Some installation requirements may necessitate inversion of the standard mounting brackets, which will increase the clearance where necessary. The weld-nuts on tank are spaced so as to accept **EEI-NEMA** bracket. ### LIGHTNING ARRESTER CLEARANCES | REGULATOR VOLTAGE
CLASS (KV-RMS) | MINIMUM SUGGESTED
CLEARANCE (INCHES) | | | | | |-------------------------------------|---|--|--|--|--| | 2.5 | 4 | | | | | | 5.0 | 5 | | | | | | 7.62 | 6 | | | | | | 13.8 | | | | | | | 14.4 | 91/2 | | | | | | 20 | 91/2 | | | | | If the arresters are not mounted on the regulator, they should be installed within 10 feet of the regulator and the ground of the arrester should be connected directly to the ground lug of the regulator tank. ### SHORT-CIRCUIT RATING The impedance of a regulator is practically neg ligible for reducing short-circuit current. The impedance of the feeder up to the point at which the regulator is installed should be sufficient to limit the short-circuit current in the regulator to the value for which it is designed. It is recommended that feeder current-limiting reactors be installed on the feeder to keep the short-circuit current within the required limits. Short-circuit rating on any position is 40 times the rated current at ± 10 percent regulation for 0.8 seconds. For short-circuit duration above 0.8 seconds the permissible short-circuit current is reduced to keep the product l^2t constant. In this formula l is the short-circuit current and t is the time in seconds. For instance, if the regulator is rated 2500 volts, 400 amperes, at ± 10 percent regulation, $l^2t = (400 \times 40)^2 \times 0.8 = 205 \times 10^6$. Then for a short-circuit duration of 2 seconds, $2l^2 = 205 \times 10^6$ and l = 10,100 amperes. Typical three-phase installation ### CONNECTION DIAGRAMS # WHEN REGULATOR IS IN NEUTRAL POSITION OR WHEN REGULATOR CAN BE RUN TO NEUTRAL POSITION If there is any doubt that the regulator is on the neutral position, follow the instructions below, or check the position of the reversing switch by removing the handhole cover. When the regluator is in the neutral position the movable contact of the reversing switch is in a vertical position. CAUTION: Make this inspection only when the regulator is de-energized. WARNING: Do not use any automatic circuit-opening elements between the line and St. bushing, such as: fuses, cutouts or circuit breakers. This connection should never be opened unless the regulator is in the neutral position. When the connection to the St. bushing is open, the regulator acts as a current transformer with open-circuited secondary. Dangerous voltages are induced in the series and exciting windings if any load current flows in the series winding. ### CONNECTING INTO SERVICE: - Open the control circuit. Close device B (and D if used). Close the control circuit and run the regulator to neutral by manual control; then reopen the control circuit. Close device C. Open device A. Close control circuit and place control on AUTO. ### REMOVING FROM SERVICE: - 1. Set the regulator on neutral by manual control, then open the control circuit. - Close line at A 3. Open B and C (and D if used). CAUTION: TO AVOID BURNOUT OF WINDINGS, DEVICE NAT MUST NEVER BE CLOSED WITH THE REGULATOR CON-NECTED TO THE LINE EXCEPT WHEN IN THE NEUTRAL POSITION. Fig. 3. Connecting regulator in and removing from service without interrupting load ### CONNECTION DIAGRAMS (CONT'D) Fig. 4. Switching mechanism connections Fig. 5. Typical single-phase installation Fig. 6. Feeder connections ### **OPERATION** ### LOAD-BONUS OPERATION The load-bonus feature provides a means of operating the regulator at increased load by decreasing the range of regulation in 1½ percent steps. Load current may be increased up to 160 percent of rated current when operated at ± 5 percent regulation (with a limit of 668 amperes). Refer to nameplate for rating at load-bonus settings. To make adjustments, set the limit switches to the desired regulation range by lifting the knob and moving it to the desired setting (Fig. 7). THE REGULATOR NEED NOT BE DE-ENERGIZED WHEN MAKING REGULATION ADJUSTMENTS. ### DRAG HAND RESET To reset the drag hands on the load-bonus position indicator, press the drag hand reset button on the lower left corner of the control panel. Drag hands will reset automatically. - 1. Limit switch adjusting knob (lower) - 2. Limit switch adjusting knob (raise) Fig. 7. Load-bonus position indicator ### THREE-PHASE CONNECTIONS The line connections for three-phase operation are shown in Fig. 6. Note that Type ML32 regulators cannot be operated in Y-connection with the bank-neutral isolated. When these regulators are Y-connected, the neutral of the regulator bank must be effectively connected to the system neutral, preferably by the fourth wire. Without this interconnection, Y-connection is hazardous, as the individual and independent voltage control of each phase can cause unequal turn ratios between phases, resulting in shifting of an isolated neutral with extreme distortion of phase voltages. ### OVERLOADING REGULATORS The regulator may be overloaded in accordance with the American Standard Guide for Loading Step Voltage Regulators, Appendix C57.95–1955. ### OTHER THAN RATED VOLTAGE All regulators, except those of the 2500-volt rating, are provided with taps on the potential transformer for reduced-voltage operation. These taps make it possible to obtain the proper voltage for the control circuit. When operated at other than rated voltage, the regulator KVA must be reduced unless otherwise specified on the nameplate. With the exception of certain operating voltages for 7620-volt regulators, all ratios of potential transformers may be changed by changing the connection of lead No. 9 at terminal board located on the control panel. Other connections are to be changed inside the regulator tank. For proper connections, see regulator nameplate. The following table lists the standard potential ratios. | RATED
VOLT-
AGES | OPERATING
VOLTAGES | POTEN-
TIAL
RATIOS | VOLTAGE LEVELS
OF VOLTAGE
SENSOR | | | |------------------------|-----------------------|--------------------------|--|--|--| | 2500 | 2500 | 20:1 | 125 | | | | 5000 | 5000 | 40:1 | 125 | | | | | 4330 | 34.7:1 | 125 | | | | | 2500 | 20:1 | 125 | | | | 7620 | 7960 | 66.7:1 | 119.3 | | | | | 7620 | 66.7:1 | 114.2 | | | | | 7200 | 60:1 | 120 | | | | | 6900 | 60:1 | 115 | | | | | 5000* | 40:1 | 125 | | | | | 4330* | 34.8:1 | 124.4 | | | | | 2500* | 20:1 | 125 | | | | 13800 | 13800 | 120:1 | 115 | | | | | 12000 | 100:1 | 120 | | | | 14400 | 24940GR.Y | 120:1 | 120 | | | | | 12470GR.Y | 60:1 | 120 | | | | 19920 | 34500 | 166:1 | 120 | | | * Connection for these operating voltages must be made inside the tank. When it becomes necessary to change potential transformer connections inside the tank to obtain the correct potential ratio, remove the cover and lower the oil just enough to expose the potential transformer terminal board. (Be careful not to expose the current transformer or bridging reactor to the air.) Remove insulation from the existing connection, and disconnect this joint. Cut the cloth tape and remove the paper insulation from the potential lead to be used in making the new connection. (The terminal board is clearly stamped to identify the potential leads.) Make the desired connection, and re-insulate this joint. Tape the disconnected potential lead. ### TEST FOR PHASE SEQUENCE If the system phase sequence is not known, use the following method of obtaining the proper phase relationship. The regulators carrying the leading and lagging current can be identified as outlined below. This method may be used only for two regulators in an open-delta system and should be made when the regulators are carrying appreciable load. - a. Connect the regulators for normal open-delta operation. See Fig. 6. - b. Set the control switch on "AUTO." - c. Set the resistance (R) and reactance (X) adjustments on the line-drop compensators of both units on - d. Set the voltage sensor on each unit at approximately 120 volts. - e. Set X on each regulator to 10 volts, leaving R on zero. Measure the output voltages of each regulator. - f. The regulator with the higher output voltage (nearer the maximum raise position as observed on the position indicator) is on the lagging phase; the other is on the leading phase. ### CHECKING REGULATOR CONTROLS With by-pass switch "A," Fig. 3, in series with the line closed, close the disconnect switch "B" (and "D" if used) on the source side of the regulator. Do NOT close the disconnect switch "C" on the load side. Close the control-power circuit breaker. Set the line-drop compensator to zero compensation. Turn the selector switch to LOWER. The regulator will make the number of steps in the LOWER direction depending upon the setting of the limit switch in the indicator; then the motor will be stopped by the opening of the "lower" limit switch. Turn the selector switch to AUTO. After a time delay (as determined by the setting of the time-delay relay), the regulator will operate and come to rest. Check the operation of the regulator in the RAISE direction in the same manner. If desired, connect a precision voltmeter to the test studs on the front of the control panel. The reading should be within the bandwidth of the voltage setting of the voltage sensor. If the setting of the voltage-sensor is satisfactory, return the regulator to NEUTRAL; then set the selector switch and the control-power circuit breaker on OFF. If unsatisfactory, adjust the voltage sensor as explained under OPERATION OF THE STATIC CONTROL. - Voltage level adjustment Bandwidth adjustment - Resistance compensato - Test rheostat - High and low lights Reset switch - Operation counter Time delay adjustment - Polarity switch Control switch - Neutral light - Output test terminals - Control power
