes. Corrections for density, viscosity, etc., with temperature were made in the observed results (Appendix A).

Since the accurate calorimetric thermometers used were of the total immersion type, stem temperatures were recorded during the early runs. A sample calculation (Appendix B) showed the stem correction to be negligible in the 69° to 77°F ambient operating temperature range used, so it was neglected.

Pressure drops on the 1-1/4-inch tee were recorded across each leg independently, with the opposite leg blocked off, and again with both legs open. Data obtained for pressure drops with both legs of the tee open were omitted because their intervariation was slight and in all cases, the readings were less than those with one leg blocked off. Since design would be based on maximums, these data lost their significance. Note that the pressure drops across the leg leading to Branch II were higher than those leading to Branch I. Two explanations are possible: 1) An internal aberration in the plastic die not removed by the burring operation was responsible, or 2) The increased pressure drop in Branch II (in all cases higher than Branch I) was reflected back to the leg of the tee.

In only three instances could comparable data be found in published charts, those for straight pipe, a 90-degree elbow, and a tee. These are presented, together with our data, in Figures 2-7, 2-8, and 2-9. Some of the proprietary data seems overly optimistic. Note that the

STATOTHR

data is not exactly comparable, since the closest size to our 1-1/4-inch ID pipe is their 1.402-inch stainless.

The remaining data are presented graphically in Figures 2-10 through 2-19 and tabularly in Tables 2-2 through 2-20. Each set of data presents a comparison between pressure drops in the fittings with unreamed pipe and with reamed pipe. The latter data were obtained in the following manner. After all tests were made on the original setup, the components were carefully identified and the apparatus completely disassembled. All fittings were internally deburred and each end of the connecting pipes faired with a special tool (Figure 2-20). The apparatus was then reassembled with Proseal in exactly the original order and orientation. With no other change, the flow was increased 6.7 percent. This result points to possible economies in reduced pump sizing on large production machines.

When the test apparatus was first assembled, a source of sweep

fittings to check against the common, standard pipe thread, short-turn types could not be located. Continued market research uncovered a line of specialized electrical conduit fittings manufactured by _______ The tests were subsequently performed on two of these PVC Schedule 40 conduit turns (Figure 2-13) fitted with female adapters, slip to thread. The pressure drops in the 90-degree sweep elbow (Figure 2-12 and Table 2-14) were almost exactly equal to those of a straight pipe of equivalent length. In neither the case of the 45-degree sweep nor that of the short-turn elbow were the pressure drops half of those of the 90-degree elbow. They were more. This phenomenon cannot be explained by inaccuracies of mensuration (see discussion of errors, Appendix C). The appendix also includes calculations of pump heads and effect of discharge angle on delivery.

STATOTHR

STAT

TABLE 2-I FLOWMETER CALIBRATION DATA AND REYNOLDS NUMBER CAL CULATION

Flowmeter Reading gpm	Measureď Flow gpm	T ₂ °F	ρ gm/ml	ft ³ /sec	V ft/sec	1/V ² sec ² /ft ²	f	μ lb/ft sec	l/μ ft. sec./lb	. lb./ft ³	R _€
41.2	40.8	71.05	.99720	.0893	10.36	.00932	.00218	.000608	1645	62.25	1.11 × 10 ⁵
39.6	40.8	72.55									
37.7	38.2	72.75	.99718	.0833	9.66	.01072	.00214	.000607	1649	62.25	1.04 × 10 ⁵
35.8	38.2	7 2. 85									
33.9	33.8	72.95	.99716	.0724	8.40	.01417	.00215	.000606	1651	62.25	9.05 x 10 ⁴
32.1	31.2	72.45									
30.2	29.6	72.55									
28.3	26.9	72.65	.99716	.0618	7.17	.01945	.00228	.000605	1652	62.25	7.73×10^4
26.3	26.3	72.70									
24.4	23.7	72.85									
22.5	21.5	72.90	.99714	.0509	5.90	.02873	.00349	.000605	1654	62.25	6.37 x 10 ⁴
20.6	19.7	73.00									
18.7	18.2	73.10	.99713	.0400	4.64	.04645	.00259	.000604	1655	62.25	5.01 x 10 ⁴
16.7	15.8	73.20									
14.7	13.9	73.30	.99712	.0291	3.38	.08754	.00315	.000603	1657	62.25	3.65 x 10 ⁴
12.8	11.1	73.45									
10.9	10.3	73.50									
9.0	7.9	73.55	.99710	.0182	2.11	.2246	.00332	.000603	1660	62.25	2.29 x 10 ⁴
6.9	7.2	73.65									
4.9	4.5	73.75									
_	2.6	74.05	.99706	.0071	823	1.476	.00417	.000600	1667	62.25	8.95×10^{3}

Table 2-2 Head Loss In Feet Of Water/100 Feet Of 1-1/4-Inch PVC Pipe

/					(U:	areamed)					
Meter Flow gpm	Corrected gpm	T ₂ °F	P ₁ psi	∆ Zero High		Total	Total/2	Pt. Water x 13.56 -1	Ft. Loss/		
40.6	41.1	76.08	13.9	.03 2.95	.54 4.25	6.63	3.32	3.48	10.02		
37.7	37.7	76.21	14.4	2.46	3.78	5.67	2.84	2.97	34.73 29.64		+
28.3	32.6	76.32	15.1	1.86	3.00	4.29	2.15	2.25	22.46	-	
23.5	27.8	76.39	15.7	1.45	2.44	3.32	1.66	1.74	17.37		
18.7	18.0	26.45 76.56	16.2 18.7	1.07	1.95	2.45	1.23	1.29	12.87		
13.8	13.0	76.62	17.3	.68	1.47	1.58	.79	.83	8.28		
9.0	8.2	76.76	17.8	.40	1.19	1.02	.51	.53	55.29		
4.1	4.1	77.06	18.3	.03	.61	.41	.21	.22	2.19		
40.7	41.2	76.65	13.9	2.88	4.28	6.59	3.30	3,46	34.53		

Table 2-3
Head Loss In Feet Of Water/100 Feet Of 1-1/4-Inch PVC Pipe

			Т	1	(Re	eamed)					
				-						T +	
43.2	44.3	70.30	13.6	.53 4.63	.03 3.57	7.64	3.82	4.00	20.00		
40.0 35.0	40.4	70.25	14.1	4.07	3.12	6.63	3.32	3.48	39.92	1	+
30.0	34.7 29.5	70.22	14.9	3.29			2.58	2.70	26.95		
25.0	24.4	70.15	16.0	2.57	1.86	2.87	1.94	2.03	20.26		
20.0	19.3	70.13	16.5	1.48	.96	1.88	.94	1.51	15.07 9.78		+
15.0	9.2	70.15 70.15	16.9 17.8	1.04	.59	1.07	.54	.57	5.69		
5.0	4.8	70.13	18.2	.74	.32	.50	.25	.26	2.59		
							.07	.07	.70		-

Approved For Release 2002/09/03 : CIA-RDP78B04747A002800020001-9

2-7

STAT

. [./.

Table 2-4
Head Loss In Feet Of Water For 1-1/4" Rigid PVC Union

(Unreamed Pipe)

							(Unr	eamed Pipe)				
Meter Flow gpm	Corrected gpm	T ₂	P _l psi	Zero	∆ ¢ High	Zero	Low	Total	Total/2	Ft. Water x <u>13.56-1</u> 12	Correction Factor Ft. Loss/Inch	Distance	Corrected Reading Hd Loss in Ft.
40.5	41.0	70.33	13.8	.25	1.14	.09	.57	1.37	.69	.72	.0297	43	.29
35.0	34.7	70.35	14.6		.90		.50	1.06	.53	.55	.0211	30	.25
30.0	29.5	70.42	15.4		.77		.43	.86	.43	.45	.0158	23	.22
25.0	24.4	70.47	15.9		. 67		. 37	.70	.35	.37	.0117	-,17	.20
20.0	19.3	70.55	16.6		. 57		. 32	.55	.28	.29	.0082	12	.17
15.0	14.2	70.62	17.1		. 47		. 27	.40	.20	.21	.0051	07	.14
10.0	9.2	70.67	17.6		.40		.23	.29	.15	.16	.0024	03	.13
5.0	4.8	70.69	18.1		.33		.23	.22	.11	.11	.0009	01	.10
						-							
							1						

Table 2-5

Head Loss In Feet Of Water For 1-1/2" Rigid PVC Union
(Reamed Pipe)

43.2	44.3	70.61	13.6	.50 1.48	3 .08 .52	1.42	.71	.74	.0333	48	.2
40.0	40.4	70.56	14.2	1.37	,43	1.22	.61	.64	.0289	42	. 2
35.0	34.7	70.55	15.0	1.17	. 36	.95	. 48	.50	.0225	32	.1
30.0	29.5	70.50	15.6	.98	.28	.68	.34	.36	.0169	24	.1
25.0	24.4	70.42	16.0	.85	.25	.52	.26	.27	90126	18	.0
20.0	19.3	70.40	16.7	.72	.19	.33	. 17	.18	.00816	12	.0
15.0	14.2	70.40	17.1	.62	. 16	.20	.10	.11	.00475	07	.0
10.0	9.2	70.40	17.7	.55	.12	.09	.05	.05	.00217	03	.0
						 					

S

 $\label{eq:table 2-6}$ Head Loss In Feet Of Water For 1-1/4" Rigid PVC Tee

(\$\delta_1 \delta_2\$ For Unreamed Pipe) Branch I Open - Branch II Closed

Meter Flow gpm	Corrected gpm	T2 °F	P ₁ psi	Zero Hig	ø ø ₂ h Zero	Low	Total	Total/2	Ft. Water x 13.56 12 -1	Correction Factor Ft. Loss/In.	Tab Distance x14.45	Corrected Reading Hd Loss in Ft.
40.5	41.0	70.52	13.9	.25 2.9	.09	2.44	5.00	2.50	2.62	.0297	43	2.19
35.0	34.7	70.56	14.7	2.2	i	1.97	3.89	1.95	2.04	.0211	31	1.73
30.0	39.5	70.58	15.6	1.7		1.48	2.91	1.46	1.53	.0158	23	1.30
25,0	24.4	70.62	15.8	1.3	5	1.12	2.14	1.07	1.12	.0117	17	.95
20.0	19.3	70.66	16.6	1.0)	.80	1.46	.73	.76	.0082	12	.64
15.0	14.2	70.73	17.1	.7	:	.54	.92	.46	.48	.0051	07	.41
10.0	9.2	70.82	17.5	.5		.36	.53	.27	.28	.0024	03	.25
5.0	4.8	70.94	18.2	.3	<u> </u>	.21	.22	,11	.12	.0009	01	.11

Table 2-7
Head Loss In Feet Of Water For 1-1/4 Rigid PVC Tee

	1			Zero	∠ø ₁ High						×14.55	
40.0	40.4	71.33	13.8	.26	3.30	.10 2.64	5.58	2.79	2.92	.0289	42	2.50
35.0	34.7	71.42	14.8		2.66	2.34	4.64	2.32	2.43	.0211	31	2.01
30.0	29.5	71.45	15.5		2.13	1.74	3.51	1.76	1.84	.0158	23	1.61
25.0	24.4	71.47	16.1		1.62	1.39	2.65	1.33	1.39	.0117	17	1.22
20.0	19.3	71.52	16.7		1.20	1.02	1.86	.93	.97	.0082	12	.85
15.0	14.2	71.58	17.2		.89	.69	1.22	.61	.64	.0051	07	.57
10.0	9.2	71.62	17.6	1	.60	. 42	.66	.33	.35	.0024	03	32
5.0	4.8	71.75	18.0		. 42	.26	.32	.16	. 17	.0009	01	.16

STA

Table 2-8 Head Loss In Feet Of Water For 1-1/4" Rigid PVC Tee (Δ P₁ P₂ For Reamed) Branch I Open - Branch II Closed

