Modified Pager System

A Motorola INSTINCT PLUS pager has 12 symbol LCD (with extra two in most right \& left).
A 12-digit message can appear on the LCD when paged upon pushing of the big button (marked _-).
Six Digits of these (Number 2,5,9,10,11 \& 12 from the left) can be detected from inside circuitry (refer to fig 1).
These have three different patterns of wave shape on the oscilloscope depending on which numeral is displayed; Fig. 2 shows the wave shape in case of Digit 2,5,6\&7, Fig 3 shows that of Digit $0,8,9 \& 3$ and Fig 4 shows that of Digit $1 \& 4$.
The circuit in fig $6 \& 7$ is designed to detect a 12 digit message with digit 1 or 4 in the $2^{\text {nd }}, 5^{\text {th }}, 9^{\text {th }}, 10^{\text {th }}, 11^{\text {th }}, 12^{\text {th }}$, positions (from left).
The possibility of such message in ordinary use is practically fairly low (especially for unknown pager).
A non-displayed digit (empty) at these positions gives the pattern shown in fig 5.

Circuit Analysis:

-A new AAA alkaline battery is put and silent mode (Vibrating mode) is chosen.
-Any incoming page will put P1 high then after a very short time P2 is grounded so the motor is off then also C1815 and 1PAGE is displayed on LCD.
-After 2 minutes the vibration motor is activated again and the paged Number is displayed prior to grounding P2.
-Only a 12-Digit page will put 13 high making Mono 2 ready for triggering.
-If any of the Digits ($5^{\text {th }}, 9^{\text {th }}, 10^{\text {th }} .11^{\text {th }} . \& 12^{\text {th }}$) is either $0,8,9$ or 3 wave form at $1(358)$ will be as follows;

-If they are not $0,8,9$ or 3 but any of them either $2,5,6$ or 7 then the waveform is as follows ;

-If they are all either 1 or 4 then we get ;

-Only the last wave form will give + ve going pulses at Q1 of the retriggerable Mono1 if we choose a trigger pulse duration of slightly more than 2 D by adjusting the $10 \mathrm{~K} \Omega$ potentiometer (upper)
-These pulses will trigger Mono2 putting D634 and the load ON.
-The lower $10 \mathrm{~K} \Omega$ potentiometer is adjusted to give trigger pulse duration just enough to retrigger Mono2 by the pulses coming from Mono1 (slightly more than 3D).
-Why $470 \mu \mathrm{~F} \& 470 \Omega$ delay is used at the output stage?
-Answer:
Assume that a 12-digit non-correct page was received then after 2 minutes, 13 goes high but Mono2 is not triggered because Q1 is kept low. But after 12 seconds more when the display is changed; 1 or 4 digit was displayed in $5^{\text {th }}$ or $9^{\text {th }}$ position (usually $10^{\text {th }}, 11^{\text {th }}, \& 12^{\text {th }}$ are empty) and the other positions were empty then Mono2 will be triggered because 13 will stay high for a moment during which few pulses at 12 can trigger Mono2; putting Q2 high for a moment. $470 \mu \mathrm{~F} \& 470 \Omega$ is then to eliminate the effect of such pulses.

How to adjust the variables without using oscilloscope:

1. Cut at P3 so that only the $5^{\text {th }}$ is inputted to 3 (358).
2. Connect 13 (4538) to VB.
3. Put lower \& Upper Variable $10 \mathrm{~K} \Omega$ to max.
4. Put the digit left to the flashing points to be 2 by adjusting the time (this will be at the $5^{\text {th }}$ position).
5. Connect the freq. Meter to 7 (4538); the reading is zero.
6. Reduce upper $10 \mathrm{~K} \Omega$ to just get a reading on the Meter then measure the resistance (of $10 \mathrm{~K} \Omega$) at this position.
7. Put the upper $10 \mathrm{~K} \Omega$ to max and the digit left to the flashing points to be 1 .
8. Repeat step 5\&6.
9. Put the upper $10 \mathrm{~K} \Omega$ to be the average of the two readings.
10. Put the digit left to the flashing points to be 1 by adjusting the time
11. Connect the freq. Meter to $9(4538)$; the reading is zero.
12. Reduce lower $10 \mathrm{~K} \Omega$ to just get a reading on the Meter.
13. Put the lower $10 \mathrm{~K} \Omega$ to be slightly more then that on step 11 ($0.5 \mathrm{~K} \Omega$ more).

Both Variables now are adjusted