circuit breaker - External power supply switch External power supply terminals Fig. 8. Control panel, front view ### OPERATION OF THE STATIC CONTROL ### INTRODUCTION The control described below incorporates the standard features of voltage-sensing, time delay and line-drop compensation common to all controls for step voltage regulators. All functions except the final output to the motor circuit are performed with static devices in order to minimize the effects of wear over an extended service life. The controls are designed for 60-cycle alternatingcurrent operation. All devices are factory calibrated and adjustments can be made by the calibrated control knobs. No warm-up time is required by the controls and the accuracy class is better than Class I. The control settings can be secured by the locking knobs ### OPERATION The regulator output voltage is stepped down by an internal potential transformer and is applied to the input of the control. A test rheostat (R24) is provided to permit variation of the voltage applied to the sensing circuit of the control with no change in the regulator output voltage. This facilitates checking of controls at installation. A tapped transformer (T1) is used to reduce the voltage applied to the line-drop compensator and sensing circuit to a desired level. A rheostat (R29) provides for voltage level settings between 105 and 135 volts. Before being applied to the sensing circuit, the output of transformer (T1) is modified by the linedrop compensator. The line-drop compensator consists of a tapped reactor (L1) and a rheostat (R27) which are used to develop voltages proportional to the IX and IR drops in the line fed by the regulator. The reactor simulates the IX drop and has taps selected to permit the insertion of 0 to 24 volts compensation in one-volt steps with rated current flowing in the regulator. The resistance compensation is continuously adjustable from 0 to 24 volts at rated output current. A compensation polarity selector switch (S1) is provided to permit the reversal of either the resistance or the reactance compensation when required by regulator application. For normal compensation applications, the voltage developed across the line-drop compensator is subtracted from the regulator output voltage. This forces the regulator output to be higher for a given voltage into the sensing circuit and thus causes the regulator to compensate for the drops created by current flow in the lines. The voltage-sensing element of the control is a zener diode bridge. The legs of the bridge consist of R6; CR21, CR22, Z1 and R12; CR19, CR20 and Z2; R28, R8, R7 and R15, Resistors R12 and R15 are relatively small and may be ignored in a general analysis of bridge operation. Diodes CR19, CR20, CR21 and CR22 are used for temperature compensation and may also be ignored for general analysis. This leaves the basic elements of the bridge being R6, Z1, Z2, R28, R8 and R7. The zener diodes serve as reference devices and voltage variations are reflected as differences in voltage across the resistors. Since zener diodes are DC devices, it is necessary to rectify and filter the regulator output before applying it to the sensing bridge. For this application, the bridge is at its balanced condition when the potential at the junction of R6 and CR21 is equal to the potential at the center of the active portion of R8. As the applied voltage increases, the potential at the center of R8 rises with respect to the potential at the junction of R6 and CR21. As it decreases the reverse occurs. The output of the voltage-sensing bridge is fed to the control windings of a pair of magnetic amplifiers (AMP1 and AMP2). At balance, current flow in the control windings of AMP1 is from R9 to L3 and current flow in the control windings of AMP2 from L3 to R10. Current flow in this direction causes each amplifier to produce negative pulses to the gate circuit of SCR1. Since positive gate voltage is required to make an SCR conduct, there will be no output from the control. As previously described, when the applied voltage increases the potential at the center of R8 rises with respect to the potential at the junction of R6 and CR21. When the increase is sufficient to cause the potential at the lower slider of R28 to go above the potential at the junction of R6 and CR21, the current in the control winding of AMP2 will reverse. This current reversal will cause AMP2 to produce positive pulses to the gate circuit of SCR1 and make it conduct. It may be seen that the rectifiers CR9 and CR10 in the circuit of AMP2 will force it to function on the half cycle of the a-c wave when the bottom of transformer T2 is positive with respect to the top. Therefore, positive pulses from AMP2 cause SCR1 to conduct on the half cycle which applies voltage to the lower portion of the circuit and charges capacitor C4. This potential is applied through CR14 to the time delay circuit which consists basically of a uni-junction transistor (UJT1) and an RC charging network (R25 and C5). When C5 has charged sufficiently to cause UJT1 to conduct, the pulse created by this conduction is applied to the gate circuit of SCR2 causing it to conduct. Conduction of SCR2 energizes relay K2 which, in turn, energizes the regulator operating motor in the direction which will lower the output voltage. A similar sequence may be followed through when the applied voltage decreases. In this case, the current through the control windings of AMP1 reverses when the potential at the upper slider of R28 falls below the potential at the junction of R6 and CR21. Note that the setting of R28 determines the amount of deviation from balance required to initiate a controlling action. Therefore, R28 is the bandwidth adjustment. See Section on "Checking The Level and Bandwidth." Since AMP1 functions when the top of T2 is positive with respect to the bottom, SCR1 is caused to conduct on the half cycle which energizes the upper portion of the circuit. The same timing circuit is energized, but this time through rectifier CR13. Under these conditions, when SCR2 conducts, it will energize relay K1 which will in turn operate the drive motor to raise the output voltage. Note that variable resistor R25 changes the time constant of the RC charging network and is therefore the time-delay adjustment element. Since a single timing network is used, a single adjustment provides for equal time delay for errors in either direction. If the voltage-sensing device returns to a balanced condition before capacitor C5 is fully charged or time cycle is completed, the capacitor will discharge through the same path as the charging network. In order to facilitate checking the control, a pair of indicator lights is provided to show when the edge of the band has been reached. To keep from unduly loading the circuit during normal operation and to extend lamp life, the circuit is arranged such that the lamps are operative only when the control selector switch is in the TEST position. This position may be used to check voltage level and bandwidth but due to circuit loading by the lamps it is necessary to put the control selector in the AUTOMATIC position to check time delay, and for normal operation. ### VIDLTAGE SENSOR ### GENERAL The voltage-sensing device continuously measures the output voltage of the regulator and controls the operation of the motor of the tap changer, thereby maintaining the output voltage within a preset band. ### VOLTAGE LEVEL To adjust the voltage level of the control, rotate the adjusting knob marked VOLTAGE LEVEL. The voltage level is continuously adjustable between 105 and 135 volts, with scale markings in one-volt increments. The sensor is set at the factory for 120 volts with 1.5-volts bandwidth. ### BANDWIDTH To adjust the bandwidth of the control, rotate the adjusting knob marked "Bandwidth." The bandwidth dial is calibrated for 1.5, 2.0, 2.5 and 3.0 volts at normal voltage levels between 110 and 130 volts. The desired bandwidth is obtained by the intersection of the voltage level line and bandwidth line. ### NORMAL VOLTAGE The normal voltage setting of the voltage sensor should be checked first. Normal voltage is the median of the voltage at the point between when the HIGH and LOW band edge indicator lights just go on. To adjust, check the normal voltage level, connect an indicating voltmeter to the potential test terminals on the control panel and set the line-drop compensator for zero compensation. The indicating voltmeter will then read the equivalent output voltage of the regulator. # CHECKING THE LEVEL AND BANDWIDTH With the indicating voltmeter connected to the potential test terminals, proceed as follows: - 1. Set the VOLTAGE LEVEL adjusting knob. - By means of the automatic-manual control switch, operate the regulator either RAISE or LOWER until the voltmeter reads approximately 2 volts above the upper edge of the desired regulator bandwidth. - Turn the CONTROL SWITCH to TEST. At this point the HIGH light should be lit signifying that the voltage is above the upper edge of the bandwidth. - 4. Turn the TEST RHEOSTAT in until neither light is lit. Continue turning in the TEST RHEOSTAT until the LOW light is lit and record the voltage at which the light comes on. This is the lower edge of the bandwidth. - Turn the TEST RHEOSTAT in the opposite direction until the HIGH light is lit and record the voltage at which this light comes on. This is the upper edge of the bandwidth. ### Approved For Release 2000/06/14: CIA-RDP78-06505A0007000 22-0 GEH-1663 Installation, Operation and Maintenance of Step Voltage Regulators, Type ML32 - 6. The median of these two voltage recordings is the true normal voltage setting of the control. Should this actual setting be slightly different than required, slightly adjust the VOLTAGE LEVEL control knob accordingly and repeat the above steps. Bandwidth is the interval between when the HIGH and LOW just go on. - Return the TEST RHEOSTAT and CONTROL
SWITCH to AUTO position and reset the line-drop compensator to the desired value. ### TIME DELAY ### GENERAL The TIME DELAY provides for a time delay between the energizing of the voltage-sensing device and functioning of the load-tap changing equipment. The time delay is continuously adjustable from 10 through 90 seconds. To adjust the TIME DELAY, rotate the adjusting knob indicated TIME DELAY to the desired time. The timer is set for 30 seconds at the factory, and this is the recommended setting unless particular applications indicate otherwise. Charging time of the capacitor depends on the length of time the timing cycle has been off. The recovery time of the timer is essentially the same as the charging or cycling time, thus the timer has an integrating action until the output relay closes at which time the timer automatically resets to zero time. ### CHECKING TIME DELAY The CONTROL SWITCH must be in the AUTO position to check time delay. Place the control in a balance condition within the bandwidth. Start of time delay is initiated when the control is instantaneously placed out of the bandwidth by use of the level adjust. The time between throwing the control out of the bandwidth and when the motor energizes is the time delay. 15 Fig. 10. Schematic diagram of control circuit (G-E dwg. 777C385AB) Fig. 11. Wiring diagram, position indicator and auxiliary devices (G-E dwg. 777C385AB) Fig. 12. Component board layout ### LINE-DROP COMPENSATOR The Line-Drop Compensator has adjustable positive resistance and reactance elements in the control circuit which make it possible to simulate actual line impedance. The reactance setting consists of a coarse and fine adjustment knobs. A combination of these adjustments provides a range of 0 to ± 24 volts. A line current transformer inside the regulator causes a proportional current to flow through the R and X of the compensator circuit. The compensator IZ drop is subtracted from the potential transformer secondary voltage, and the resultant is applied to the voltage sensor. This sensor causes the regulator to hold a voltage high enough (or low enough) to compensate for the voltage drop (or rise) to some predetermined location on the line, thus causing the voltage at this point to remain essentially constant. The settings of the line-drop compensator are calculated using the equations shown on page 20. For single-phase (2-wire) circuits double the assumed R and X values, as the total impedance out and back must be factored. If the circuit consists of one line and a grounded neutral, the total will be 1.67 times the assumed R and X values. For three-phase circuits the loads are assumed to be balanced, and the impedance for one wire only need be considered. Sample calculations which illustrate how these equations are applied for various circuit configurations and regulator connections are shown on page 20. The line resistance, reactance and current transformer primary rating may be obtained from Tables 1 and 2. It should be kept in mind that with delta or opendelta connected regulators the settings obtained from the calculations must be modified as illustrated in Case IIIA of the sample calculations. R setting (volts) = $\frac{I_c T^* \times resistance of the line (ohms)}{Potential transformer ratio}$ X setting (volts) = $\frac{I_c T^* \times reactance of the line (ohms)}{Potential transformer ratio}$ * $I_c T = Current transformer primary current rating$ | ſ | A | В | L | E | 1 | |---|---|---|---|---|---| |---|---|---|---|---|---| | | | | COPP | ER - HA | RD DRA | ₩N | | | | | | ALUM | AINUM - | STEEL | REINFO | RCED | | | | |------------|--------------|---------|-------|---------|----------|---------|--------|------|------|--------------|---------------------|-----------------------------------|---------|-------|--------|-------|------|-------|-----| | w.u. | ANCE | | | | REACT | ANCE | | | | ZE E | ESISTANCE