Meter Flow gpm	Corrected gpm	T ₂ °F	P ₁ psi	Zero	ΔP ₁ High	p ₂ Zero	Low	Total	Total/2	Ft. Water x 13.56 -1	Correction	Tab Distance	Corrected Reading Hd
43.2	44.3	70.82	13.8	.51	3.28	.08	2.63	5.32	2.66	2.78	Ft. Loss/In.	× 14.45	Loss in Ft.
40.0	40.4	70.80	14.3		2.85		2.24	4.50	2.25	2.35	.0333	42	2.30 1.93
35.0	34.7	70.73	15.0		2.33		1.76	3.50	1.75	1.83	.0225	33	1.50
30.0	29.5	70.70	15.6		1.83		1.32	2.56	1.28	1.34	.0169	24	1.10'
25.0	24.4	70.67	16.0		1.47		1.00	1.88	.94	.98	.0126	18	.80
20.0	19.3	70.66	16.6		1.09		.68	1.18	. 59	.62	.00816	12	
15.0	14.2	70.71	17.1		.87		. 44	.72	.36	.38	.00475	07	.50
10.0	9.2	70.70	17.7		.66		.27	.34	. 17	.18	.00217	03	.31
5.0	4.8	70.90	18.1		.53		.13	.07	.04	.04	.00058	01	.15
													.00

Table 2-9
Head Loss In Feet Of Water For 1-1/4" Rigid PVC Tee

		T	`	△P ₁ P ₂ For Re	amed) Branch	I Closed -	Branch II Op	en			
								-			
42.7	43,7	69,38	13.8	.51 3.38	.08 2.71	5.50	2.75	2.88	.0327	48	2.4
40.0	40.4	69.38	14.2	3.02	2.41	4.84	2.42	2.58	.0289	42	2.1
35.0	34.7	69.37	14.9	2.46	1.89	3.76	1.88	1.97	.0225	33	1.6
30.0	29.5	69.37	15.5	1.97	1.46	2.84	1.42	1.49	.0164	25	1.2
25.0	24.4	69.38	16.0	1.54	1.07	2.02	1.01	1.06	.0126	18	.88
20.00	19.3	69.40	16.6	1.20	.73	1.34	.67	.70	.00816	12	.5
15.0	14.2	69.40	17.1	.97	.51	.89	.45	.47	.00475	07	.40
10.0	9.2	69.55	17.6	.72	. 30	.43	.22	.23	.00217	03	.20
5.0	4.8	69.60	18.2	.55	.13	∘09	.05	.05	.00058	01	.0.
		L									-

OT 4

 $Table \ 2\text{--}10$ Head Loss In Feet Of Water For 1-1/4" Rigid PVC $\ 90^{\circ}$ Elbow

(Unreamed Pipe)

Meter Flow	Corrected gpm	T2 °F	P ₁ psi	ے Zero High		Total	Total/2	Ft. Water x 13.56 - 1	Correction Factor Ft. Loss/In.		Corrected Reading Hd Loss in Ft.
40.5	41.0	69.97	13.8	.50 2.76	.05 2.12	4.33	2.17	2.27	.0297	46	1.81
35.0	34.7	70.06	14.7	2.19	1.62	3.26	1.63	1.71	.0211	33	1.38
30.0	39.5	70.12	15.3	1.73	1.21	2.39	1.20	1.26	.0158	24	1.02
25.0	24.4	70.17	15.9	1.38	.89	1.72	.86	.90	.0117	18	.72
20.0	19.3	70.22	16.6	1.05	.62	1.12	.56	.59	.0082	13	.46
15.0	14.2	70.31	16.9	.83	.40	.68	.34	.36	.0051	08	. 28
10.0	9.2	70.36	17.6	.63	.23	.31	. 16	. 17	.0024	04	.13
5.0	4.8	70.52	18.1	.52	.13	.10	.05	.05	.0009	01	.04
								-			

 $Table \ 2-11$ Head Loss In Feet of Water For 1-1/4" Rigid PVC 90° Elbow

(Reamed Pipe)

					•	incu ripe,					
						•					
43.2	44.3	71,66	13.8	.37 2.38	.20 1.98	3.79	1.90	1.99	.0333	51	1.48
40.0	40.4	71.65	14.3	2.05	1.72	3.20	1.60	1.68	.0289	45	1.28
35.0	34.7	71.65	14.9	1.64	1.33	2.40	1.20	1.25	.0225	35	.90
30.0	29.5	71.63	15.6	1.35	1.09	1.87	.94	.99	.0169	26	.,73
25.0	24.4	71.64	15.9	1.12	.77	1.32	.66	.69	.0126	19	.50
20.0	19.3	71.65	16.5	.81	.62	.86	.43	.45	.00816	13	. 32
15.0	14.2	71.65	16.9	.65	. 47	.55	.28	.29	.00475	07	,22
10.0	9.2	71.67	17.4	.47	.32	.22	.11	.12	.00217	03	.09
5.0	4.8	71.80	18.3	.40	.23	.06	.03	.03	.00058	01	.02

STAT

Table 2-12
Head Loss In Feet Of Water For 1-1/4" Flanged 90° Elbow

(Unreamed Pipe)

										Ft. Water	Correction	Tab	Reading Hd
Meter Flow	Corrected	T ₂	Pl		∆ High	ø Zero	Low	Total	Total/2	$\times \frac{13.65}{12} -1$	Factor Ft. Loss/In.	Distance x14.45	Loss in Ft.
gpm	gpm	°F	psi	Zero				3.50	1.75	1.83	.0291	43	1.40
40.2	40.6	69.44	14.1	.52	2.38	.08	1.72			1.39	.0211	31	1.08
35.0	34.7	69.48	14.7		1.96	-	1.29	2.65	1.33		.0158	23	.76
	29.5	69.53	15.5		1.53		.97	1,90	.95	.99		17	.55
30.0		69.56	15.8		1.26		.71	1.37	.69	.72	.0117		.33
25.0	24.4	69.63	16.6		.96		.49	.85	.43	.45	.0082	12	
20.0	19.3				.79		.35	.54	.27	.28	.0051	07	.21
15.0	14.2	69.67	17.0		.63		.22	.25	.13	.14	.0024	04	.10
10.0	9.2	69.74	17.6	+		+	.15	.07	.04	.04	.0009	01	.03
5.0	4.8	69.88	18.1	+-	.52	+	.10						
				+		-							
		1	1	1		1							

 $\label{eq:table 2-13}$ Head Loss In Feet Of Water For 1-1/4" Flanged 90 $^{\circ}$ Elbow

(Reamed Pipe)

					(iteai	ned Tipe/				I .	
		15	13.8	.39 2.37	.22 2.00	3.76	1.88	1.97	.0326	48	1.49
42.7	43.7	68.45	14.2	2.12	1.73	3.24	1.62	1.70	.0289	42	1.28
35.0	34.7	68.40	14.8	1.71	1.38	2.48	1.24	.95	.0225	33 25	.70
30.0	29.5	68.40	15.6	1.35	1.08	1.82	.91	.68	.9126	18	.50
25.0	24.4	68,36	16.1	.82	.62	.83	.42	.44	.00816	12	.32
20.0 15.0	19.3	68.36	17.1	.63	.44	.46	.23	.24	.00475	07	.17
10.0	9.2	68.43	17.7	.49	.32	.20	.10	.10	.00217	01	.02
5.0	4.8	68.50	18.2	.42	.25	.06	.03				
	I										

Table 2-14

Head Loss In Peet Of Water For 1-1/4" Rigid 90° Sweep Elbow
(Reamed Pipe)

Meter Flow	Corrected	т _з •с	P ₁		ø		•	Ft. Water × 13.56 12 -1	Correction Factor	Tab Distance	Corrected Reading Hd
gpm	gpm	°C	psi	Zero High	Zero Low	Total	Total/2	× 12 -1	Ft. Loss/In.	x14,45	Loss in Ft.
45.0	46.9	14.50	24.9	.38 1.32	.18 1.22	2.54	1.27	1.33	.0458	67	.66
40.0	40.4	14.42	25.6	1.18	1.10	1.72	.86	.90	.0225	43	. 47
35.0	34.7	14.34	26.4	.92	.90	1.26	.63	.66	.0225	33	.33
90.0	29.5	14.31	27.1	.81	.70	.95	.48	.50	.0169	25	.25
25.0	24.4	14.17	27.5	.67	.57	.68	.34	.36	.0126	18	.18
20.0	19.3	14.10	28.0	.57	.45	.46	.23	,24	.00816	12	.12
15.0	14.2	14.02	28.5	. 49	.34	.27	.14	.15	.00475	07	.08
10.0	9.2	13.93	29.1	.43	.26	.13	.07	.07	.00217	03	.04
5.0	4.8	13.85	30.0	.38	.21	. 03	.02	.02	.00058	01	.01
5.0	4.8										

Table 2-15 Head Loss In Feet Of Water For 1-1/4" Rigid 45° Sweep Elbow (Reamed Pipe)

	T	1			1	1	T	T	T		
								,		x 14.67	
45.0	46.9	15.46	24.8	.32 2.30	.18 2.10	3.90	1.95	2.04	.0458	67	1.37
40.0	40.4	15.42	25.5	1.73	1.57	2.80	1.40	1.47	.0289	42	1.05
35.0	34.7	15.34	26.4	1.43	1.22	2.15	1.08	1.13	.0225	33	.80
30.0	29.5	15.30	27.1	1.13	.96	1.59	.80	.84	.0169	25	.59
25.0	24.4	15.21	27.6	.93	.73	1.16	.58	.61	.0126	18	.43
20.0	19.3	15.18	28.1	.74	.55	.79	.40	.42	.00816	12	.30
15.0	14.2	15.15	28.5	.58	.38	.46	.23	.24	.00475	07	. 17
10.0	9.2	15.08	29.0	.46	.26	.22	.11	.12	.00217	03	.09
5.0	4.8	15.00	30.1	.40	.18	.08	.04	.04	.00058	01	.03
		1									

CTA:

(Unreamed Pipe)

							(011	reamed Pipe,	<u> </u>	12: 4:4			
Meter Flow gpm	Corrected gpm	T2 F	P ₁ psi		∆ø igh	Zero	Low	Total	Total/2	Ft. Water x 13.56 -1	Correction Factor Ft. Loss/In	Tab Distance x14.45	Corrected Reading Ho Loss in Ft.
40.2	40.6	70.27	13.9	.52 2.	74	.08	2.30	4.46	2.23	2.33	.0291	43	1.90
35.0	34.7	70.37	14.7	2.	22		1.76	3.40	1.70	1.78	.0211	31	1.47
30.0	39.5	70.41	15.3	1.	78	,	1.32	2.52	1.26	1.32	.9158	23	1.09
25.0	24.4	70.42	15.8	1.	38		.92	1.72	.86	.90	.0117	17	.73
20.0	19.3	70.51	16.6	1.	06		.61	1.09	, . 55	.58	.0082	12	.46
15.0	14.2	70.66	17.1		82		.39	.63	.32	.34	.0051	07	.27
10.0	9.2	70.66	17.5		64		.22	.28	.14	. 15	.0024	04	.11
5.0	4.8	70.77	18.1		53		.10	.05	.03	.03	.0009	01	.02

 $\label{eq:Table 2-17} Table \ 2\text{--}17$ Head Loss In Feet Of Water For 1-1/4 Rigid 45° Elbow

(Reamed Pipe)

		-									
									,		
42.5	43.4	69.17	13.6	.37 2.34	.20 2.18	3.95	1.98	2.08	.0324	48	1.60
40.0	40.4	69.15	14.2	2.08	1.93	3.44	1.72	1.80	.0289	42	1.38
35.0	34.7	69.13	14.9	1.76	1.58	2.77	1.39	1.45	.0225	33	1.12
30.0	29.5	69.08	15.6	1.38	1.22	2.03	1.02	1.07	.0169	25	.82
25.0	24.4	69.07	16.2	1.05	.91	1.39	.70	.73	.0126	18	.55
20.0	19.3	69.07	16.6	.81	.67	.91	.46	.48	.00816	12	.36
15.0	14.2	69.10	17.1	.62	. 48	.53	.27	. 2.8	.00475	07	.21
10.0	9.2	69.15	17.6	. 47	.32	.22	.11	.12	.00217	03	.09
5.0	4.8	69.20	18.2	.38	.23	.04	.02	.02	.00058	01	.01
							•				

(Unreamed Pipe)

Meter Flow gpm	Corrected gpm	T ₂	P ₁	Zero H	∆ø lgh Ze	ero Low	Total	Total/2	Ft. Water	Correction Factor	Distance	Corrected Reading Ho
40.5	41.0	69.67	13.8			05 1.26	2.60	 	12 -1	Ft. Loss/In.	x 16.50	Loss in Ft.
35.0	34.7	69.75	14.7				,	1.30	1.36	.0297	49	.87
30.0	29.5	69.81	15.4		54 25	.98		.99	1.04	.0211	35	.69
25.0	24.4	69.87	15.9			.73	1.43	72	.75	.0158	26	.49
20.0	19.3	69.93	16.6		02 83	.65		.56	.59	.0117	19	.40
15.0	14.2	69.96	17.1		68		.66-	.33	. 35	.0082	14	.21
10.0	9.2	70.03	17.4			.28	.41	.21	.22	.0051	08	.14
5.0	4.8	70.21	17.9		57	.18	.20	.10	.10	.0024	04	.06
	4.0	70.21	17.9	•	50	.13	.08	.04	.04	.0009	01	.03
									-			
					_1							

 $\label{eq:table 2-19}$ Head Loss In Feet Of Water For 1-1/4" Rigid PVC Ball Valve

							(Rea	med Pipe)					
													,
43.2	44.3	67.86	13.6	. 37	1.27	.19	.88	1.59	.80	.84	.0333		
40.0	40.4	67.82	14.2		1.12		.78	1.34	.67	.70	.0289	55	.29
35.0	34.7	67.80	14.9		.94		.65	1.03	.52	.54	.0225	37	.17
30.0 25.0	29.5	67.80	15.5		.77		.52	.73	.37	.39	.0169	28	.11
20.0	24.4	67.76	16.1	-	.65		.42	.51	.26	.27	0126	21	.06
	19.3	67.75	16.6		.54		.36	.34	. 17	.18	.00816	13	.05
15.0	9.2	67.77	17.1		.47		.28	.19	.10	.10	.00475	08	.02
5.0	4.8	67.75 67.90	17.6 18.3	+	.42		.23	.09	.05	.05	.00217	04	.01
					.37		.20	.01	.01	01	.00058	01	
											I		

Table 2-20

Head Loss In Feet Of Water For 1-1/4" Rigid PVC "Y" Valve
(Unreamed Pipe)

Meter Flow	Corrected	T ₂	P ₁		<u> </u>				Total/2	Ft. Water x 13.56	Correction Factor Ft. Loss/In.	Disconce	Corrected Reading Hd Loss in Ft.
Meter Flow	gpm	°F	pŝi			Zero			2.83	2,97	.0297	49	2.48
40.5	41.0	69.31	13.9		3.24		2.92	5.65	2.11	2,21	.0211	35	1.86
35.0	34.7	69.39	14.7		2.57		2.16	4.22		1.60	.0158	26	1.34
30.0	29.5	69.45	15.4		1.98	•	1.59	3.06	1.53	1.11	.0117	19	.92
25.0	24.4	69.51	15.9		1.50		1.12	2.11	1.06	.73	.0082	14	.59
20.0	19.3	69.56	16.6	-	1.13		.77	1.39	.70	.39	.0051	08	.31
15.0	14.2	69.62	17.1		.82		.43			.18	.0024	04	.14
10.0	9.2	69.72	17.6		.60		.25		. 17	.04	.0009	01	.03
5.0	4.8	69.85	18.1		.48	-	.11	.08	.04	.04	1.000		
7.0				-		-			+				
								1					

						(Rean	ned Pipe)					
			T	"								•
									1.00	0223	55	1.37
44.3	68.20	13.6	. 37	2.19	.19	2.02	3.65	1.83				1.18
		14.1		1.97		1.74	3.15	1.58	1.66			.94
				1.59		1.47	2.50	1.25	1.31			.65
						1.08	1.77	.89	.93	.0169		
29.5			-				1.24	.62	.65	.0126	21	.44
24.4	68.10		+					.41	.43	.00816	13	.30
19.3	68.07		-						.29	.00475	08	.2
14.2	68.11	17.1			+				.08	.00217	04	.04
9.2	68.15	17.8							,	.00058	01	.0
4.8	68.25	18.2		. 37	+	.23	.04	.02	1.02			
									1	1		
	19.3 14.2 9.2	40.4 68.16 34.7 68.12 29.5 68.10 24.4 68.10 19.3 68.07 14.2 68.11 9.2 68.15	40.4 68.16 14.1 34.7 68.12 14.8 29.5 68.10 15.6 24.4 68.10 16.2 19.3 68.07 16.6 14.2 68.11 17.1 9.2 68.15 17.8	44.3 68.20 14.1 34.7 68.12 14.8 29.5 68.10 15.6 24.4 68.10 16.2 19.3 68.07 16.6 14.2 68.11 17.1 9.2 68.15 17.8	40.4 68.16 14.1 1.97 34.7 68.12 14.8 1.59 29.5 68.10 15.6 1.25 24.4 68.10 16.2 .98 19.3 68.07 16.6 .75 14.2 68.11 17.1 .58 9.2 68.15 17.8 .43	44.3 68.20 13.0 15.7 40.4 68.16 14.1 1.97 34.7 68.12 14.8 1.59 29.5 68.10 15.6 1.25 24.4 68.10 16.2 .98 19.3 68.07 16.6 .75 14.2 68.11 17.1 .58 9.2 68.15 17.8 .43	44.3 68.20 13.6 .37 2.19 .19 2.02 40.4 68.16 14.1 1.97 1.74 34.7 68.12 14.8 1.59 1.47 29.5 68.10 15.6 1.25 1.08 24.4 68.10 16.2 .98 .82 19.3 68.07 16.6 .75 .62 14.2 68.11 17.1 .58 .43 9.2 68.15 17.8 .43 .28	44.3 68.20 13.6 14.1 1.97 1.74 3.15 34.7 68.12 14.8 1.59 1.47 2.50 29.5 68.10 15.6 1.25 1.08 1.77 24.4 68.10 16.2 .98 .82 1.24 19.3 68.07 16.6 .75 .62 .81 14.2 68.11 17.1 .58 .43 .45 9.2 68.15 17.8 .43 .28 .15 .04 .04 .04 .04 .04	44.3 68.20 13.6 .37 2.19 .19 2.02 3.65 1.83 40.4 68.16 14.1 1.97 1.74 3.15 1.58 34.7 68.12 14.8 1.59 1.47 2.50 1.25 29.5 68.10 15.6 1.25 1.08 1.77 .89 24.4 68.10 16.2 .98 .82 1.24 .62 19.3 68.07 16.6 .75 .62 .81 .41 14.2 68.11 17.1 .58 .43 .45 .28 9.2 68.15 17.8 .43 .23 .04 .02	44.3 68.20 13.6 .37 2.19 .19 2.02 3.65 1.83 1.92 40.4 68.16 14.1 1.97 1.74 3.15 1.58 1.66 34.7 68.12 14.8 1.59 1.47 2.50 1.25 1.31 29.5 68.10 15.6 1.25 1.08 1.77 .89 .93 24.4 68.10 16.2 .98 .82 1.24 .62 .65 19.3 68.07 16.6 .75 .62 .91 .41 .43 14.2 68.11 17.1 .58 .43 .45 .28 .29 9.2 68.15 17.8 .43 .28 .15 .08 .08 9.2 68.15 17.8 .43 .28 .04 .02 .02	44.3 68.20 13.6 .37 2.19 .19 2.02 3.65 1.83 1.92 .0333 40.4 68.16 14.1 1.97 1.74 3.15 1.58 1.66 .0289 34.7 68.12 14.8 1.59 1.47 2.50 1.25 1.31 .0225 29.5 68.10 15.6 1.25 1.08 1.77 .89 .93 .0169 24.4 68.10 16.2 .98 .82 1.24 .62 .65 .0126 19.3 68.07 16.6 .75 .62 .81 .41 .43 .00816 14.2 68.11 17.1 .58 .43 .45 .28 .29 .00475 9.2 68.15 17.3 .43 .28 .15 .08 .08 .00217	44.3 68.20 13.6 .37 2.19 .19 2.02 3.65 1.83 1.92 .0333 55 40.4 68.16 14.1 1.97 1.74 3.15 1.58 1.66 .0289 48 34.7 68.12 14.8 1.59 1.47 2.50 1.25 1.31 .0225 37 29.5 68.10 15.6 1.25 1.08 1.77 .89 .93 .0169 28 24.4 68.10 16.2 .98 .82 1.24 .62 .65 .0126 21 19.3 68.07 16.6 .75 .62 .81 .41 .43 .00816 13 14.2 68.11 17.1 .58 .43 .45 .28 .29 .00475 08 9.2 68.15 17.8 .43 .28 .15 .08 .08 .00217 04 9.2 68.15 17.8 .43 .28 .15 .00 .00 .0058 01

Table 2-22 Head Loss In Feet Of Water For 1-1/2" Rigid PVC Plug Valve

(Unreamed Pipe)

Meter Flow gpm	Corrected gpm	T ₂ °F	P ₁ psi	Δ Zero High	_	Low	Total	Total/2	Ft. Water $\times \frac{13.65}{12} - 1$	Correction Factor Ft. Loss/In.	Tab Distance x 14.50	Corrected Reading Hd Loss in Ft.
40.0	40.4	69.90	13.8	.52 1.77		.13	2.30	1.15	1.20	.0289	42	.78
35.0	34.7	70.03	14.6	1.47		. 98	1.85	.93	.97	.0211	31	.66
30.0	29.5	70.10	15.4	1.19		.67	1,28	.64	.67	.0158	23	.44
25.0	24.4	70.16	15.9	.98		. 49	.89	.45	.47	.0117	17	.30
20.0	19.3	70.21	16.6	.81		.33	.56	. 28	.29	.0082	12	.17
15.0	14.2	70.26	16.9	.68		.23	.33	. 17	.18	.0051	07	.11
10.0	9.2	70.32	17.4	.57		.15	.14	.07	.07	.0024	03	.04
5.0	4.8	70.47	18.0	.51		.10	-03	.02	.02	.0009	01	.01
L												

Table 2-23 Head Loss In Feet Of Water For 1-1/2" Rigid PVC Plug Valve

		т —			(Rea	med Pipe)	·				
42,7	43.7	68.95	13.8	-38 1.48	.19 1.17	2.08	1.04	1.09	.0326	47	
40.0	40.4	68.90	14.3	1.33		1.82	.91	.95	.0328	47	.62
35.0	34.7	68,90	14.9	1.13	.87	1.43	.72	.75	.0225	33	.53
30.0	29.5	68.90	15.7	.91	.68	1.02	.51	.53	.0169	25	.28
25.0	24.4	68.87	16.1	.74	.53	.70	.35	.37	.9126	18	.19
20.0	19.3	68.87	16.6	.59	.43	. 45	.23	.24	.00816	12	.12
15.0	14.2	68.90	17.1	.49	. 32	.24	.12	.13	.00475	07	.06
10.0	9.2	68.95	17.7	.40	.27	.10	.05	.05	.00217	03	.02
5.0	4.8	69.00	18.1	.39	.23	.05	.03	.03	.00058	01	.01