NT 25C | | | | REACT | ANCE | | | | | WIR. | 150 | | EQU | IVALEN1 | r spacin | G OF CO | NDUCTO | RS* | | WIRE
SIZE | 25C | EQUIVALENT SPACING OF CONDUCTORS* | | | | | | | | | AWG | RESI
AT 2 | 18'' | 24'' | 30" | 36'' | 42" | 48'' | 54'' | 60'' | AWG | A.T. | 18" | 24'' | 30" | 36" | 42" | 48" | 54" | 60 | İ | | 8 | .656 | .135 | .142 | .147 | .151 | .155 | .158 | .161 | .163 | 6 | .675 | .132 | .138 | .143 | .147 | | .154 | .157 | .15 | | 6 | .413 | .130 | .137 | .142 | .146 | .150 | .153 | .156 | .158 | 4 | .425 | .126 | .133 | .138 | .142 | .146 | .149 | .152 | .15 | | 4 | .263 | .124 | .130 | .135 | .140 | .143 | .146 | .149 | .151 | 2 | .267 | .122 | .129 | .134 | .136 | .142 | | .144 | .14 | | 2 | . 167 | .119 | .125 | .130 | .135 | .138 | .141 | .144 | .146 | 1/0 | .168 | .118 | .125 | .130 | .134 | .136 | | .144 | .14 | | 1 | .132 | .115 | .122 | .127 | .132 | .135 | .138 | .141 | .143 | 2/0 | .134 | .114 | .123 | .128 | .130 | .134 | .137 | .140 | .14 | | 1/0 | .105 | .113 | .120 | .125 | .129 | .132 | .136 | .138 | .141 | 3/0
4/0 | .106 | .112 | .119 | .126 | .128 | .134 | .135 | .138 | .14 | | 2/0 | .083 | .110 | .117 | .122 | .127 | .130 | .133 | .136 | .138 | M CM | .064 | .112 | .119 | .124 | .120 | .132 | .133 | 1.130 | 1 | | 3/0
4/0 | .066 | .108 | .114 | .119 | .124 | .127 | .130 | .133 | .133 | 266.8 | .066 | .098 | . 104 | .109 | .113 | .117 | .120 | .123 | .12 | | MCM | .053 | 1 . 105 | .111 | .116 | -121 | .124 | .127 | .130 | .132 | 336.4 | .053 | .094 | .101 | .106 | .110 | .114 | .117 | .120 | .12 | | MCW
250 | .045 | .103 | . 108 | .113 | .118 | .121 | .124 | .127 | .129 | 397.5 | .045 | .093 | .099 | .105 | .109 | .112 | .115 | .118 | .12 | | 300 | .037 | . 098 | .106 | .111 | .115 | .119 | .122 | .125 | .127 | 477.0 | .037 | .091 | .097 | .102 | .106 | .110 | .113 | .116 | .13 | | 350 | .032 | .096 | .104 | .109 | .113 | .117 | .120 | .123 | .125 | 556.5 | .032 | .089 | .096 | .101 | .105 | .108 | .112 | .114 | .1 | | 500 | .023 | -095 | .101 | .107 | .111 | .114 | .117 | .120 | .123 | 795.0 | .022 | .085 | .092 | .097 | .101 | . 105 | .108 | .110 | .1 | | 750 | ,016 | .092 | .098 | .103 | .107 | .111 | .114 | .117 | .119 | 954.0 | .019 | .084 | .090 | .095 | .099 | .103 | .106 | .108 | .1 | | 1000 | .012 | .088 | .095 | .100 | .104 | .108 | .111 | .114 | .116 | 1272.0 | .014 | .079 | .086 | .091 | .095 | .099 | .102 | .105 | .1 | | | | | | | IABL | t 2 | | | | | | | |--------------------------------|-----|-----|-----|-----|------|-----|-----|-----|------|------|------|----| | Regulator
Current Rating | 25 | 50 | | 75 | 100 | 150 | 200 | 0 | 219 | 250 | 300 | 33 | | C.T. Primary
Current Rating | 25 | 50 | | 75 | 100 | 150 | 200 | 0 | 250 | 250 | 300 | 40 | | Regulator
Current Rating | 394 | 400 | 438 | 500 | 548 | 666 | 668 | 833 | 1000 | 1250 | 1332 | 16 | | C.T. Primary
Current Rating | 400 | 400 | 600 | 600 | 600 | 600 | 600 | 800 | 1200 | 1200 | 1600 | 16 | ### SAMPLE CALCULATIONS ### ASSUME CIRCUIT IMPEDANCE VALUES OUT TO LOAD CENTER TO BE: R=1.5 ohms X=2.0 ohms Single-phase circuit 2500-volt PT Ratio 20:1 CT Primary rated 100 amps. R setting = $$\underline{IcT}$$ x $2R = \underline{100}$ x $3 = 15$ volts X setting = $$\frac{1cT}{PT}$$ x 2X = $\frac{100}{20}$ x 4 = 20 volts ### CASE II 2500/4330Y-volt, 3-phase circuit Three, Single-phase regulators connected line to neutral. PT Ratio 20:1 CT Primary rated 100 amps. R setting = $$\frac{IcT}{PT} \times R = \frac{100}{20} \times 1.5 = 7.5$$ volts X setting = $$\frac{PI}{PT} \times X = \frac{20}{20} \times 2.0 \pm 10$$ volts ### CASE III A 2500-volt, 3-phase, 3-wire circuit Two, single-phase regulators connected in an open delta bank. PT Ratio (line to line) 20:1 CT Primary rated 100 amperes Convert the PT ratio to a line to neutral basis. R setting = $$\frac{\text{lcT}}{\text{PT}/\sqrt{3}} \times \frac{\text{R}}{20/1.73} \times 1.5 = 13 \text{ volts}$$ X setting = $\frac{\text{lcT}}{\text{PT}/\sqrt{3}} \times \frac{\text{X}}{20/1.73} \times 2 = 17.3 \text{ volts}$ With two regulators in open delta there is a 30° phase displacement between the PT (line to line) voltage and the line current. The current lags in one regulator and leads in the other. Further modifications are necessary. Determine which is the "lead" and which is the "lag" regulator from directions on page 11. The basic L.D.C. settings should be modified as follows: $R \mod = 0.866R + 0.5X =$ (0.866(13) + (0.5)(17.3) = 19.9 volts $X \mod = 0.866X - 0.5R =$ (0.866)(17.3) - (0.5)(13) = 8.4 volts Lag Regulator 0.866R - 0.5X 0.866(13) - (0.5)(17.3) = 2.6 volts 0.866X + 0.5R (0.866)(17.3) + (0.5)(13) = 21.4 volts For minus values of R or X set compensator polarity switch to correspond. ### CASE III B Three, single-phase regulators connected in a delta bank. PT Ratio (line to line) 20:1. CT Primary rated 100 amps. Convert the PT ratio to a line to neutral basis. Compute the basic L.D.C. settings exactly the same as for Case III A above. All three regulators either "lead" or "lag" depending upon the phase rotation of system voltages. From directions on page 11 determine whether the regulators "lead" or "lag". Then modify the basic settings for "lead" or "lag" per instructions under Case III A. ### REGULATOR FOR GROUNDED-Y CIRCUITS The step voltage regulator rated 19920/34500 volts is designed for use on 34500 grounded-Y circuits. This regulator is designed with two 34.5-kv class line bushings (S and L) for use on circuits limited to 150-kv BIL. The neutral is brought to a 15-kv bushing (SL). Regulators rated 14400/24940 volts are designed for use on either 14400 delta or 24940 Grounded-Y circuits. A tap is provided for operation at 7200 volts delta or 12470 Y operation at reduced capacity. The current rating of the regulator must not be exceeded when operating at the lower voltages. The regulator is designed with two 25-kv class line bushings (S and L) and a 15-kv class neutral bushing (SL). When operating on a 25-kv or 34.5-kv circuit, the SL bushing must
be solidly grounded or grounded through an impedance that will limit the low frequency and impulse from neutral to ground to the 15-kv insulation class. ### REGULATOR CONNECTIONS Fig. 13A. Schematic diagram showing two-core regulator with a series transformer Fig. 13B. Schematic diagram showing two-core regulator with a series autotransformer Fig. 13C. Schematic diagram showing connections of regulator for GRDY circuits Fig. 13D. Schematic diagram showing single-core regulator GEH-1663 Installation, Operation and Maintenance of Step Voltage Regulators, Type ML32 | TROUBLE | CAUSE | REMEDY | |--|---|---| | I. Regulator will not operate either automatically or manually or remains in maximum lower or maximum raise position | 1. Loss of sensing signal from the regulator. | 1. Using an AC voltmeter check for control sensing voltage at the voltage test terminals. If no voltage at this point, either the external power supply switch or the circuit breaker is defective. Check for sensing voltage between NN9 and NN10. If no voltage appears at these terminals, the problem is outside the controls. If voltage does appear at this point, check for faulty external power supply switch or a faulty circuit breaker. | | | 2. Motor circuit is not functioning properly or the control switch may be defective. | 2. If correct voltage is measured at the voltage test terminals, place the control switch to raise position (check to be sure the regulator is not in the maximum raise position). Place an AC voltmeter (150-volt scale between NN27 and NN26. If voltage is not measured here, the control switch is faulty. If voltage does appear here, the motor circuit is defective. | | | 3. Indicator switches are not operating properly. | 3. See page 26 for removing indicator dial. | | II. Regulator functions
manually but not auto-
matically in either the
raise or lower direction. | 1. Loss of sensing voltage to
the bridge rectifier or the
zener bridge which are lo-
cated on the component
board assembly. | 1. & 2. Check sensing circuits and relay voltage supply circuits as follows. Set the control switch to "Test" observing the band edge indicator lights, with 120 volts supplied to the control, from either the internal regulator supply or from an external source connected to the terminal marked "External" and power supply switch to position marked "External". | | | 2. Defective relay voltage supply. | Vary the level adjustment in and out of the bandwidth in both above and below 120 volts by use of the level adjust control. If the lights indicate the correct voltage level, voltage supply to the relay is correct. If not, problem lies in these circuits. Elimination of level adjust rheostat would isolate the problem to the component board. This may be accomplished by disconnecting the "B" (9 point connector) plug assembly between the component board and the panel. | | | | CAUTION: Turn off power before disconnecting. With an analyzer check the level adjust rheostat R29 for a range of 0.425 ohms | | | | ± 10%. Also check continuity between panel ground and rheostal terminals to make sure terminals are not grounded. Replace rheostal if defective. If rheostal agrees with correct range and ground test, sensing circuits located on board are defective. Replace | | | 3. Defective Time Delay Circuit. | Component bound circuit does not function, the silicon rectifier SCR 2 will not conduct and complete the ground circuit for the relays. Test the time delay rheostat R25 similar to the level adjust test as above except the range will be from 0 to 2.5 megohms ± 10%. Replace rheostat if defective. If rheostat is normal, problem will be located on the board assembly. Replace component board. | TROUBLE-SHOOTING # TROUBLE SHOOTING CHART (Construed) | TROUBLE | CAUSE | REMEDY | |--|---|--| | III. Regulator runs to
maximum Raise or max-
imum Lower limit. | 1. Defective Relays or Sensing Circuits. | 1. If sensing circuits are functioning properly, check for sticking relays. Replace relays, if defective. Caution should be taken when relays are removed from the board. All connections from the relay to the board should be disconnected at the relay and not the board. | | IV. Incorrect level or
Control cannot be bal-
anced. | 1. Defective Sensing Circuits. 2. Position indicator plug not fastened securely. | 1. Check circuits as in II above. 2. If the position indicator plug is not fastened securely so the shorting pin is not spreading the CT shorting jack to break the short, a grounding of either side of the CT will result depending on the position of the ground in the circuit. An increase of input voltage by approximately 6 volts will be necessary to balance. (i.e., Control level set for 120, balance will occur at approximately 126 volts), or the control cannot be balanced. Check indicator plug for proper alignment or interference and fasten securely. | | V. Regulator operates frequently. | 1. Incorrect bandwidth. 2. Time Delay setting is too low or the circuits are malfunctioning. | 1. With selector switch in the "Test" position, check bandwidth setting by using band edge indicators and an A.C. voltmeter at the voltage test terminals. See bandwidth check in control settings under "Operation of Static Control," page 13. To check the band rheostat, disconnect power, then disconnect the "B" plug (9 point connector). With an analyzer check the resistance of each layer of the bandwidth rheostat R28. Each layer should be 25 ohms ±5%. Also check for shorting between the panel ground and terminals of each layer. Replace bandwidth rheostat, if defective. If rheostat is normal, replace the component board. 2. The control switch must be in the "Auto" position to check time delay. Place the control in a balanced condition within the bandwidth. Start of time delay, listinitated when the control is instantaneously placed out of the bandwidth either by use of the level adjust or the test rheostat. The time between throwing the control out of the bandwidth and when the motor energizes is the time delay. If this is drastically different (±20%) from the calibrated setting, the time delay circuit is malfunctioning. Remove component board and return for replacement. | | VI. Regulator bucks
when load increases. | 1. Reversed polarity in either
the current transformer or
potential transformer. | 1. Reverse the current transformer leads in the control cabinet in this manner: Disconnect leads No. NN24 and NN23 (on current transformer resistor) and reverse connections. WARNING: Short-circuit current transformer so that the secondary will not become open-circuited. (Current transformer is short-circuited automatically by removing indicator plug from indicator.) | BUILD THE TRANSPORTE # CHART (Continued) TROUBLE-SHOOTING | TROUBLE | CAUSE | REMEDY | |--|--|---| | VII. Line Drop Compensator is not functioning in either reactence or resistance or both. | 1. Shorting jack in the indi-
cator plug is not open. | 1. Remove the indicator plug and check the shorting pin for physical defects. If defective, replace. If shorting pin is normal, reconnect indicator plug and secure tightly to be sure the shorting pin is disengaging the shorting jack. | | | 2. R32 is defective. | 2. Disconnect the indicator plug and "B" connector (9 point plug) within the control
cabinet. With an analyzer, check the resistance of R32. A value of 150 ohms $\pm 10\%$ should be measured. If not, resistor is defective and should be replaced. | | | 3. S1, S2 or S3 is defective. | 3. With the indicator plug and "B" connector disconnected, measure the resistance between NN23 and NN24 with an analyzer. With both compensator controls set at zero, the resistance of R32 (150 ohms) would be measured again. If not, either S1, S2 or S3 may be defective. Check each switch for corrosion or mechanical defects. If defects exist, replace the particular switch. Switching to all positions on each switch would aid in determining fault. | | | 4. Defective Rheostat R27. | 4. With the indicator plug and "B" connector disconnected, measure the resistance between the slide arm and one end terminal. Vary the rheostat from one extreme to the other, a variation of 24 ohms $\pm 1\%$ should be noted. If not, rheostat is defective and should be replaced. | | | 5. Defective Current Transformer. | 5. I, all components in 1, 2, 3 and 4 are normal, but no compensation exists, a defective current transformer is the probable cause. | | VIII. Motor does not operate. | 1. Motor or motor capacitor
may be faulty. | 1. Disconnect the four leads from the capacitor terminals, apply 240 volts, 60 cycles to the terminals, and read the current in the line. This reading should be approximately 0.36 amperes. Discharge the capacitor before reconnecting the leads. | | | 2. Motor may be faulty. | Reconnect capacitor, apply 120 volts directly to the motor. Refer to Control Diagram
for connections. | | | | | ### MAINTENANCE ### INSPECTION At regular intervals, as determined by service, inspect the regulator to make sure it is operating properly and to detect and correct any trouble which may interfere with efficient service. To check the operation, it is not necessary to untank the regulator. Run the regulator to its "Raise" and "Lower" limit positions by using the manual control switch to test the limit switches. By manual control, run the regulator in either direction a few steps, and then turn the regulator back to AUTO to check the voltage sensor. After a time delay (30 seconds as set at the factory) the tap selector will operate and come to rest. The devices in the control cabinet require very little maintenance. If the control has to be removed from the regulator pull the plug from the socket assembly, which is mounted under the indicator. The regulator can remain energized, as the current transformer is automatically short-circuited by a shorting jack on the socket assembly when the plug is removed. ### UNTANKING To untank the regulator, follow the procedure outlined below WARNING: De-energize the regulator before untanking. WARNING: Always release any possible pressure in the tank (which may accummulate due to loading-cycle or ambient-temperature change) by slowly loosening the handhole coverband. DO NOT attempt to remove the cover or handhole cover until the pressure has been released. - 1. Remove the handhole cover. - 2. Disconnect the bushing cables. - 3. Remove the cover band, and lift off the cover. - Disconnect the plug inside the regulator tank at the indicator. - 5. Disconnect the position indicator flexible cable at the indicator. - 6. Remove the tanking bolts at top of unit. - Lift the regulator from the tank, using the holes at the top of the uprights. When lifting the regulator from the tank, the use of a spreader bar is recommended. See Fig. 14. 8. When retanking the regulator, follow the reverse procedure outlined above except when replacing cover, tap cover with rubber hammer around the edge to properly seal gasket while tightening coverband. Fig. 14. Untanking Type ML32 step voltage regulator. Showing use of spreader bar when lifting regulator from tank. Position-indicator pointer should be centered on "O" before connecting shaft to the mechanism. For indexing the indicator, move flexible shaft When regulator is untanked, the mechanism may be operated by applying 120 volts to terminals (25) or (26) on motor capacitor and No. 10 lead. Connection to No. 10 lead is made on the exposed terminal which is tied to the insulated mechanism spacer. Caution should be exercised not to run the mechanism beyond the maximum RAISE or LOWER position since the electric limit switches (in the position indicator) are out of the circuit now. A yellow mark inside the regulator tank indicates the level at which the oil should be maintained at all times. Check the dielectric strength of the oil, and, if found to be 22 kv or below, filter the oil to restore its dielectric strength to 26 kv or more. ### REPLACING INTERNAL CLAMP BUSHING Remove the main cover from the regulator and disconnect the bushing cable. Loosen the three screws on the holder and remove the garter spring. Bushing can now be removed from the cover. Replace bushing using the reverse procedure. When tightening the holder screws, equalize the torque on all three screws. # REMOVING INDICATOR DIAL ASSEMBLY Disconnect the cable and plug assembly from the position indicator. Loosen the three thumb screws and open indicator glass assembly. Remove three self-tapping screws located on outside perimeter of the dial face. Carefully pull out dial assembly which contains pointer, drag-hand assemblies and limit switches. The operation counter switch and drag-hand solenoid will be exposed when the dial assembly is removed. To remove dial assembly completely, remove the flag terminal from the limit switches. ### CONTACT INSPECTION The table which follows is given as a guide for inspecting the contacts of your regulator on the basis of minimum life. It should be used for the first inspection. It is recognized that many variables affect the contact life, such as load factor, overload, service, short-circuit, etc. Total contact life can be determined after this inspection on the basis of the amount of arcing material left in proportion to that which has been eroded. The wiping surfaces of the moving contacts of the tap-selector switch, when new, are $\frac{3}{8}$ -inch wide. The surfaces of the stationary contact arc-resisting material are $\frac{3}{16}$ -inch wide. The contacts are satisfactory for service until the moving contact is reduced almost to a line contact. Refer to regulator nameplate for rating, and determine the contact inspection point from the chart. EXPECTED MINIMUM NUMBER OF OPERATIONS USED AS A GUIDE FOR CONTACT REPLACEMENT ON BASIS OF CURRENT IN TABULATION BELOW | KVA | VOLTS | AMP | LIFE | INSPECT | |-------|-------|------|-----------|-----------| | 100 | 2500 | 400 | 1,650,000 | 1,250,000 | | 100 | 5000 | 200 | 1,530,000 | 1,150,000 | | 114.3 | 7620 | 150 | 2,000,000 | 1,500,000 | | 125 | 2500 | 500 | 1,114,000 | 850,000 | | 125 | 5000 | 250 | 1,210,000 | 900,000 | | 138 | 13800 | 100 | 1,460,000 | 1,100,000 | | 144 | 14400 | 100 | 2,000,000 | 1,500,000 | | 167 | 2500 | 668 | 815,000 | 610,000 | | 167 | 5000 | 334 | 1,910,000 | 1,425,000 | | 167 | 7620 | 219 | 1,150,000 | 865,000 | | 200 | 19920 | 100 | 2,000,000 | 1,500,000 | | 250 | 2500 | 1000 | 2,000,000 | 1,500,000 | | 250 | 5000 | 500 | 735,000 | 550,000 | | 250 | 7620 | 328 | 820,000 | 615,000 | | 288 | 14400 | 200 | 1,150,000 | 865,000 | On the same basis, other ML32 regulators rated less than 100 kva can operate in excess of 1,000,000 tap changes before inspection is required. This will be more than 25 years for normal service. ## PARTS LIST Furnish your nearest General Electric Sales Representative with *ALL* of the following information: REGULATOR SERIAL NUMBER (found on regulator nameolate) TYPE OF REGULATOR (All parts of this book are for Type ML32, single-phase step voltage regulators of standard design.) QUANTITY OF EACH PART REQUIRED REFERENCE NUMBER OF EACH PART (as shown in this book) DESCRIPTION OF EACH PART (as shown in this book) The General Electric "Triple-R" Parts Service Program offers you extra-swift shipment of common re- placement items. Regulator parts shown in this book having reference numbers prefixed by the letter "R" will be on their way to you within 48 hours of the receipt of your order at our factory. NOTE: Shipment of parts NOT bearing the "R" prefix will be dependent upon the availability of the parts requested. In cases where "R" parts and "non-R" parts appear on the same order, you will receive two shipments, UNLESS YOU SPECIFICALLY REQUEST THAT A SINGLE SHIPMENT BE MADE. Should you request single shipment, any parts bearing the "R" prefix will not receive Triple-R Rapid Parts Service. RI902 RI901 Load-bonus position indicator | FIG.