Table 2-24

Head Loss In Feet Of Water For 1-1/4" Rigid PVC Coupling

					(UI	reamed Pipe)				
Meter Flow gpm	Corrected gpm	T2°F	P ₁ psi		ø Zero Low	Total	Total/2	Ft. Water x 13.56 -1	Correction Factor Ft. Loss/In.	Tab Distance x 14.50	Corrected Reading Ho Loss in Ft.
40.2	40.6	69.68	13.8	.52 1.48	.08 .82	1.70	.85	.89	.0291	42	. 47
35.0	34.7	69.73	14.6	1.25	. 63	1.28	.64	. 67	.0211	31	.36
30.0	29.5	69.81	15.3	1.08	.51	.99	.50	.52	.0158	23	.29
25.0	24.4	69.85	16.0	.92	.38	.70	.35	. 37	.0117	17	.20
20.0	19.3	69.85	16.5	.77	.29	. 46	.23	.24	.0082	12	.12
15.0	14.2	69.91	69.9	.67	.22	.29	.15	.16	.0051	₹.07	.09
10.0	9.2	69.95	17 : 4	.58	17	.15	.08	.08	.0024	03	.05
5.0	4.8	70.14	18.1	.52	.12	.04	.02	.02	.0009	01	.01
	_										

 $\label{thm:condition} Table \ 2\text{--}25$ Head Loss In Feet Of Water For 1-1/4" Rigid PVC Coupling

					(Rea	med Pipe)	·				
						-					·
42.7	43.7	68.80	13.8	.39 1.22	.22 .79	1.40	.70	.73	.0326	47	.26
40.0	40.4	68,80	14.3	1.12	.73	1.24	.62	65	.0289	42	.23
35.0	34.7	68.77	14.9	.96	.65	1.00	.50	.52	.0225	33	.19
30.0	29.5	68.75	15.6	.82	.53	.74	. 37	.39	.0169	25	.14
25.0	24.4	68.73	16.1	.68	.45	.52	.26	. 27	.0126	18	.09
20.0	19.3	68.75	16.6	.57	.39	.35	.18	.19	.00816	12	.07
15.0	14.2	68.75	17.1	.50	.32	.21	.11	.12	.00475	07	.05
10.0	9.2	68,80	17.7	.44	.27	.10	.05	.05	.00217	03	.02
5.0	4.8	68.88	18.2	.41	.23	.03	.02	.02	.00058	01	.01

.

2-29

Table 2-26

Head Loss In Feet Of Water For 1-1/4" PVC Pipe And Fittings - Branch I

(Unreamed Pipe)

Meter Flow gpm	Corrected gpm	T ₂ °F	P ₁ psi	Max.	gh Min.	Max.	w Min.	∆øav.	Corrected A of Head Loss in Ft.	
40.8	41.3	70.84	13.8	10.65	10.45	10.65	10.62	21.19	22.19	
35.0	34.7	70.91	14.7	8.01	7.85	8.03	7.80	15.85	16.59	
30.0	29.5	70.99	15.5	6.04	5.84	6.15	5.87	11.95	12.51	
25.0	24.4	71.20	15.9	4.19	3.95	4.20	4.04	8.19	8.57	
20.0	19.3	71.17	16.3	2.72	2.63	2.85	2.67	5.44	5.70	
15.0	14.2	71.21	17.0	1.69	1.54	1.78	1.70	3.36	3.52	
10.0	9.2	71.18	17.3	.83	.75	.96	.88	1.71	1.79	
5.0	4.8	71.37	18.1	.54	₀50 [↑]	.61	.57	1.11	1.16	
,										
•										

_ Table 2-27

Head Loss In Feet Of Water For 1-1/4" PVC Pipe and Fittings - Branch II

(Unreamed Pipe)

										 -
40.0	40.4	70.77	13.9	11.02	10.80	11.05	17.75	21.81	22.84	
35.0	34.7	70.81	14.6	8.47	8.19	8.47	8.25	16.69	17.47	
30.0	29.5	70.86	15.4	6.36	6.20	6.47	6.17	12.74	13.34	
25.0	24,4	70.95	15.9	4.60	4.50	4.65	4.58	9.17	9.60	
20.0	19.3	70.97	16.5	3.30	3.10	3.35	3.15	6.45	6.75	
15.0	14.2	71.02	16.9	2.20	2.10	2.25	2.10	4.33	4.53	
10.0	9.2	71.10	17.6	1.28	1.24	1.35	1.30	2.59	2.71	
5.0	4.8	71.27	18.2	.77	.70	.82	.78	1.54	1.61	

CTAT

 $\label{eq:Table 2-28} Table \ 2-28$ Head Loss In Feet Of Water For 1-1/4" PVC Pipe And Fittings - Branch I

eamed)

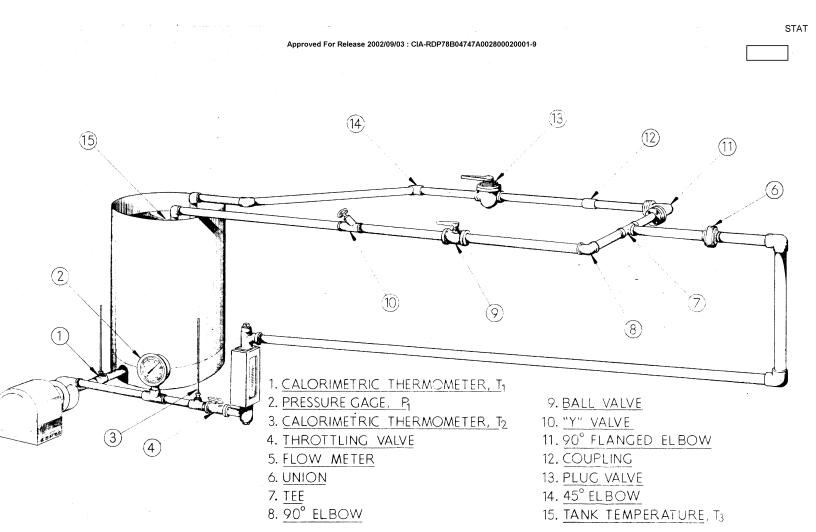

						(troumou)				
Meter Flow	Corrected gpm	T ₂	P ₁ psi	Max.	Hig Min.	h Lo Max.	w Min.	Δø av.	Corrected \$\Delta \phi \text{ Head} \text{Loss in Ft.}	
43.2	44.3	69.86	13.5	10.50	10.18	10.50	10.18	20.68	21.65	
40.0	40.4	69.86	14.0	9.08	8.78	9.03	8.80	17.85	18.69	
35.0	34.7	69.80	14.9	7.29	6.97	7.29	7.01	14.28	14.95	
30.0	29.5	69.80	15.6	5.29	5,18	5.37	5.18	10.51	11.00	
25.0	24.4	69.75	15.9	3.92	3.77	3.98	3.72	7.70	8.06	
20.0	19.3	69.75	16.6	2.65	2.43	2.67	2.53	5.14	5.38	,
15.0	14.2	69.76	17.0	,1.63	1.48	1.66	1.49	3.13	3.28	-
10.0	9.2	69.80	17.6	.85	.77	.92	.80	1.67	1.75	1
5.0	4.8	69.86	18.1	.35	.30	.35	.28	.64	.67	
					:			1		

Table 2-29

Head Loss In Feet Of Water for 1-1/4" PVC Pipe And Fittings - Branch II

- /	
۱.	(Reamed)
	rreameu

					\			1		
42.5	43.4	69.40	13.8	10.	32	10.	27	20.59	21.56	
40.0	40.4	69.35	14.2	8.	95	9.	00	17.95	18.79	
35.0	34.7	69.35	14.8	7.	22	7.	80	14.52	15.20	
30.0	29.5	69.35	15.6	5.	33	5.	40	10.73	11.23	
25.0	24.4	69.35	16.0	3.	78	3.	90	7.68	8.04	
20.0	19.3	69.35	16.6	2.	52	2.	64	5.16	5.40	
15.0	14.2	69.35	17.2	1.64	1.50	1.65	1.48	3.14	3.29	
10.0	9,2	69.35€	17.6	.85	.79	.92	.87	1.77	1.85	
5.0	4.8	69.55	18.2	.52	.48	.61	.56	1.09	1.14	
										L

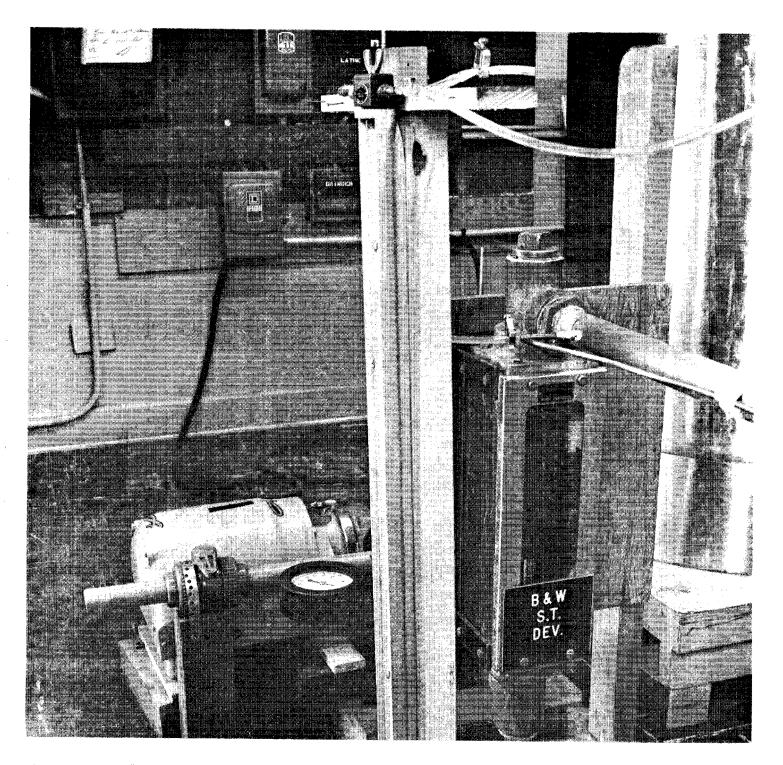


Figure 2-2. Test Rack - Pump, Gage, Manometer, and Flowmeter

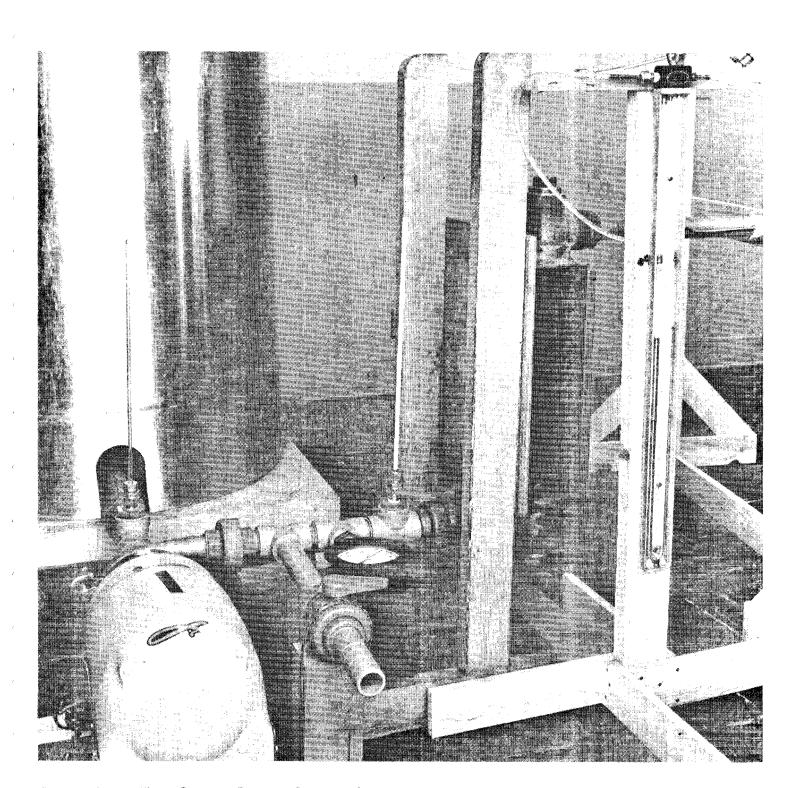


Figure 2-3. Test Rack - Pump, Gage, Manometer, and Thermometers

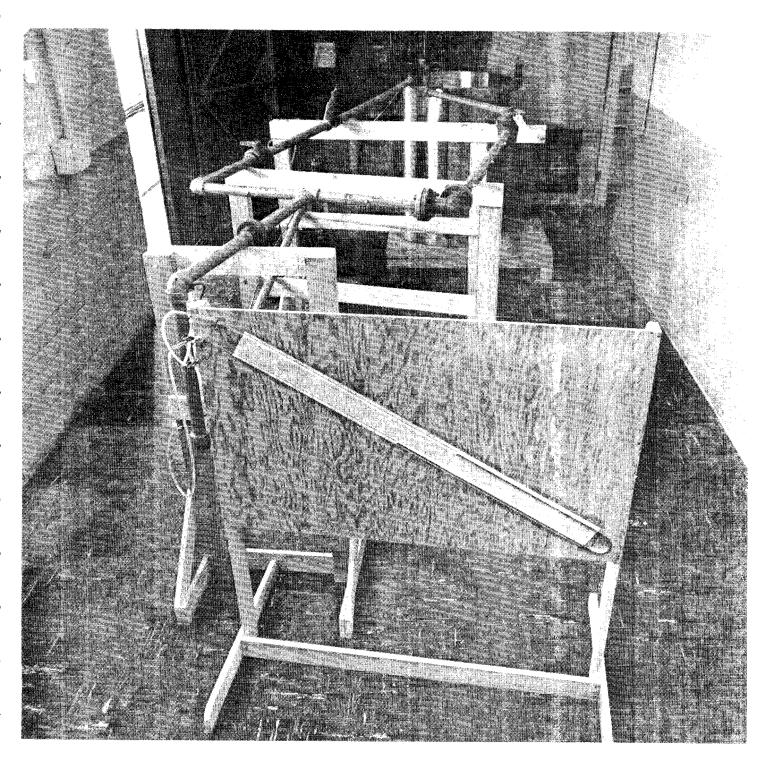
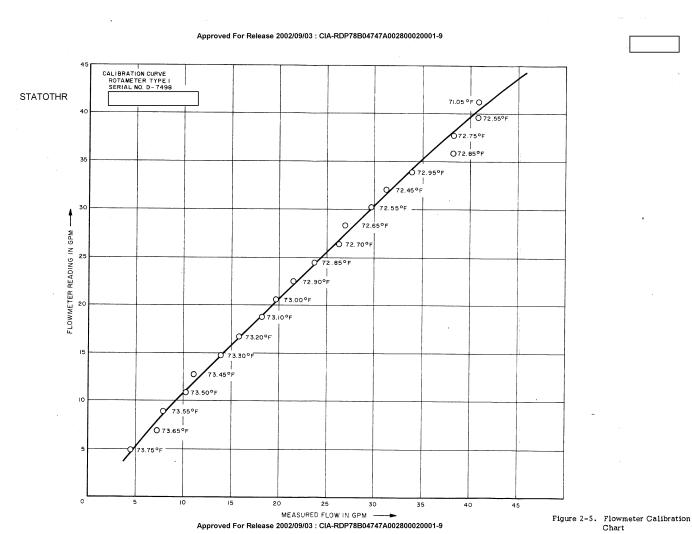



Figure 2-4. Test Rack Apparatus and Inclined Manometer

STAT

2-41

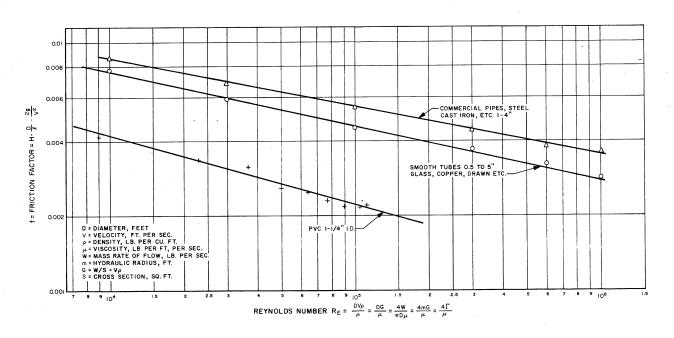
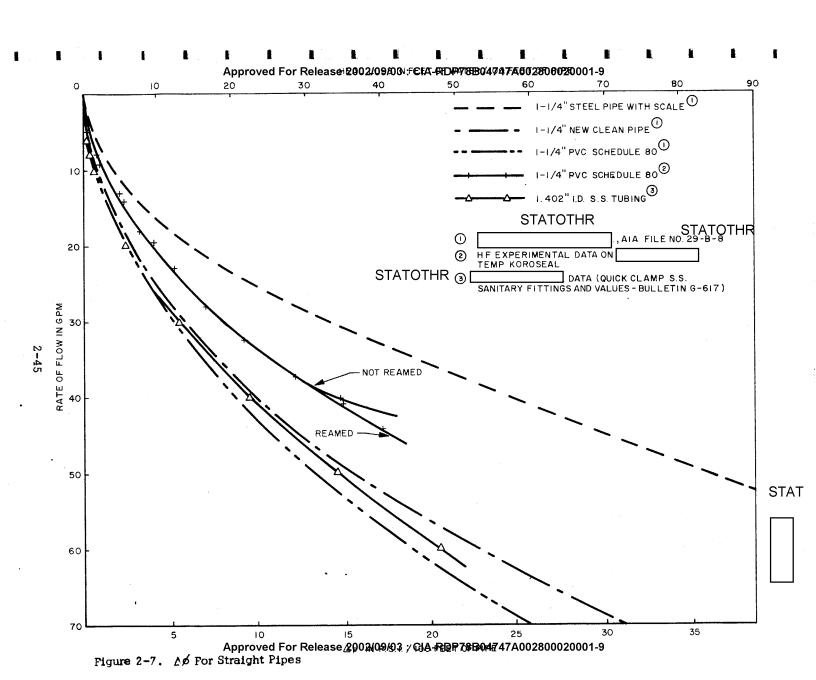
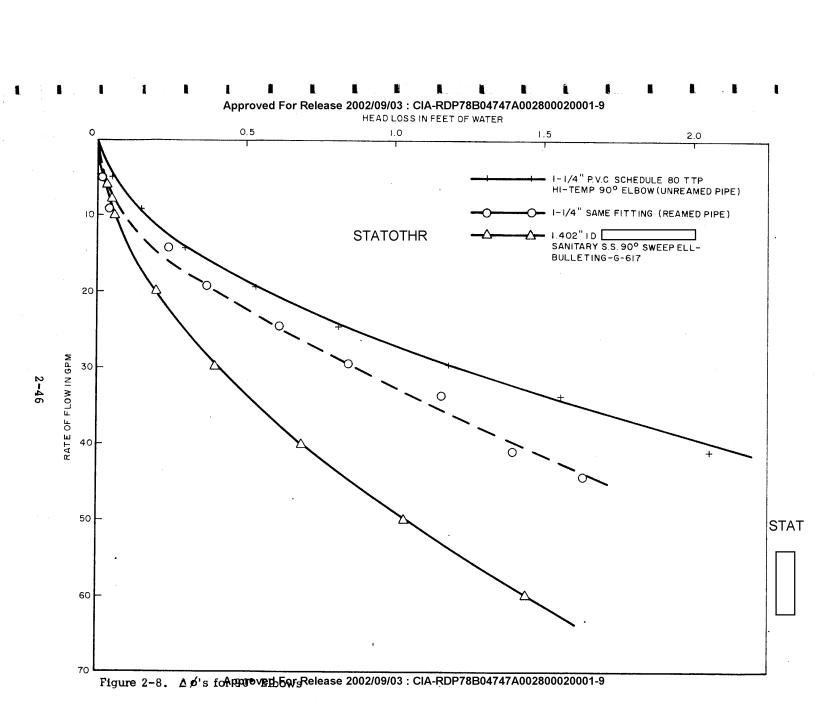
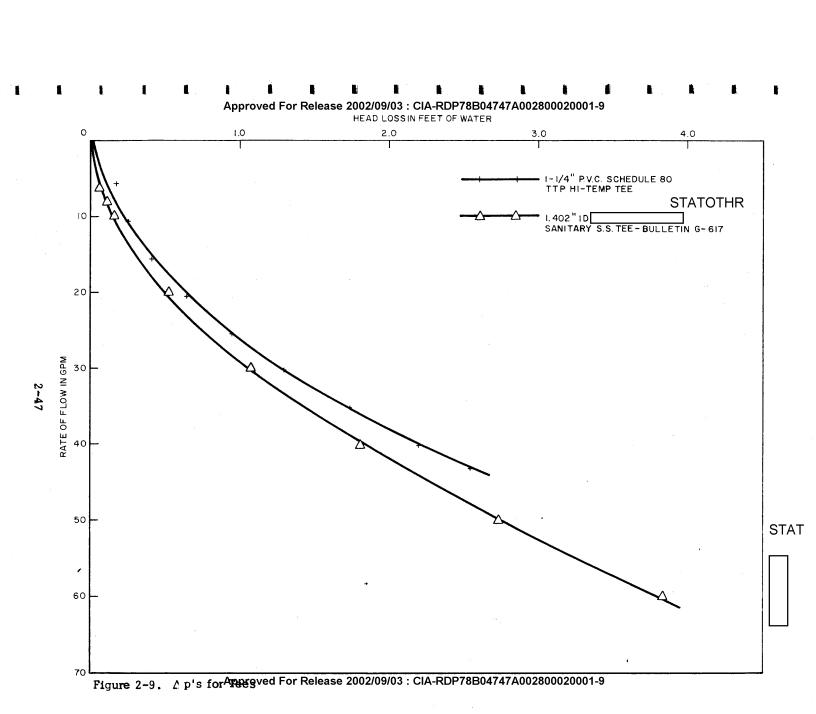
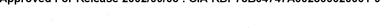






Figure 2-6. Reynolds Numbers vs. Friction Coefficients

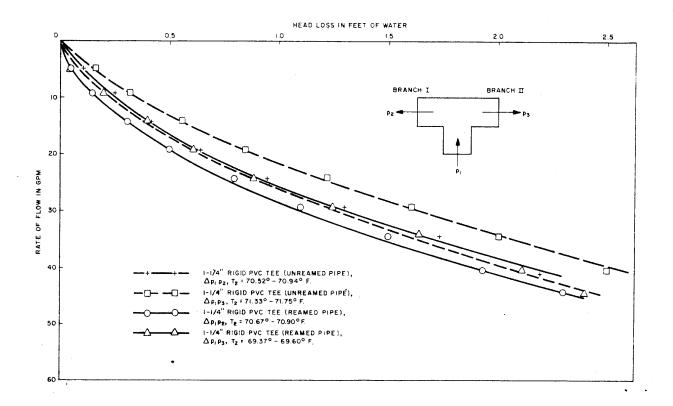


Figure 2-11. △p for PVC Tee

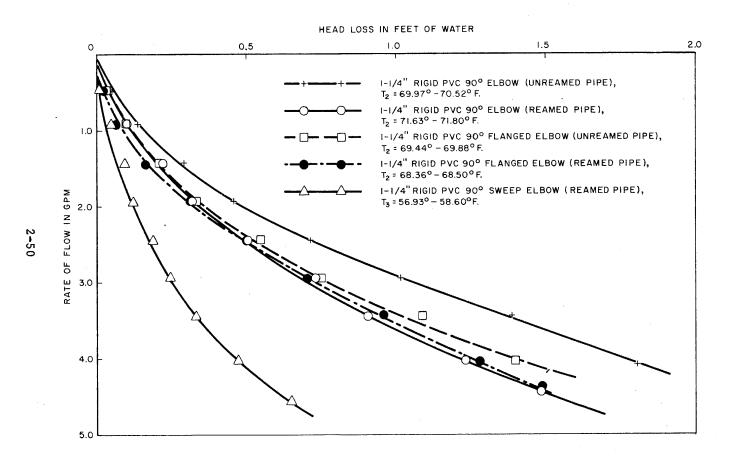
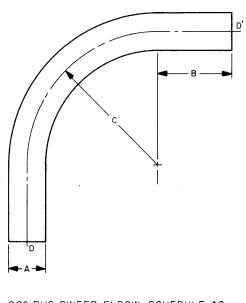
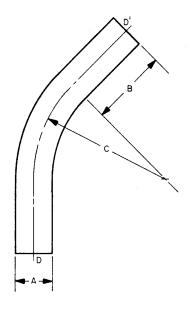