NO. | REF.
NO. | DESCRIPTION | |-------------|-------------|---| | 15 | 2000 | High-voltage bushing assembly—complete | | 15 | R2001 | Bushing porcelain | | 15 | R2002 | Bushing terminal | | † | R2003 | Bushing terminal gasket | | † | R2004 | Bushing cover gasket | | † | R2005 | Hand-hole gasket | | † | R2006 | Cover gasket | | 15 | R2007A | Load bonus position indicator | | 15 | R2008A | Load bonus indicator glass assembly kit | | † | R2009 | Indicator gasket | | 15 | 2010 | Control cabinet assembly | | † | R2011 | Sampling plug | | 15 | R2013 | Cover band | | 15 | R1900 | Indicator dial and switch assembly | | 15 | R1901 | Solenoid | | 15 | R1902 | Counter switch | † Not illustrated. Fig. 15. Type ML32 step voltage regulators Fig. 16. Type ML32, reactor side Fig. 17. Type ML32, mechanism side Fig. 18. Pole-type hangers | FIG.
NO. | REF.
NO. | DESCRIPTION | |-------------|-------------|---------------------| | 16-17 | 2014 | Core | | 16-17 | 2015 | Coil | | 16-17 | 2016 | Clamps | | 16 | 2017 | Reactor | | 16 | 2018 | Current transformer | | 16 | 2019 | Pot transformer | | † | 2020 | Thyrite assembly | | 16 | R2021 | Thyrite disks | | 17 | 2022 | Switch mechanism | | 18 | R2139 | Pole-type hangers | † not shown. Fig. 19. High current switching mechanism Fig. 20. High current
switching mechanism Fig. 21. Low current switching mechanism Fig. 22. Low current switching mechanism Fig. 23. Low current switching mechanism Fig. 24. High current switching mechanism | FIG. NO. | REF. NO. | DESCRIPTION | |-------------|----------|---------------------------------| | 21-22-23 | 2026 | Contact panel assembly | | 25 | 2027 | Slip ring assembly | | 20-21-23-25 | R2028 | Reversing switch moving contact | | | | assembly | | 20-21-23-25 | R2029 | Reversing switch stationary | | | | contact assembly (lower) | | 21-22-23-25 | R2030 | Reversing switch stationary | | | | contact assembly (raise) | | 23-24-25 | R2031 | Reversing switch connector rod | | 20-22-25 | R2032 | Moving contact assembly | | 21-22-25 | R2033 | Stationary contact assembly | | 25 | R2034 | Moving contact stud | | 19-24-25 | R2035 | Crank gear assembly | | 21-22-23-25 | R2035A | Crankshaft assembly | | 25 | R2036 | Shaft for crank gear | | 23-24-25 | R2037 | Geneva segment | | 24-25 | R2038 | Shaft for Geneva segment | | 23-25 | R2039 | Geneva gear and shaft assembly | | 25 | R2041 J | | | 19-21-22-25 | R2042 | Crank and spring assembly | | 19-24-25 | R2043 | Driver | | 21-23-24-25 | R2044 | Gear | | 20-23-25 | R2045 | Gears | | 22-24-25 | R2046 | Motor and pinion | | 22-23-24 | R2047 | Capacitor | | 22-23-24 | 2048 | Motor drive panel assembly | | 19-21 | R2049 | Spacer assembly | | 21-22-23-24 | 2050 | Base | | 19-21-24 | R2051 | Impeller gear | | 19-25 | R2052 | Shaft for impeller gear | | 21-23 | R1903 | Neutral light switch assembly | | 23-25 | R2054 | Shaft for impeller | | 20-22-23-24 | R2057 | Indicator miter gear assembly | | 25 | R2058 | Flexible shaft | Fig. 25. Parts for switching mechanisms Parts List for Step Voltage Regulators, Type ML32 Fig. 26. Control panel, front view Fig. 27. Control panel, rear view | FIG.
NO. | REF. NO. | DESCRIPTION | | |-------------|----------|-----------------------------------|--| | | R2200 | Operation counter | | | | R2201 | Control power circuit breaker | | | | R2202 | Control selector switch with knob | | | | R2203 | Test rheostat | | | | R2204 | Time delay rheostat | | | | R2205 | Resistance rheostat | | | | R2206 | Bandwidth rheostat | | | | R2207 | Voltage-level rheostat | | | | R2208 | Relays | | | | R2209 | Output test terminals | | | | R2210 | External power supply terminals | | | | R2211 | Reset switch | | | | R2212 | Neutral light | | | | R2213 | High and low lights | | | | R2214 | Line-drop compensator reactor | | | | R2215 | Thyrector | | | | R2216 | Resistor | | | | R2217 | Input transformer | | | | R2218 | Component board | | | | R2219 | Reactance switches | | | | R2220 | External power supply switch | | | | R2221 | Polarity switch | | Fig. 28. Component board Approved For Releas 2000/06/14 : CIA-RDP78-06505A000700050022-0 NOTES # Approved For Release 2000/EGNERAL CHECKROPTS A DES OS A 085 05 A 085 700 060022-0 READY TO ASSIST YOU ... When You Have Electrical Problems ... Need Further Information ... Require Ordering Instr | | LOUISIANA | DKLAHOMA | |--|--|--| | * Industrial Equipment (including Agent | † Alexandria 71302 720 Murray St. * Baton Rouge 70815 633 Oak Villa Blvd. * Lake Charles 1424 Ryan St. | † Oklahoma City 73106 2000 Classen Bl
† Tulsa 74114
Columbia Bldg., 2651 E. 21st | | and Distributor) Sales
† Electric Utility Equipment Sales | 70112 927 C | DREGON | | § Marine and Defense Equipment Sales | New Orleans 70125 . 4747 Earhart Blvd. | † Fugene 97401 1170 Pegri | | ‡ Component Sales Operation | annevepon / not | † Eugene 97401 | | | MAINE † Augusta | † ‡ Portland 97210 2929 N.W. 29th A | | LABAMA | † Augusta | PENNSYLVANIA | | † † Birmingham 35205 2151 Highland Ave.
Mobile 36602 704 Government St. | MARYLAND | † † Allentown 18102 | | | *† Baltimore 21201 1 North Charles † Hagerstown 49 East Franklin St. | Erie 16501 1001
State † Johnstown 15902 841 Oak † ‡ § Philadelphia 19102 3 Penn Center Pla | | RIZONA | | t t f Shitedelphia 19102 3 Pana Center Pla | | † † Phoenix 85012 3550 N. Central Ave.
† Tucson 85711 | 1 † ‡ § Boston 02117 . 31 St. James Ave. | 1 Pittsburgh 15222 The Oliver Bldg. Mellon | | RKANSAS | † † § Boston 02117 31 St. James Ave. Springfield 01103 120 Maple St. Worcester 01605 288 Grove St. | § Pittsburgh 15228 733 Washington | | | Worcester 01605 288 Grove St. | † † Prittsburgh 15222 The Oliver Bldg., Mellon § Pittsburgh 15228 | | | | SOUTH CAROLINA | | † Pine Bluff 71602 P. O. Box 1033 | Flint 48503 316½ W. Court St. | † Celumbia 29201 | | ALIFORNIA
Fresno 93728 1532 N. West Ave. | | Greenville 29602 108 W. Washington | | Fresno 93728 1532 N. West Ave.
† § Los Angeles 90054 212 N. Vignes St. | † Jackson 49201 210 W. Franklin St.
* Kalamazoo 927 S. Burdick St. | TENNESSEE | | t 8 Los Angeles 90005 3325 Wilshire Blvd. | * Kalamazoo 927 S. Burdick St.
† Lansing 48901 503 Bank of Lansing Bldg. | † 1 § Chattanooga 37402 832 Georgia A
Kingsport 37662 322 Commerce
† Knoxville 37916 1301 Hannah Ave., N
† Memphis 38104 1420 Unian A | | Oakland 94612 409 Thirteenth St. Redwood City 94063 55 Veterans Blvd. Sacromento 95816 2407 "J" St. \$ San Diego 92103 2560 First Ave. | * Saginaw 48607 Second National Bank Bldg. | Kingsport 37662 322 Commerce | | Redwood City 94063 55 Veterans Blvd. | MINNESOTA | "T Knoxville 3/910 1301 Hannah Ave., N. | | † Sacromento 95816 2407 "J" St.
† § San Diego 92103 2560 First Ave. | *† Duluth 55802. 14 W. Superior St. | Murfreesboro P.O. Box 1 | | T ± San Francisco 94106 235 Montgomery St. | † Fergus Falls 56537 106 E. Washington St.
† † Minneapolis 55402 12 S. Sixth St. | * Murfreesboro P.O. Box II
* 1 Nashville 37203 1717 W. End Bl
§ Oak Ridge 253 Main St., E | | T ‡ § San Francisco 94106 235 Montgomery St. San Jose 95128 2155 So. First St. | MISSISSIPPI | § Oak Ridge | | OLORADO | t Gulfport 39502 P.O. Box 33 | TEXAS | | † ‡ § Denver 80201 201 University Blvd. | † Jackson 39201 210 S. Lamar St. | * ALTE 70(0) | | ONNECTICUT | MISSOURI | | | † Hamder 06518 2905-2921 Dixwell Ave. | | Abliene / 7001 403 Amarillo 8101 81 | | † ‡ Hartford 06105 764 Asylum Ave. | | T Corpus Christi /8401 203 N. Chapa | | ISTRICT OF COLUMBIA | MONTANA | * 1 Dallas 75207 8101 Stemmons Freev | | † § Washington 20005 777—14th St., N.W. | † Billings 59101 303 N. Broadway
† Butte 59701 103 N. Wyoming St. | Fort Worth 76102 408 W. Seventh | | ORIDA | *† Butte 59701 | * † ‡ § Houston 77027 4219 Richmond A | | § Cocoa Beach (Cape Canaveral Office) 1325 N. Atlantic Ave. | NEBRASKA † † Omaha 68102 409 S. Seventeenth St. | † Dallas 75207 8101 Stemmons Freev
Fert Worth 76102 408 W. Seventh
† \$ Houston 77027 4219 Richmond A
Lubback 79408 500 E. 50th
Midland 122 North N | | Coral Gables 33146 250 Bird Road | | | | † Jacksonville 32202 1901 Hill St. | † Las Vegas 89106 1711 S. 8th St. | *† San Antonio 78204 . 419 S. Main A | | t Migmi 33134 4100 West Flagler St. | NEW HAMPSHIRE | UTAH | | † Pensacola 32503 First Bank Bldg.