Figure 2-12. Ap's for 90-Degree PVC Elbows

D-D'MIN SIZE B MIN. С 1-1/4" 2" 7-1/4" 15.40 1.660

45° PVC SWEEP ELBOW-SCHEDULE 40

D-D'MIN. SIZE B MIN. С 1-1/4" **~**2" 1.660 7-1/4"

Figure 2-13. Dimensions of Sweep Elbows

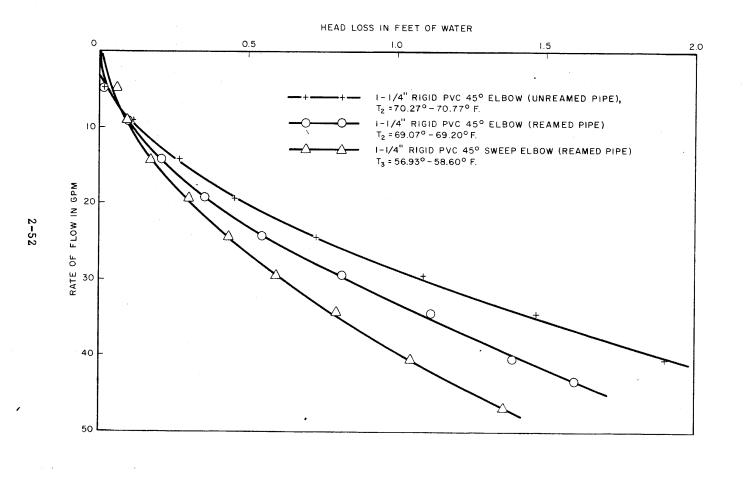


Figure 2-14. Ap's for 45-Degree PVC Elbows Approved For Release 2002/09/03: CIA-RDP78B04747A002800020001-9

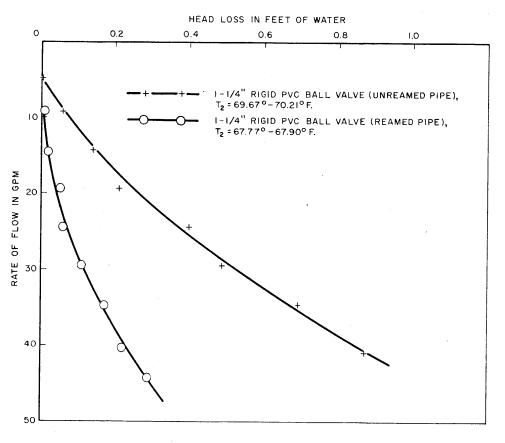


Figure 2-15. △ø For PVC Ball Valve

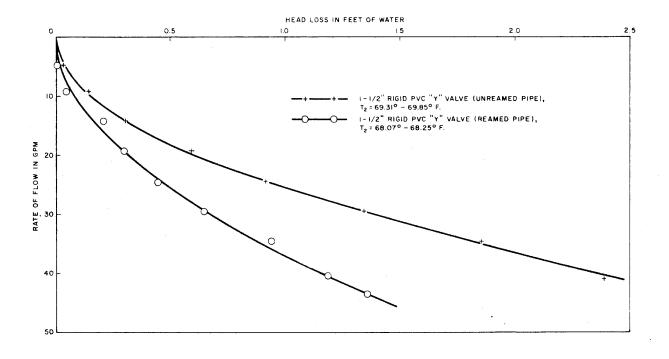


Figure 2-16. Δp For PVC "Y" Valve

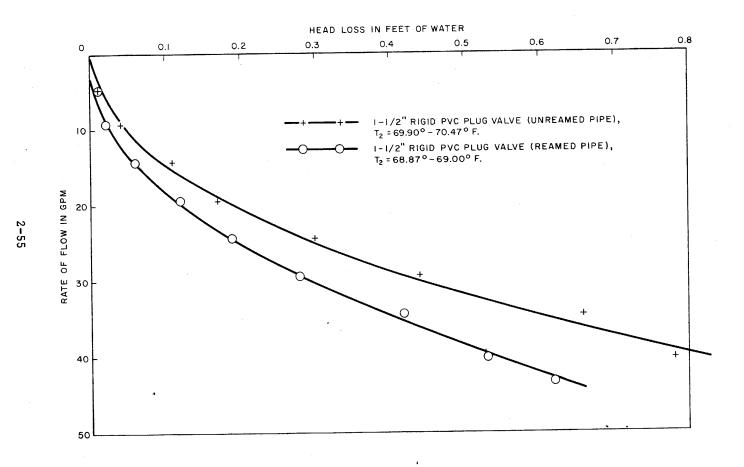
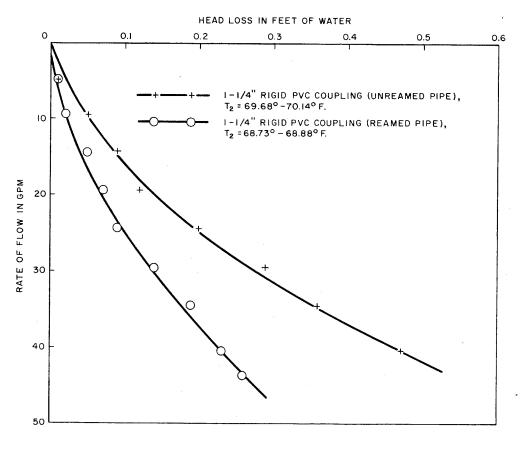


Figure 2-17. As For PVC Plug Valve



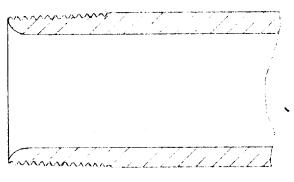



Figure 2-18. Ap For PVC Coupling

CROSS-SECTION OF FAIRED PIPE

MOUNTING OF FAIRING TOOL BIT

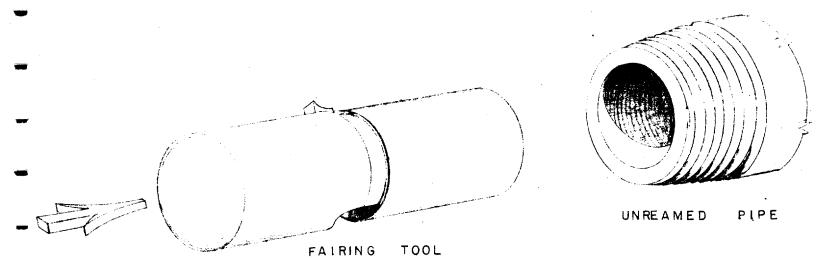


Figure 2-20. Fairing Tool and Pipe

SECTION 3 CONCLUSIONS

3. 1 PUMP TESTS

In order to apportion time and budget most efficiently among the high priority facets of the research contract, a rigid schedule for each was set up and followed. Thus, a few of the proposed tests itemized in the list of objectives were necessarily postponed until a later date. This was true of some of the pump tests outlined, but a number of significant conclusions can be drawn, nevertheless.

The pump had an excellent rated capacity for a given horsepower input. The drive motor used showed only a fraction of its rated rise (55°C.) after over three hours of continuous service. The flow was not sensitive to angle of discharge from the centrifugal plenum. It could be completely disassembled in less than a minute. It proved to be a simple shop procedure to modify the impeller to exactly match the load. The unit produced almost no entrainment of air, even without a bleed cock on the plenum. The plenum pressure plate, impeller, shaft, and gland fittings are all stainless steel, designed so that they can easily be cleaned or replaced. Optionally, the unit can be supplied with a splash-proof housing of polished stainless steel. Appendix D gives some typical pump calculations.

The design has not yet been tested with curved (an optional feature) blades or with ordinary corrosive photographic chemicals. The latter test will require some carefully planned safety precautions (automatic leak-sensing unit and circuit breaker) to avoid the hazards of continuous unattended operation. Three of the other tests outlined in the list of objectives were not performed, i.e., falling head, constricted inlet, and breakdown. Since there was some risk of permanent damage to either the pump or the motor and

since the unit under test was on loan, this latter series should be run on a purchased unit.

3.2 PRESSURE DROP TESTS

As mentioned previously, some of the published proprietary data on pressure drops is suspect. This conclusion is based on the fact that the data do not agree with the standard charts of Reynolds numbers which are supported by more experimental data than even the International Critical Steam Tables.

CTATOTL	Of the three types of valve tested, the ball valve proved to have the
STATOTH	lowest pressure drop. This is the type used almost exclusively on
STATOTH	designed equipment. Technically speaking, they are not "ball"
•	valves, but plug valves in which the rotating unit is spherical rather than a
	truncated cone. They are well designed, have no sharp internal protrusions
j	and, because of their modular assembly, can be used in place of a standard
	union. They are not wholly satisfactory, however, when used as throttling
•	valves to regulate flow.

The standard plug valve had the next lowest pressure drop. While the readings were approximately 2-1/2 times those of the ball valve, they cannot be accepted as fully definitive. The smallest valve of this type obtainable was 1-1/2 inches. It was designed for slip fittings and was modified by inserting slip-to-thread collars. This left an irregular plenum at each side which would have been largely eliminated in a 1-1/4-inch fitting.

The "Y" valve design was excellent for throttling, but offered the largest pressure drop of the three. This was to be expected because the flow pattern is subjected to two sharp changes in direction as it passes through the valve. All of the tests on the three valves were performed in the full-open position; any intermediate readings would have been meaningless.

The measured pressure drops for the union and the coupling, with reamed pipe, were almost identical, besides being the lowest for the series. This was not surprising in the case of the coupling because of its short overall length, the only irregularity being a few exposed threads when the joint was made up. Note, however, that the internal section of the union was full diameter and quite smooth so as to be comparable to straight pipe, whose loss in feet of water per inch is only 0.0289 at 40 gpm.

Several pressure drop runs (Appendix E) were made across the rotameter alone. Psig readings were converted to inches of mercury and then reduced to an equivalent length of 1-1/4-inch PVC pipe. Thus, for a flow of 40.8 gpm, the pressure loss was equivalent to 30.2 feet of standard pipe. Lack of time and money prevented testing other types of flowmeters, particularly venturis, whose losses are relatively low. The other pressure-drop readings were not recalculated as equivalent lengths of pipe; this is rarely required in design and can be readily obtained from the data presented.

The data presented in this report, while somewhat limited in scope, have been carefully prepared and are unusually accurate. They should adequately fill a gap in present technical design reference literature.

4.1 CONTINUED EXPERIMENTATION

The type of experimental measurement described in preceding sections is extremely painstaking and time consuming. Since its worth is invaluable to the design engineer, its further expansion should be funded by a group such as the Bureau of Standards or the National Science Foundation. It is difficult to justify fundamental research on a short-term development or state-of-the-art improvement contract, notwithstanding the immediate benefits to a design program such as could evolve. In this case, these benefits include smaller pump size, increased flow, increased pressure, less pulsation and air entrainment, and finally, no "cut-and-fit" trials for power sizing or line losses.

There was no opportunity, for instance, to run comparative tests on sanitary stainless-steel dairy pipe and fittings. These promise to have singular advantages. Despite the fact that a running foot of stainless costs more than five times that of the plastic in a comparable size, it is virtually indestructible. It is designed for minimum interstices (to be microorganism-free) which simplifies cleaning. Each joint can be broken open so that unions are unnecessary. Its pressure drops should be in the same range as plastic, plus the advantage of not being sensitive to thermal shock. With the exception of long runs, no supporting structure is necessary to prevent sag and fracture. No joint could be made up too tightly as each is joined with a single-lever quick clamp. The use of stainless steel should be thoroughly explored.