† Tampa 33609 Henderson Blvd. at Lois Ave. | † Manchester 03104 1662 Elm St. | * † § Salt Lake City 84110 200 S. Main | | Tampa 33609 Henderson Blvd. at Lois Ave.
2106 S. Lois Ave. | NEW JERSEY † ‡ East Orange 07017 26 Washington St. | | | | | VERMONT 2016 C | | EORGIA
†‡ Atlanta 30309 1860 Peachtree Rd., N.W. | *† Albuquerque 87108 120 Madeira Drive, N.E. | † Rutland | | Macon 31202 682 Cherry St. | NEW YORK † § Albany 12203 B Colvin Ave. | VIRGINIA | | † Savannah 31405 5002 Paulsen St. | † § Albany 12203 B Colvin Ave.
† Binghamton 13902 19 Chemano St. | * § Newport News 23601 | | DAHO | | P.O. Box 1038, 311 Main | | † Boise 83706 | | P.O. Box 1038, 311 Main † Richmond 23230 5001 W. Broad † Roanoke 24005 920 S. Jefferson | | t \$ Chicago 60680 840 S. Canal St. | † Rochester 14604 89 East Ave.
† Syracuse 13206 3532 James St. | | | † ‡ § Chicago 60680 840 S. Canal St.
† Peoria 61603 2008 N.E. Perry Ave.
Rockford 61105 4223 East State St. | * †‡ Syracuse 13206 3532 James St.
* Utica 13501 1001 Broad St. | WASHINGTON | | Rockford 61105 4223 East State St. | 1 Waverly 14892 P.O. Box 308 | † Pasco 99301 824 W. Lewis † \$ Seattle 98104 710 Second / * \$ Spokane 99220 S. 162 Post † \$ Spokane 99220 E. 1805 Trent | | † Springfield 62701 607 E. Adams St. | | * † \$ Seattle 98104 | | NDIANA | † † Charlotte 28202 129 W. Trade St. | † Spokane 99220 E. 1805 Trent | | † Evansville 47714 2709 Washington Ave.
† Fort Wayne 46807 1635 Broadway
† Fort Wayne 46806 3606 S. Calhoun St. | *† Charlotte 28202 | | | ‡ Fort Wayne 46807 1635 Broadway
† Fort Wayne 46806 3606 S. Calhoun St. | NORTH DAKOTA | WEST VIRGINIA | | † † Indianapolis 4620/ 3/30 N. Meridian St. | † Bismarck 58501 418 Rosser Ave. | Charleston 25328 306 MacCorkle Ave., | | 1 South Bend 40001 . 450 N. Michigan of | OHIO | * † Fairmont 26555 310 Jacobs B * Wheeling 40 Fourteenth | | OWA | * † Akron 44313 2858 W. Market St. | | | t Cedar Rapids 52401 210 Second St., S.E. | † Canton 44701 515 Third St., N.W.
†‡ Cincinnati 45206 2621 Victory Pkwy. | WISCONSIN | | † ‡ Davenport 52805
1039 State St., Bettendorf, lowa | * † \$ Cleveland 44104 4966 Woodland Ave. | *† § Appleton 54910 | | t Des Moines 50310 3839 Merle Hay Rd. | *† Columbus 43215 395 E. Broad St. | * + + Milwaukee 53233 OAN W St Paul | | Sioux City 51101 520 Pierce St. | * C-lumbus 42212 027 Russell Ave | | | ANSAS | | CANADA: Canadian General Electric Comp | | † Wichita 67211 820 E. Indianapolis Ave. | "† \$ Dayton 45402 | Ltd., Toronto | | ENTUCKY † Lexington 40503 465 E. High St. | * † 1 Taleda 43606 | HAWAII: American Factors, Ltd., P.O. Box 3 | | † Louisville 40218 2300 Meadow Dr. | Youngstown 44507 272 E. Indianola Ave. | Honolulu 96801 | | 1 1 100134116 40210 | GENERAL ELECTRIC SERVICE SHOPS | | | | ons will repair, recondi- | ipment. For full information about these serv | | ion, and rebuild your electric apparatus. The tacititie | on your premises. Latest
e used to maintain peak | | | ion, and rebuild your electric apparatus. The tactifficight, seven days a week, for work in the shops or actory methods and genuine G-E renewal parts are | e used to maintain peak | Columbus 43223 | | ion, and rebuild your electric apparatus. The facilities ight, seven days a week, for work in the shops or actory methods and genuine G-E renewal parts are NLABAMA. | is are available any one on your premises. Latest sused to maintain peak KANSAS **(Strather) Arkansas City | Columbus 43223 | | ion, and rebuild your electric apparatus. The faciliti
ight, seven days a week, for work in the shops or
actory methods and genuine G-E renewal parts are
NABAMA
Birmingham 35211, P.O. Box 3687.
———————————————————————————————————— | on your premises. Label used to meintain peek KANSAS *(Strother) Arkansas City G.E. Co., P.O. Box 797 | Columbus 43223 P.O. Box 6198, 2128 Eakin Toleda 43605 405 Pearborn Youngstown 44507 272 E. Indianola | | ion, and rebuild your electric apparatus. The Tactiffi
ight, seven days a week, for work in the shops or
actory methods and genuine G-E renewal parts and
LABAMA
Birmingham 35211, P.O. Box 3687 | is are available any one on your premises. Latest sused to maintain peak KANSAS **(Strather) Arkansas City | Columbus 43223 P.O. Box 6198, 2128 Eakin Toledo 43605 | | ion, and rebuild your electric apparatus. The Tactifficial injunt, seven days a week, for work in the shops or actory methods and genuine G-E renewal parts and LABAMA Birmingham 35211, P.O. Box 3687 | s are available and the control you hears selven on your premises. Latest sused to maintain peak KANSAS (Strother) Arkansas City (Strother) Arkansas City Louisville 40209 | Columbus 43223 P.O. Box 6198, 2128 Edkin Toledo 43605 405 Deerborn Youngstown 44507 272 E. Indianola OREGON Portland 97210 2727 N.W. 29th | | ion, and rebuild your electric apparatus. The Tactifficality is a days a week, for work in the shops or actory methods and genuine G-E renewal parts and LABAMA Birmingham 35211, P.O. Box 3687. 7-18th St., S.W. ARIZONA (Phoenix) Glendale 85301. 4911 West Colter St. | s are available and that on your premises, latest sused to maintain peak KANSAS *(Strother) Arkansas City G.E. Co., P.O. Box 797 KENTUCKY | Columbus 43223 P.O. Box 6198, 2128 Eakin Toledo 43605 405 Dearborn Youngstown 44507 272 E. Indianola OREGON Portland 97210 2727 N.W. 29th PENNSYLVANIA | | ion, and rebuild your electric apparatus. The Tactifficiality, seem days a week, for work in the shops or actory methods and genuine G-E renewal parts are ALABAMA Birmingham 35211, P.O. Box 3687. 7-18th St., S.W. ARIZONA (Phoenix) Glendale 85301. 4911 West Colter St. CALIFORNIA Los Appeles 90001. 6900 Stanford Ave. | s are available and the control you heart serving your more and the control you heart serving your more and you will be a serving to the control you will be a serving to the control you will be a serving to the control your more and you will be a serving to the control you will be a serving to the control you will be a serving to the control you will be a served | Columbus 43223 Toleda 43605 P.O. Box 6198, 2128 Eakim Toleda 43607 272 E. Indianola OREGON Portland 97210 2727 N.W. 29th PENNSYLVANIA 648 E. Hisbland | | ion, and rebuild your electric apparatus. The Tactifficiality, seem days a week, for work in the shops or actory methods and genuine G-E renewal parts are ALABAMA Birmingham 35211, P.O. Box 3687. 7-18th St., S.W. ARIZONA (Phoenix) Glendale 85301. 4911 West Colter St. CALIFORNIA Los Appeles 90001. 6900 Stanford Ave. | an your premises. Labes used to maintain peak KANSAS *(Strother) Arkansas City G.E. Co., P.O. Box 797 KENTUCKY Louisville 40209 | Columbus 43223 Toleda 43605 P.O. Box 6198, 2128 Eakim Toleda 43607 272 E. Indianola OREGON Portland 97210 2727 N.W. 29th PENNSYLVANIA 648 E. Hisbland | | ion, and
rebuild your electric apparatus. The ractiful igisht, seven days a week, for work in the shops or actory methods and genuine G-E renewal parts or LLABAMA Birmingham 35211, P.O. Box 3687 7-18th St., S.W. ARIZONA (Phoenix) Glendale 85301 4911 West Colter St. CALIFORNIA Los Angeles 90001 6900 Stanford Ave. **(Los Angeles) Ontario International Airport | s are available and the control of t | Columbus 43223 Toleda 43605 P.O. Box 6198, 2128 Eakim Toleda 43607 272 E. Indianola OREGON Portland 97210 2727 N.W. 29th PENNSYLVANIA 648 E. Hisbland | | ion, and rebuild your electric apparatus. The ractiful igisht, seven days a week, for work in the shops or actory methods and genuine G-E renewal parts or ALABAMA Birmingham 35211, P.O. Box 3687 7-18th St., S.W. ARIZONA (Phoenix) Glendale 85301 4911 West Colter St. CALIFORNIA 10s Angeles 90001 6900 Stanford Ave. **(Los Angeles) Ontario International Airport | mayour premises. Label's used to maintain peek KANSAS *(Strother) Arkansas City G.E. Co., P.O. Box 797 KENTUCKY Louisville 402093900 Crittenden Drive LOUISIANA New Orleans 70117 1115 De Armas St. MARYLAND Baltimore 21230920 E. Fort Ave. MASSACHUSETTS | Columbus 43223 P.O. Box 6198, 2128 Eakin Toleda 43605 2405 Dearborn Youngstown 44507 272 E. Indianola OREGON Portland 97210 2727 N.W. 29th PENNSTVANIA Allentown 18103 668 E. Highland Johnstown 15902 841 Od (Piladelphia 19124 1040 E. Erie (Pittsburgh) Homestead 15120 4930 Buttermilk Hollow Rd., RD | | ion, and rebuild your electric apparatus. The ractifficiality seem adays a week, for work in the shops or actory methods and genuine G-E renewal parts or ALABAMA Birmingham 35211, P.O. Box 3687 7-18th St., S.W. ARIZONA (Phoenix) Glendale 85301 (Phoenix) Glendale 85301 (Phoenix) Glendale 85301 (Phoenix) Glendale 85301 (So Angeles) Ontario "(Los Angeles) Ontario (Tos Angeles) Ontario Oakland 94609 Oakland 94609 Oakland 94609 Secremento 95814 99 North 17th St. | manyour premises. Latest sudden to maintain peek stands of the | Columbus 43223 P.O. Box 6198, 2128 Edkin Toledo 43605 405 Deerborn Groupstown 44507 Portland 97210 PennsylvAniia Allentown 18103 Johnstown 15902 Philodelphia 1912 (Pitsburge) Homesteed 15120 West Alifflin, Pa. 15122 | | ion, and rebuild your electric apparatus. The ractifficient, seven days a week, for work in the shops or actory methods and genuine O-E renewal parts are NABAMA Birmingham 35211, P.O. Box 3687. RRIZONA (Phoenix) Glendale 85301. 