Some of the plastic fittings, particularly in plastic-to-metal joints, split after sitting for periods of a few days to a few weeks. This strain aging might be avoided by making up the joints with an adaptation of a torsion wrench. None is available for this purpose and not all joints can be assembled with the standard strap wrenches recommended for plastic. Profitable research results could be anticipated by the design and testing of such a specialized tool.

There was little question that the dairy pump used for the tests was superior, in a number of parameters which could be compared, to one model of presently used equipment. The most salient of these features were outlined in Section 3 of this report. These included trouble-free performance, simplified maintenance, high efficiency, low line pulsation, freedom in choice of plenum orientation, low air entrainment, and ease of matching capacity to load. Additionally, the operation of the pump with the manufacturer's recommended inlet head was extremely quiet. This would tend to lessen greatly the ambient sound level when a number of pumps and blowers must be combined for an operating processor. The importance of supplementing the present data with life tests and the relative imperviousness of the gaskets to photographic solutions cannot be emphasized too strongly. Other manufacturers' sanitary pumps should be tested also.

It is further recommended that a series of comparative tests be performed to determine the optimum type of flowmeter for this application, i.e., most accurate, least expensive, easiest to maintain, and lowest pressure drop.

Because of the singular performance of the two sweep fittings tested, continued experimentation should be directed toward enlarging the variety of low-loss fittings such as these. For example, several types of sweep tees could be fabricated from sections of the sweep elbows and straight pipe. Predictably, the low pressure drops obtainable could usher in a whole new design concept for the plastic fabricators and a distinct advance in the state-of-the-art.

REFERENCES

- 1. Walker, W. H., Lewis, W. K., McAdams, W. H., and Gilliland, E. R., "Principles of Chemical Engineering," p. 28, Fig. 27, 3rd Ed., McGraw Hill Book Co., Inc., (1937).
- 2. Drew and Genereaux, "Quart. Trans. Amer. Inst. Chem. Eng.," 32, 17 (1936).
- 3. Lange, N. A., "Handbook of Chemistry," 8th Ed., Handbook Publishers, Inc., (1952).
- 4. Hodgman, C. D., "Handbook of Chemistry and Physics," 36th Ed., Chemical Rubber Publishing Co., (1955).
- 5. Plumbing Div., Dept. of Bldg. and Safety, "City of Los Angeles Plumbing Code," Art. 4, Chapt. 9, Mun. Code, Amend. 9 Sept. '64, Ord. No. 127, 991, Bldg. News, Inc., (1964).
- 6. Marks, L. S., "Mechanical Engineers' Handbook," 5th Ed., McGraw-Hill Book Co., Inc., (1951).
- 7. Binder, R. C., "Fluid Mechanics," 2nd Ed., Prentice-Hall, Inc., (1950).
- 8. Cherry-Burrell Corp., Bulletin No. G-567, (1962).
- 9. Cherry-Burrell Corp., "Characteristic Curves, Model VAH Flexflo Involute Pump," Sales Manual No. 23, Div. Flexflo, Sub. Div. Model VAH, p. 28, 15 Nov. 1964.
- 10. Tube Turn Plastics, Inc., AIA File No. 29-B-8.
- 11. "Standards of the Hydraulic Institute," Page B(VIII)-13. Revised November 1958.

APPENDIX A

Al. 1 Sample flowmeter calibration calculation.

A spin-flow stainless steel bucket held 33 lbs. of water at 75.00 $^{\circ}$ F. At start of run, 11:04 A.M.:

T ₁ = Temperature at pump inlet	= 71.15°F.
T ₂ = Temperature at pump outlet	= 71.05°F.
P ₁ = Pressure at pump outlet	= 14.0 <u>+</u> 0.5 psi
Flowmeter reading	= 41.2 gpm
Time to fill calibrated bucket (aver.)	= 5.8 seconds
T.= Temperature in tank	$= 22.45^{\circ}C.$

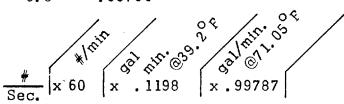
Density of water (Reference 3):

$${}^{\circ}C \qquad gm/ml$$

$$21 \qquad 0.99802$$

$$71.05^{\circ}F = \qquad 21.70 \qquad 0.99787$$

$$22 \qquad 0.99780$$


$$23 \qquad 0.99756$$

$$75.00^{\circ}F = \qquad 23.90 \qquad 0.99734$$

$$24 \qquad 0.99732$$

W= Mass Rate of Flow #/sec

$$= \frac{33}{5.8} \times \frac{.99787}{.99734} = 5.693 \text{ #/sec}$$

$$5.693 \times 60 \times .1198 \times .99787 = 40.83$$
 gpm measured vs
 41.2 Flow Meter

A 1.2 SAMPLE REYNOLDS NUMBER CALCULATION

Reynolds Number = Re =
$$\frac{DV}{\mu}$$
 = $\frac{DG}{\mu}$ = $\frac{4W}{\pi D \mu}$ = $\frac{4mG}{\mu}$ = $\frac{4\gamma}{\mu}$

Where:

D = Diameter, feet

V = Velocity, feet per second

>= Density, pounds per cubic foot

 μ = Viscosity, pounds per cubic foot per second

W = Mass rate of flow, pounds per second

m = Hydraulic radius, feet

G = W/S = V/O

S = Cross section, square feet

$$Re = \frac{4W}{\pi D \mu} = \frac{4 \times 5.693}{\pi \times .1048 \times .000648}$$

$$= 1.067 \times 10^5$$

Darcy-Weisbach Expression =

$$h = f \left(\frac{1}{D}\right) \frac{v^2}{2g}$$

where:

h = head loss in feet

l = length of pipe, feet

g = acceleration of gravity, feet per second²

f = friction factor, or coefficient, dimensionless

solving:


$$f = h\left(\frac{D}{1}\right) \frac{29}{v^2}$$

$$= \frac{3.48 \times .1048 \times 2 \times 32.17}{10.02 \times (10.36)^2}$$

= .00218

APPENDIX B

B1. 1 SAMPLE THERMOMETER STEM CORRECTION

Tc = To + fxlx(To - Tm)

Where:

Tc = corrected temperature

To = observed temperature

l = column length in degrees above liquid surface

Tm = mean temperature of mercury

f = correction factor = .000157 (Corning 0041)

To calculate 1:

$$\frac{24^{\circ} F}{29.85 \text{ cm}} \times 5.5 \text{ cm} = 4.33^{\circ} F$$

$$1 = 71.05 - 66.00 + 4.33 = 9.38^{\circ}F$$

Tc = 71.05 + .000157 x 9.38 (71.05 - 74.3)

= 71.05 - .006 Correction factor less than error of reading

APPENDIX C

C1. 1 CALCULATION OF PROBABLE ERROR OF MEASUREMENT

The most direct way to calculate the validity of the pressure drop data is to compare the actual total pressure loss in each Branch of the Test Rack with the value obtained when individual losses for each fitting and the connecting pipes are added together. This was done as follows:

I. \triangle Ap pipe and fittings. Branch I

-Where 24. 178 feet = total length of connecting pipe and . 3473 = pressure loss per foot in feet

of water

 $24.178 \times .3473 = 8.397$

 90° elbow $4 \times 1.81 = 7.24$

Union $1 \times .29 = .29$

Tee $1 \times 2.19 = 2.19$

Ball Valve $1 \times .87 = .87$

"Y" Valve $1 \times 2.48 = 2.48$

21.467

Actual Reading = 22.19

Calculated Reading= 21.47

Percentage error = 3.24%

II. λ Δ p pipe and fittings. Branch II

 $24.465 \times .3473 = 8.497$

 90° Elbow $3 \times 1.81 = 5.43$

Union $1 \times .29 = .29$

Tee $1 \times 2.50 = 2.50$

Flanged Elbow $1 \times 1.40 = 1.40$

Coupling $1 \times .47 = .47$

Plug Valve $1 \times .78 = .78$

 45° Elbow $2 \times 1.90 = 3.80$

Calculated Reading = 23.167

Actual Reading = 22.84

Percentage Error = 1.44%

The foregoing calculations were made at the maximum flow rates obtained in the two Branches. When it is considered that the calculated error in each case would be cumulative and that Branch I had a total of eight fittings, while Branch II had ten, the average error of measurement per fitting is less than 0.5 percent (0.41 percent for I and 0.14 percent for II).

In the instances of low flows for the small-loss fittings (ball valve, union, coupling, etc.), reference to the data tables shows that the correction for line loss between manometer taps and the fitting being measured was, in many cases, 1/3 to 1/2 of the total pressure drop. Since the manometer readings themselves were rounded off to the nearest hundredth, the percentage of error could be quite high. The significance of such error, however, is minimal as it occurs at flow rates much below operating levels of any stage in a large production processor.

As stated in Subsection 2. 1, the manometer could be read to an accuracy of 0.2 percent full scale when temperature-compensated. The pressure fluctuations introduced by the pump were of greater magnitude, in all cases, than the error of reading. The two calorimetric thermometers could be read to within \pm 0.01°F, and the Centigrade thermometer to \pm 0.01°C.

The pipe lengths were measured with a 100-foot Lufkin Chrome-Clad surveyor's tape, accurate to 0.001 foot. The manometer tap distances were measured with an L. S. Starrett 12-inch steel rule, No. C305R, accurate to 0.01 inch. Since maximum pressure drops were on the order of 0.03 foot per inch of pipe, any conceivable error of measurement in pipe length would be much below manometer error.

APPENDIX D

D1. 1 SAMPLE PUMP CALCULATIONS

Two typical calculations follow in which total head, suction head, and liquid horsepower were determined for the pump and for two different bearings, a 1-1/2-inch ID copper bearing and an identical stainless steel one. In both cases, barometric pressure was 29.99 inches of mercury at the time of recording the data and thus, a correction was unnecessary:

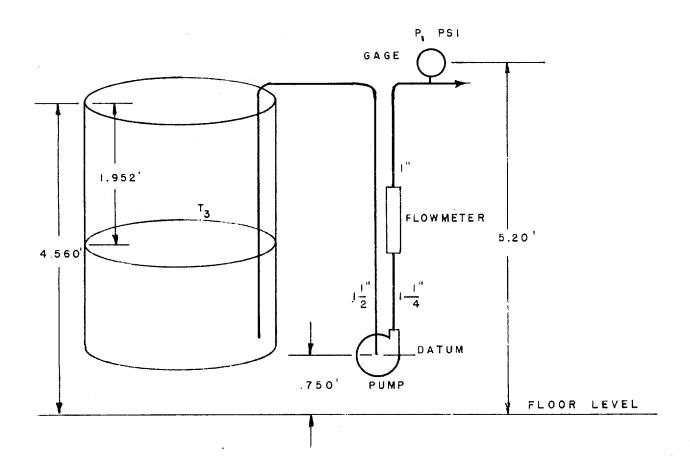


FIGURE D1-1

Pump Suction Head =
$$h_s = h_{sg} + Z_s + \frac{{v_s}^2}{2g}$$

Pump Discharge Head = $h_d = h_{dg} + Z_d + \frac{{v_d}^2}{2g}$

Where h_{dg}^{2} discharge gage reading in feet of water

h = suction gage reading in feet of water

Z_d = elevation of discharge gage zero above datum elev., feet

 $Z_s =$ elevation of suction gage zero above datum elev., feet

V_d = aver. water veloc. in discharge pipe @ discharge gage, ft/sec.

 $V_s = aver.$ water veloc. in suction pipe @ suction gage, ft/sec.

For 1.5" ID Cu Tube

$$P_1 = 5.0 \text{ psi}$$

Flow = 34.0 gpm

$$T_3 = 22.4^{\circ}C.$$

$$h_{sg} = 4.560 - 1.952 - .750$$

= 1.858'

$$z_s = 0$$

$$v_s = \frac{gal}{min} \times \frac{fT^3}{gal} \times \frac{1}{fT^2} = ft/min$$

$$V_s = 34.0 \times \frac{0.1337}{0.99782} \times \frac{1}{.0124}$$

= 367.4 ft/min

Where A =
$$\left(\frac{1.507}{12}\right)^2 \frac{\pi}{4} = .0124$$

gal to ft 3 @ 4° C = x (0.1337)

d
21.9 $^{\circ}$ C = .99782

$$\frac{V_{g}^{2}}{2g} = \frac{\left(\frac{367.4}{60}\right)^{2}}{2 \times 32.17} = \frac{37.49}{64.34}$$

$$h_{s} = h_{sg} + Z_{s} + \frac{V_{s}^{2}}{2g}$$

$$= 1.858 + 0 + 0.583$$

$$= 2.441$$

$$h_{dg} = 5.0 \times \frac{27.673}{12} \times \frac{1}{.99782}$$

$$= 11.56'$$

Where:

psi to in.
$$H_2O @ 4^OC = x(27.673)$$

$$V_{d} = 34.0 \times \frac{0.1337}{0.99782} \times \frac{1}{.00617}$$

$$= 738.4 \text{ ft/min.}$$

Where A =
$$\left(\frac{.942}{12}\right)^2 - \frac{\pi}{4} = .00785 \times .7854$$

= .00617

$$\frac{V_d^2}{2g} = \frac{\left(\frac{738.4}{60}\right)^2}{2x32.17} = \frac{151.5}{64.34} = 2.355$$

$$h_c = h_{dg} + Z_d + \frac{V_d^2}{2g}$$

$$= 11.56 + 4.45 + 2.355$$

$$= 18.365$$

Liquid Horsepower = whp =
$$\frac{(\#/\text{min}) \times (\text{total head})}{33,000}$$

= $\frac{34.0 \times 8.337 \times \frac{99782}{.99905} \times 15.924}{33,000} \times \frac{283.1 \times 15.924}{33,000}$

$$= 0.137 \text{ hp}$$
Where 8.337 # = 1 gal. water @ 60°F
$$60^{\circ} \text{ F} = 15.56^{\circ} \text{ C}$$

$$^{d}1556^{\circ} \text{ C} = .99905$$

Total Head =
$$H = h_d - h_s$$

= 18.365 = 2.441 = 15.924

For 1.5" ID S.S. Tube
$$P_1 = 5.0 \text{ psi}$$
Flow = 39.3 gpm
 $T_3 = 22^{\circ} \text{ C}$

$$V_s = 39.3 \times \frac{.1337}{.99780} \times \frac{1}{.0124}$$

= 424.7 ft/min

$$\frac{V_s^2}{2g} = \frac{\left(\frac{424.7}{60}\right)^2}{2 \times 32.17} = \frac{50.1}{64.34} = 0.779$$

$$h_s = 1.858 + 0 + .779$$

$$= 2.637$$

$$V_d = 39.3 \times .1340 \times \frac{1}{.00617} = 853.5$$

$$\frac{V_d^2}{2g} = \frac{\frac{853.5}{60}}{2 \times 32.17} = \frac{202.4}{64.34} = 3.146$$

$$h_d = 11.56 + 4.45 - 3.146 = 19.156$$

$$H = 19.156 - 2.637 = 16.519$$

whp =
$$\frac{(39.3 \times 8.337 \times .99780)}{.99905} = 16.519 = \frac{54052}{33000}$$

= 0.164 hp

D1.2 CONCLUSIONS

When this figure is compared with that for copper (0.137), the penalty in power requirements we are paying for the pressure drop in the welded and drawn stainless tubing can be seen. Since this parameter is so critical, we should select seamless tubing, drawn and polished exclusively for construction of liquid bearings. The higher cost of the seamless tubing will be more than offset by reduced pump horsepower and improved performance.

D1.3 EFFECT OF PUMP DISCHARGE ANGLE

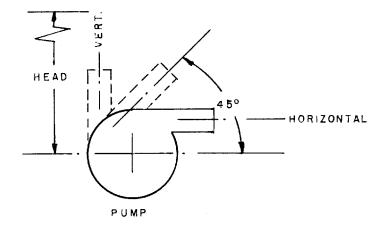


FIGURE D1-3

Eight feet of 1-5/8-inch ID flexible hose was added to circuit so plenum could be revolved easily. For each series, Branch II was open, Branch I closed.

APPENDIX E

E1. 1 ROTAMETER PRESSURE LOSSES

In order to calculate the approximate pressure drop across the flowmeter, the inlet pressure P_1 was measured with the pressure gage and the outlet pressure P_2 with a mercury manometer. While converting pressure gage readings to inches of mercury introduced some error, it avoided extensive changes in the test apparatus.

	T_2	P 1	$^{\mathtt{P}}2$	P ₁ (feet water)	P ₂	
Flow	F	psi	in. Hg.	P ₁ (feet water) x2.3066@39.2°F	Corr.	Δ p
40.8	72.90	14.0	20.76	32.29 32.21*	21 73	10.48
39.5	74.05	14.3	21.74	32.98 32.90*	22.76	
37.5	74.35	14.6	22.62	33.68 33.59*	23. 68	10. 14

^{*} Corrected for density at measured temperature.

Or	0	
<u></u>	°C	gm/ml
72.90	22.73	.99762
74.05	23.35	.99748
74.35	23.53	. 99743

In the case of the 40.8 gpm flow, the pressure drop is equivalent to 30.2 feet of 1-1/4-inch pipe.

$$\frac{10.48}{.3473}$$
 = 30.2 ft. where .3473 is the pressure drop in feet foot

Plenum Position	Time	Flow gpm	т ₃ о _F	P I psi	Head feet	Impeller
Vertical	1:53 PM	42.8	69.69	13.9	6,500	SPL.
45°	1:59 PM	42.8	69.69	13.9	6,500	SPL.
Horizontal	2:03 PM	42.5	69,69	13.9	6,500	SPL.
Vertical	2:42 PM	55.0	69.60	22.8	6.120	S
45 ⁰	2:46 PM	55.5	69.70	23.0	6.120	S
Horizontal	2:48 PM	55.5	69.75	22.9	6.120	S

As can be readily seen from the above compilation, in no case does the position of the plenum discharge outlet make even 1 percent difference in flow. Note that two different impellers were used in the test.

APPENDIX F

=	1. 1	DETAILED DESCRIPTI	ON OF APPARATU	S AND INSTRUMI	ENTATION	
STATOTHR	1. 1. 1	Hold Tank				
SIAIOIIN		The hold tank was a		unit fabricated :	from stainle	ess
	steel, v	welded and ground, w	rith a rounded bot	tom and support	skirt. Its	
•	capacity	y was 147.2 gallons.	The inside diar	meter was 33-3/4	l-inches; ti	he
	overall	depth at the center w	as 39 inches and	, at the edge, 3	7 inches.	
	Its 2-in	ch bottom drain had a	a vortex-breaking	cover and the ta	ank had a	
	single c	one-inch side drain.				
	1. 1. 2	Pump			STATOTH	HR
		The liquid flow was p	provided by a 2-h	orsepower		
		ow" pump, Model VAF	I, Model No. 125	666-0, Serial No	. 25720.	The
STATOTHE	motor w	as manufactured by t	he			I
	It is a t	hree-phase, 220/440	volt, 5.2/2.6 a	mpere, Type CDI	X, Frame	
·	204C, C	Class AO9, rated at 3	495 rpm and 55°	C. full load temp	erature rise	э.
	The pum	np used had three opt	ional impeller ler	ngths available.	The shorte	est,
uni	"Spe,"	(special) was 3-inch	es long, "S" (sho	ort) was 3-3/4-ir	iches long	
	and "MI	M" (medium) was 4-7	/16-inches long.	All pressure di	rop tests	
	except t	those for the sweep e	lbows were perfo	rmed with the "S	pe. " blade	
	and som	e additional pump te	sts with the "S"	blade. Maximur	n ratin g wi t	:h
	the "Spe	e." impeller was 35,	000 pounds per h	our (4198 gallons	s) at a 17-f	oot
	head.	With the "S" impelle	r, rating was 30,	000 pounds per h	nour (3598)	
_	gallons)	at a 50-foot head, r	nanufacturer's ra	ting. The "M" b	olade was	
	not used	d because the "S" ga	ve greater flow th	nan our rotameter	capacity.	
					_	

	1. 1. 3	Pipe		STATOTHR	
		The	pump inlet pipe was	\$	2-inch LPS, Sche-
STATOTHR	dule 80,	PVC	II, CS 207-60, rate	ed at 222 psi working	pressure at 77°F.
	Interconr	necti	ng 1-1/4-inch PVC	pipe was all	Schedule 80,
	high tem	perat	ure "Koroseal," WP	415 psi at 75°F PE,	150 psi at 180°F
			GK, 0050.		
				•	
	1. 1. 4	List	of Fittings		
		Bran	ch I		<u></u>
STATOT	HR	1)	1-1/4-inch TTP		PVC union.
		2)	1-1/4-inch TTP, PV	C tee.	
_		3)	1-1/4-inch TTP, PV	C 90-degree elbow.	
		4)	1-1/4-inch Chemtro	ol PVC ball valve, wit	th Teflon gaskets.
		5)	1-1/2-inch Walword	th PVC "Y" valve, red	duced to 1-1/4-inch IPS
·		Bran	ich II		
				-degree elbow, with f	langes.
		-	1-1/4-inch TTP, PV		
		-	'	n molded UPVC plug	valve 125 nei air at
			_	0°F, TTP reduced to	
		4)	1-1/4-inch TTP, PV	C 45-degree elbow.	STATOTHR
STATOTHR	All rema	ining	connecting fittings	were manufactured b	у
	1. 1. 5	The	rmometers		STATOTHR
-		Two	of the thermometer	s used (T1 and T2) we	ere , .
	ASTM-50			es, total immersion,	
-			_	neir numbers were 13	
	respecti				
-		3 •			

_	Approved 1 of Release 2002/03/03 : CIA-RDF 10B04141 A002000020001-3	STAT
-		
.	All tank temperatures (designated T3) were measured on a	STAT
TAT	"Permafused," etched-stem Centigrade thermometer. It was	
	a gas-filled mercury type , 38 lmm long, ASTM 63C precision, No. 4173820, with a range of -8° to $+32^{\circ}$ C. It reads to 0.1°C with interpolation to 0.01°C.	
	1. 1. 6 Flowmeter STATOTHR	
	The flowmeter was a	•
STATOTHR	instrument. It was designed to measure gpm of liquids with a	
_	specific gravity of 1.0 (see Table 2-1 and Calibration Chart, Figure 2-5). Its	
-	serial number was D-7498 and its range was 5 to 55 gpm.	
	1. 1.7 Pressure Gage	
	The inlet pressure measurements were made on a	STAT
TAT	Model No. 1811-T "Supergauge." Its range was zero to 60 psi	
	pressure, its movement, connection, and bourdon tube were made from	
STATOTHR	Type 316 stainless steel and its gearing was Nylon. It was calibrated	
	and certified by the	
-	16 October 1964. It reads to 0.5 psi with interpolation to 0.1 psi.	
	1.1.8 Manometers	
_	All pressure drops were read on one of two manometers. The	
	first was a Meriam U-tube vertical cleanout type whose range was 30	
-	inches, graduated in increments of 0.10 inch. With mercury, 0.10 inch.	
	was equivalent to 0.0491 psi.	
-	Since many of the Δp 's were very small, a specially sensitive	
	mercury inclined manometer was constructed. This second instrument was	
-	made of accurate-bore Pyrex tubing, 122 centimeters long and 7mm in	
	diameter. Its maximum reading was 40 inches scale, which reduced to	
_	20 inches actual because of its 2:1 slope ratio. This was equivalent to	*

Approved For Release 2002/09/0	3 : CIA-RDP78B04747A002800020001-9
pproved For Release 2002/09/0	3: CIA-RDP/8B04/4/A002800020001-9

	STAT
--	------

9.82 psi gage. It could be read to 0.01 inch and had an accuracy of 0.2 percent full scale when temperature-compensated. Each leg was provided with a glass tee and pinch clamps for bleeding the lines of entrapped air and filling the instrument with water.