4911 West Colter St. Los Angeles 90001. Cos Angeles 9001. Ontario International Airport Onkaland 94508 Sacramento 95814. Son Francisco 94103. | my your premises. Laber with a control you interest serving your peek KANSAS (Strother) Arkansas City G.E. Co., P.O. Box 797 KENTUCKY Louisville 40209 | Columbus 43223 P.O. Box 6198, 2128 Eakin Toleda 43005 405 Deerborn Groupstown 44507 272 E. Indianola OREGON Portland 97210 2727 N.W. 29th PENNSYLVANIA Allentown 18103 Johnstown 15902 Philadelphia 19124 (Pittsburgh) Homestead 15120 (4930 Buttermilk Hollow Rd., RD West Mifflin, Pa. 13122 54 N. Harriso | | ion, and rebuild your electric apparatus. The ractifficient, seven days a week, for work in the shops or actory methods and genuine G-E renewal parts are LLABAMA ICHARLES AND STATES | mary Land | Columbus 43223 P.O. Box 6198, 2128 Eakin Toleda 43005 405 Deerborn Groupstown 44507 272 E. Indianola OREGON Portland 97210 2727 N.W. 29th PENNSYLVANIA Allentown 18103 Johnstown 15902 Philadelphia 19124 (Pittsburgh) Homestead 15120 (4930 Buttermilk Hollow Rd., RD West Mifflin, Pa. 13122 54 N. Harriso | | ion, and rebuild your electric apparatus. The ractifficient, seven days a week, for work in the shops or actory methods and genuine G-E renewal parts or ALABAMA ICHARIANA ARIZONA (Phoenix) Glendale 85301 (Phoenix) Glendale 85301 (Phoenix) Glendale 85301 (SALIFORNIA Los Angeles 90001 *(Los Angeles) Ontario *(Los Angeles) Ontario Ockland 94608 Ockland 94608 Sacramento 95814 99 North 17th St. San Francisco 94103 1098 Harrison St. COLORADO Denver 80205 3353 Larimer St. | my our premises. Laber with the peak KANSAS (Strother) Arkansas City G.E. Co., P.O. Box 797 KENTUCKY Louisville 40209 | Columbus 43223 P.O. Box 6198, 2128 Eakin Toleda 43005 405 Deerborn Groupstown 44507 272 E. Indianola OREGON Portland 97210 2727 N.W. 29th PENNSYLVANIA Allentown 18103 Johnstown 15902 Philadelphia 19124 (Pittsburgh) Homestead 15120 (4930 Buttermilk Hollow Rd., RD West Mifflin, Pa. 13122 54 N. Harriso | | ion, and rabuild your electric apparatus. The ractifficient, seven days a week, for work in the shops or actory methods and genuine O-E renewal parts are LLABAMA Birmingham 35211, P.O. Box 3687. 7-18th St., S.W. KRIZONA (Phoenix) Glendale 85301. (Phoenix) Glendale 85301. 4911 West Coller St. CALIFORNIA Los Angeles 90001. Ontario International Airport Oakland 94608. Sacramente 95814. Son Francisco 94103. 1098 Harrison St. COLORADO Denver 80205. 3353 Larimer St. | myour premises. Latest used to maintain peek KANSAS (Strother) Arkansas City G.E. Co., P.O. Box 797 KENTUCKY Louisville 40209 | Columbus 43223 P.O. Box 6198, 2128 Eakin Toleda 43005 405 Deerborn Groupstown 44507 272 E. Indianola OREGON Portland 97210 2727 N.W. 29th PENNSYLVANIA Allentown 18103 Johnstown 15902 Philadelphia 19124 (Pittsburgh) Homestead 15120 (4930 Buttermilk Hollow Rd., RD West Mifflin, Pa. 13122 54 N. Harriso | | ion, and rabuild your electric apparatus. The ractiful ight, seven days a week, for work in the shops or actory methods and genuine O-E renewal parts are LLABAMA Birmingham 35211, P.O. Box 3687. **RRIZONA** (Phoenix) Glendale 85301. 4911 West Colter St. Cos Angeles 90001. Los Angeles 9001. Cokland 94068. Sorcamento 95814. Son Francisco 94103. COLCRADO Denver 80205. 3353 Larimer St. | myour premises. Latest used to maintain peek KANSAS (Strother) Arkansas City G.E. Co., P.O. Box 797 KENTUCKY Louisville 40209 | Columbus 43223 P.O. Box 6198, 2128 Eakin Toledo 43605 405 Deerborn 405 Deerborn 405 Deerborn 500 Periland 97210 272 E. Indianola Periland 97210 2727 N.W. 29th PENNSYLVANIA Allentown 18103 668 E. Highland Johnstown 15902 841 Od Philadelphia 19124 1046 E. Erie (Pittsburgh) Homestead 15120 4820 Buttermilk Hollow Rd., RD 4820 Buttermilk Hollow Rd., RD 70rk 17403 554 N. Harriso TEXAS Carpus Christi 78401 115 Wac Dallas 75235 3202 Manor Houston 77020 5534 Harvey Wilson Hidlend 79704 704 5 Johnstol | | ion, and rebuild your electric appearatus. The ractifiting inght, seven days a week, for work in the shops or actory methods and genuine G-E renewal parts are ALABAMA Birmingham 35211, P.O. Box 3687 7-18th St., S.W. ARIZONA (Phoenix) Glendale 85301 4911 West Coller St. CALIFORNIA Los Angeles 90001 Clos Angeles 9001 Clos Angeles 9001 Ontario International Airport Oakland 94608 Sacramento 95814 Son Francisco 94103 COLORADO Denver 80205 SONNECTICUT (Southington) Plantsville 06479 370 Atwater St. | my our premises. Labes used to meintain peak KANSAS *(Strother) Arkansas City Couisville 40209 | Columbus 43223 Toledo 43605 P.O. Box 6198, 2128 Eakin 405 Deerborn 405 Deerborn 7000 2727 E. Indianola OREGON Portland 97210 PENNSYLVANIA A. Indianola 648 E. Highland Allenburn 15902 Philadelphia 19124 1040 E. Frie (Pittsburgh) Homestead 15120 4930 Buttermilk Hollow Rd., RD West Mifflin, Pa. 15122 Vork 17403 TEXAS Capparation 19124 115 Wac College 1918 Co | | ion, and rebuild your electric apparatus. The ractifiting light, seven days a week, for work in the shops or actory methods and genuine G-E renewal parts or NABAMA IABAMA ARIZONA (Phoenix) Glendale 85301 API1 West Colter St. CALIFORNIA LOS Angeles 90001 COLTON Ontario Clos Angeles 90001 Ontario 1098 Harrison St. COLORADO Denver 80205 SONECTICUT (Southington) Plantsville 0647P 370 Atwoter St. | my or premises. Labes used to maintain peak KANSAS (Strother) Arkansas City G.E. Co., P.O. Box 797 KENTUCKY Louisville 40209 | Columbus 43223 P.O. Box 6198, 2128 Eakin Toleda 43005 405 Deerborn 405 Deerborn 1000000000000000000000000000000000000 | | ion, and rebuild your electric apparatus. The ractifiting light, seven days a week, for work in the shops or actory methods and genuine G-E renewal parts or NABAMA IABAMA ARIZONA (Phoenix) Glendale 85301 API1 West Colter St. CALIFORNIA LOS Angeles 90001 COLTON Ontario Clos Angeles 90001 Ontario 1098 Harrison St. COLORADO Denver 80205 SONECTICUT (Southington) Plantsville 0647P 370 Atwoter St. | mayour premises. Labest used to maintain peek KANSAS (Strother) Arkansas City G.E. Co., P.O. Box 797 KENTUCKY Louisville 40209 | Columbus 43223 Toledo 43005 | | ion, and rebuild your electric appearatus. The ractifiting light, seven days a week, for work in the shops or actory methods and genuine G-E renewal parts or ALABAMA ALABAMA Birmingham 35211, P.O. Box 3687 7-18th St., S.W. ARIZONA (Phoenix) Glendale 85301 4911 West Colter St. CALIFORNIA Los Angeles 90001 10s Stanford Ave. 3400 Wood St. 30scramento 95814 29 North 17th St. 1098 Harrison St. COLORADO Denver 80205 3353 Larimer St. CONNECTICUT (Southington) Plantsville 06479 370 Atwoter St. | mayour premises. Labest used to maintain peek KANSAS (Strother) Arkansas City G.E. Co., P.O. Box 797 KENTUCKY Louisville 40209 | Columbus 43223 Toledo 43005 | | ion, and rebuild your electric appearatus. The ractifiting inght, seven days a week, for work in the shops or actory methods and genuine 0-E renewal parts are ALABAMA Birmingham 35211, P.O. Box 3687. 7-18th 5t., S.W. ARIZONA (Phoenix) Glendale 85301 4911 West Colter St. CALIFORNIA 10s Angeles 90001 10s Angeles 9001 Angel | my or premises. Labes used to maintain peak KANSAS *(Strother) Arkansas City Couisville 40209 | Columbus 43223 Toledo 43005 | | ion, and rebuild your electric apparatus. The ractifiting light, seven days a week, for work in the shops or actory methods and genuine G-E renewal parts are ALABAMA ALABAMA ARIZONA (Phoenix) Glendale 85301 (Phoenix) Glendale 85301 (Phoenix) Glendale 85301 (Phoenix) Glendale 85301 (Southeast Angeles 90001 (Los Angeles 90001 (Los Angeles) Ontario (Notario International
Airport 3400 Wood St. Socramento 95814 99 North 17th St. Son Francisco 94103 1098 Harrison St. COUNECTICUT (Southington) Plantsville 06479 370 Atwater St. HLORIDA Joksonvine 32203 P.O. Box 2932, 2020 W. Beaver St. (Micami) Hialeah 33010 1062 E. 28th St. Tampa 33301 P.O. Box 1245 GEORGIA | my or premises. Labes used to maintain peak KANSAS *(Strother) Arkansas City Couisville 40209 | Columbus 43223 P.O. Box 6198, 2128 Eakin Toledo 43005 A05 Deerborn 405 272 E. Indianola OREGON Portland 97210 2727 N.W. 29th PENNSYLVANIA Allentown 18103 Johnstown 15902 104 E. Erie Philadelphie horestead 15120 (Pints 4930 Buttermilk Hollow Rd., RD West Mifflin, Pa. 15122 York 17403 IEXAS TEXAS Corpus Christi 78401 115 Wac Dollas 79335 4 N. Harriso Houston 77020 5534 Harvey Wilson I American From Houston 77020 5534 Harvey Wilson I American Philadelphie Hollow Rd., RD West Middle 19704 704 5 Johnsto UIAH Salt Lake City 84104 301 S. 7th Wet VIRGINA Rename 23224 Rename 24007 P.O. Box 1327, 115 Albermarle Ave., WASHINGTON | | ion, and rebuild your electric appearatus. The ractifiting inght, seven days a week, for work in the shops or actory methods and genuine G-E renewal parts are ALABAMA Birmingham 35211, P.O. Box 3687. 7-18th 5t., S.W. ARIZONA (Phoenix) Glendale 85301 4911 West Coller St. CALIFORNIA 1.0s Angeles 90001 | Some and the content of conten | Columbus 43223 Toledo 43605 Ye.O. Box 6198, 2128 Edkin 405 Deerborn 405 Deerborn 7000 Perland 97210 PENNSYLVANIA 18103 Johnstown 15902 Philadelphia 19124 19125 Philadelphia 19124 Philadelphi | | ion, and rebuild your electric apparatus. The ractifiting light, seven days a week, for work in the shops or actory methods and genuine G-E renewal parts or ALABAMA ARIZONA (Phoenix) Glendale 85301 (Phoenix) Glendale 85301 (Phoenix) Glendale 85301 (Los Angeles 90001 (Los Angeles 9001) (Los Angeles 9001) (Los Angeles 9001) (Los Angeles) Ontario Angele | Some and the color of col | Columbus 43223 Toledo 43605 Ye.O. Box 6198, 2128 Edkin 405 Deerborn 405 Deerborn 7000 Perland 97210 PENNSYLVANIA 18103 Johnstown 15902 Philadelphia 19124 19125 Philadelphia 19124 Philadelphi | | ion, and rebuild your electric appearatus. The ractifiting light, seven days a week, for work in the shops or actory methods and genuine G-E renewal parts are ALABAMA Birmingham 35211, P.O. Box 3687. 7-18th St., S.W. ARIZONA (Phoenix) Glendale 85301 4911 West Coller St. CALIFORNIA Los Angeles 90001 (Cos Angeles) Ontario Ontario International Airport Oakland 94608 Socramento 950 Socramento 950 Socramento 94103 Socramento 950 | my our premises. Labes used to meintain peak KANSAS *(Strother) Arkansas City Couisville 40209 | Columbus 43223 Toledo 43605 P.O. Box 6198, 2128 Edkin Toledo 43605 Portland 97210 PENNSYLVANIA Allendown 15902 Philadelphia 19124 19125 Philadelphia 19124 Philadelphia 19125 Philadelphia 19125 Philadelphia 19124 191 | | ion, and rebuild your electric appearatus. The ractifiting light, seven days a week, for work in the shops or actory methods and genuine G-E renewal parts or ALABAMA ARIZONA (Phoenix) Glendale 85301 (Phoenix) Glendale 85301 (Phoenix) Glendale 85301 (Los Angeles 90001 (Los Angeles 90001 (Los Angeles) Ontario (Los Angeles) Ontario (Cokland 94008 International Airport 3400 Waod St. Socramento 95814 99 North 17th St. St. Son Francisco 94103 1098 Harrison St. COLORADO Denver 80205 3353 Larimer St. CONNECTICUT (Southington) Plantsville 06479 370 Atwater St. HORION St. Socramento 3500 Plantsville 06479 Alacksonvine 32203 P.O. Box 27932, 2020 W. Beaver St. (Micami) Hialeah 33010 1062 E. 28th St. Tampa 33601 P.O. Box 1243 Getalland Chicago 60632 4360 W. 47th St. INDIABAA | my or premises. Lelest vised to maintain peak (ANSAS) KANSAS (Strother) Arkansas City St. Maryland (Strother) (Strother) Arkansas St. Maryland (Strother) (Stro | Columbus 43223 Toledo 43005 P.O. Box 6198, 2128 Eakin Toledo 43005 Portigory 405 272 E. Indianola OREGON Portland 97210 PENNSYLVANIA Allentown 18103 | | ARIZONA (Phoenix) Glendale 85301 4911 West Colter St. CALIFORNIA Los Angeles 90001 (*(Los Angeles) Ontario Oakland 9460tas Sacramento 95814 97 North 17th St. San Francisco 94103 1098 Horrison St. COLORADO Denver 80205 3353 Larimer St. CONNECTICUT (Southington) Plantsville 06479 370 Atwoter St. (Mitami) Hialeah 33010 1062 E. 28th St. Tampa 33601 1062 E. 28th St. Tampa 33601 1063 Feachtree Industrial Blvd. ILLINOIS Chicago 60632 4360 W. 47th St. | my or premises. Labes used to meintain peak KANSAS *(Strother) Arkansas City Couisville 40209 | Columbus 43223 Toledo 43605 P.O. Box 6198, 2128 Edkin Toledo 43605 Portland 97210 PennsytivANIA Alember 18103 TEXAS Collabor 17403 TEXAS Collabor 17403 Alember 18103 Alem | | ion, and rebuild your electric appearatus. The ractifiting inght, seven days a week, for work in the shops or actory methods and genuine 0-E renewal parts are ALABAMA Birmingham 35211, P.O. Box 3687. 7-18th St., S.W. ARIZONA (Phoenix) Glendale 85301 4911 West Colter St. CALIFORNIA 1.0s Angeles 90001 Ontario International Airport Oakland 94608 3400 Wood St. Sacramento 95814 San Francisco 94103 Denver 80205 Sacramento 95814 Son Francisco 94103 Denver 80205 SOURABO Denver 80205 SOURABO Denver 80205 SOURIBER ST. FLORIDA P.O. Box 2932, 2020 W. Beaver St. (Micmi) Hialeah 33010. 1062 E 2810 (Atlanto) Chambles 30005 (Atlanto) Chombles 30005 (Atlanto) Chombles 30005 (Atlanto) Chombles 3005 ILLINOIS Chicago 60632 4360 W. 47th St. INDIANA Myore 46803 1731 Edsall Ave. Indianapolis 46222. 1740 W. Vermont St. | my or premises. Labes used to meintain peak KANSAS *(Strother) Arkansas City Couisville 40209 | Columbus 43223 Toledo 43605 P.O. Box 6198, 2128 Edkin Toledo 43605 Portland 97210 PennsytivANIA Alember 18103 TEXAS Collabor 17403 TEXAS Collabor 17403 Alember 18103 Alem | | ion, and rebuild your electric appearatus. The ractifiting light, seven days a week, for work in the shops or actory methods and genuine G-E renewal parts or ALABAMA ARIZONA (Phoenix) Glendale 85301 (Phoenix) Glendale 85301 (Phoenix) Glendale 85301 (Los Angeles) Ontario (Los Angeles) Ontario (Coklond 9408) Mariorio Oaklond 94080 International Airport 3400 Wood St. Socramento 95814 99 North 17th St. Son Francisco 94103 1098 Harrison St. COLORADO Denver 80205 3353 Larimer St. CONNECTICUT (Southington) Plantsville 04479 370 Atwater St. (Micami) Hialeah 33010 1062 E. 28th St. (Micami) Hialeah 33010 1062 E. 28th St. (Atlanto) Chombles 30005 GEORGIA (Atlanto) Chombles 30005 Chambles 30005 (Atlanto) Chambles 30007 (Atlanto) Chambles 30005 (Atlanto) Chambles 30005 (Atlanto) Chambles 30005 (Atlanto) Chambles 30005 (Atlanto) Chambles 30007 | mayor premises. Labes used to maintain peak KANSAS "(Strother) Arkansas City Couisville 40209 | Columbus 43223 Toledo 43605 P.O. Box 6198, 2128 Edkin Toledo 43605 Portland 97210 PennsytivANIA Alember 18103 TEXAS Collabor 17403 TEXAS Collabor 17403 Alember 18103 Alem | Approved For Release 2000/06/14 : CIA-RDP78-06505A0007000 22-0 VOLTAGE REGULATOR BUSINESS SECTION PITTSFIELD, MASSACHUSETTS PRINTED IN USA 2 6 APR 1967 25X1A ATTN : Chief, Procurement Division, OL Chief, Real Estate & Construction Division, OL Requisition No. 770-67-26291 Electrical Distribution 25X1A System) - 1. Please amend Requisition No. 770-67-26291, Voucher No. 67-9043, as follows: - a. Cancel Item 1 of the basic requirements. - b. Cancel amendment No. 1. - c. Add the following: 3 each General Electric ML-32 single phase, stepvoltage regulators, rated 288 KVA, 14.4 KV with tap for reduced voltage operation at 13.8 KV at 200 amps, GE Cat. No. 29D 1843. Unit price \$5,051.00. Regulators are to be operated in Delta. 2. In order for the Station to construct a building to house these regulators, it is requested that dimensional drawings, schematic diagrams and operational manuals be obtained and forwarded to this office as soon as possible. Also please try to obtain the best possible delivery date as the field has an urgent requirement for this item. 25X1A Matribution: Orig. & 1 - Addressee 1 - OL/RECD Project 1 - OL/RECD/UEB Chrono 25X1A OL RECD/USE/ NMY